"...consistency_distillation/train_lcm_distill_sd_wds.py" did not exist on "6a6dfe1cbddfec78854d81340bce9f98dfd6bed1"
Commit 17bc28d5 authored by sunxx1's avatar sunxx1
Browse files

Merge branch 'main' into 'main'

yolov5增加了mpi单机多卡和多机多卡启动方式,其readme文件进行了更新,对maskrcnn的debug输出日志进行了删除,并更新了该模型的readme文件

See merge request dcutoolkit/deeplearing/dlexamples_new!46
parents 7143f128 5a567950
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
"""
utils/initialization
"""
def notebook_init(verbose=True):
# Check system software and hardware
print('Checking setup...')
import os
import shutil
from utils.general import check_requirements, emojis, is_colab
from utils.torch_utils import select_device # imports
check_requirements(('psutil', 'IPython'))
import psutil
from IPython import display # to display images and clear console output
if is_colab():
shutil.rmtree('/content/sample_data', ignore_errors=True) # remove colab /sample_data directory
if verbose:
# System info
# gb = 1 / 1000 ** 3 # bytes to GB
gib = 1 / 1024 ** 3 # bytes to GiB
ram = psutil.virtual_memory().total
total, used, free = shutil.disk_usage("/")
display.clear_output()
s = f'({os.cpu_count()} CPUs, {ram * gib:.1f} GB RAM, {(total - free) * gib:.1f}/{total * gib:.1f} GB disk)'
else:
s = ''
select_device(newline=False)
print(emojis(f'Setup complete ✅ {s}'))
return display
......@@ -18,8 +18,8 @@ class SiLU(nn.Module): # export-friendly version of nn.SiLU()
class Hardswish(nn.Module): # export-friendly version of nn.Hardswish()
@staticmethod
def forward(x):
# return x * F.hardsigmoid(x) # for TorchScript and CoreML
return x * F.hardtanh(x + 3, 0.0, 6.0) / 6.0 # for TorchScript, CoreML and ONNX
# return x * F.hardsigmoid(x) # for torchscript and CoreML
return x * F.hardtanh(x + 3, 0., 6.) / 6. # for torchscript, CoreML and ONNX
# Mish https://github.com/digantamisra98/Mish --------------------------------------------------------------------------
......
......@@ -3,13 +3,14 @@
Image augmentation functions
"""
import logging
import math
import random
import cv2
import numpy as np
from utils.general import LOGGER, check_version, colorstr, resample_segments, segment2box
from utils.general import colorstr, segment2box, resample_segments, check_version
from utils.metrics import bbox_ioa
......@@ -19,7 +20,7 @@ class Albumentations:
self.transform = None
try:
import albumentations as A
check_version(A.__version__, '1.0.3', hard=True) # version requirement
check_version(A.__version__, '1.0.3') # version requirement
self.transform = A.Compose([
A.Blur(p=0.01),
......@@ -31,11 +32,11 @@ class Albumentations:
A.ImageCompression(quality_lower=75, p=0.0)],
bbox_params=A.BboxParams(format='yolo', label_fields=['class_labels']))
LOGGER.info(colorstr('albumentations: ') + ', '.join(f'{x}' for x in self.transform.transforms if x.p))
logging.info(colorstr('albumentations: ') + ', '.join(f'{x}' for x in self.transform.transforms if x.p))
except ImportError: # package not installed, skip
pass
except Exception as e:
LOGGER.info(colorstr('albumentations: ') + f'{e}')
logging.info(colorstr('albumentations: ') + f'{e}')
def __call__(self, im, labels, p=1.0):
if self.transform and random.random() < p:
......@@ -123,7 +124,7 @@ def letterbox(im, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleF
def random_perspective(im, targets=(), segments=(), degrees=10, translate=.1, scale=.1, shear=10, perspective=0.0,
border=(0, 0)):
# torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(0.1, 0.1), scale=(0.9, 1.1), shear=(-10, 10))
# torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10))
# targets = [cls, xyxy]
height = im.shape[0] + border[0] * 2 # shape(h,w,c)
......@@ -269,7 +270,7 @@ def mixup(im, labels, im2, labels2):
return im, labels
def box_candidates(box1, box2, wh_thr=2, ar_thr=100, area_thr=0.1, eps=1e-16): # box1(4,n), box2(4,n)
def box_candidates(box1, box2, wh_thr=2, ar_thr=20, area_thr=0.1, eps=1e-16): # box1(4,n), box2(4,n)
# Compute candidate boxes: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio
w1, h1 = box1[2] - box1[0], box1[3] - box1[1]
w2, h2 = box2[2] - box2[0], box2[3] - box2[1]
......
......@@ -10,9 +10,7 @@ import torch
import yaml
from tqdm import tqdm
from utils.general import LOGGER, colorstr, emojis
PREFIX = colorstr('AutoAnchor: ')
from utils.general import colorstr
def check_anchor_order(m):
......@@ -21,12 +19,14 @@ def check_anchor_order(m):
da = a[-1] - a[0] # delta a
ds = m.stride[-1] - m.stride[0] # delta s
if da.sign() != ds.sign(): # same order
LOGGER.info(f'{PREFIX}Reversing anchor order')
print('Reversing anchor order')
m.anchors[:] = m.anchors.flip(0)
def check_anchors(dataset, model, thr=4.0, imgsz=640):
# Check anchor fit to data, recompute if necessary
prefix = colorstr('autoanchor: ')
print(f'\n{prefix}Analyzing anchors... ', end='')
m = model.module.model[-1] if hasattr(model, 'module') else model.model[-1] # Detect()
shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True)
scale = np.random.uniform(0.9, 1.1, size=(shapes.shape[0], 1)) # augment scale
......@@ -34,32 +34,31 @@ def check_anchors(dataset, model, thr=4.0, imgsz=640):
def metric(k): # compute metric
r = wh[:, None] / k[None]
x = torch.min(r, 1 / r).min(2)[0] # ratio metric
x = torch.min(r, 1. / r).min(2)[0] # ratio metric
best = x.max(1)[0] # best_x
aat = (x > 1 / thr).float().sum(1).mean() # anchors above threshold
bpr = (best > 1 / thr).float().mean() # best possible recall
aat = (x > 1. / thr).float().sum(1).mean() # anchors above threshold
bpr = (best > 1. / thr).float().mean() # best possible recall
return bpr, aat
anchors = m.anchors.clone() * m.stride.to(m.anchors.device).view(-1, 1, 1) # current anchors
bpr, aat = metric(anchors.cpu().view(-1, 2))
s = f'\n{PREFIX}{aat:.2f} anchors/target, {bpr:.3f} Best Possible Recall (BPR). '
if bpr > 0.98: # threshold to recompute
LOGGER.info(emojis(f'{s}Current anchors are a good fit to dataset ✅'))
else:
LOGGER.info(emojis(f'{s}Anchors are a poor fit to dataset ⚠️, attempting to improve...'))
print(f'anchors/target = {aat:.2f}, Best Possible Recall (BPR) = {bpr:.4f}', end='')
if bpr < 0.98: # threshold to recompute
print('. Attempting to improve anchors, please wait...')
na = m.anchors.numel() // 2 # number of anchors
try:
anchors = kmean_anchors(dataset, n=na, img_size=imgsz, thr=thr, gen=1000, verbose=False)
except Exception as e:
LOGGER.info(f'{PREFIX}ERROR: {e}')
print(f'{prefix}ERROR: {e}')
new_bpr = metric(anchors)[0]
if new_bpr > bpr: # replace anchors
anchors = torch.tensor(anchors, device=m.anchors.device).type_as(m.anchors)
m.anchors[:] = anchors.clone().view_as(m.anchors) / m.stride.to(m.anchors.device).view(-1, 1, 1) # loss
check_anchor_order(m)
LOGGER.info(f'{PREFIX}New anchors saved to model. Update model *.yaml to use these anchors in the future.')
print(f'{prefix}New anchors saved to model. Update model *.yaml to use these anchors in the future.')
else:
LOGGER.info(f'{PREFIX}Original anchors better than new anchors. Proceeding with original anchors.')
print(f'{prefix}Original anchors better than new anchors. Proceeding with original anchors.')
print('') # newline
def kmean_anchors(dataset='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=1000, verbose=True):
......@@ -81,11 +80,12 @@ def kmean_anchors(dataset='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen
"""
from scipy.cluster.vq import kmeans
thr = 1 / thr
thr = 1. / thr
prefix = colorstr('autoanchor: ')
def metric(k, wh): # compute metrics
r = wh[:, None] / k[None]
x = torch.min(r, 1 / r).min(2)[0] # ratio metric
x = torch.min(r, 1. / r).min(2)[0] # ratio metric
# x = wh_iou(wh, torch.tensor(k)) # iou metric
return x, x.max(1)[0] # x, best_x
......@@ -93,17 +93,15 @@ def kmean_anchors(dataset='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen
_, best = metric(torch.tensor(k, dtype=torch.float32), wh)
return (best * (best > thr).float()).mean() # fitness
def print_results(k, verbose=True):
def print_results(k):
k = k[np.argsort(k.prod(1))] # sort small to large
x, best = metric(k, wh0)
bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n # best possible recall, anch > thr
s = f'{PREFIX}thr={thr:.2f}: {bpr:.4f} best possible recall, {aat:.2f} anchors past thr\n' \
f'{PREFIX}n={n}, img_size={img_size}, metric_all={x.mean():.3f}/{best.mean():.3f}-mean/best, ' \
f'past_thr={x[x > thr].mean():.3f}-mean: '
print(f'{prefix}thr={thr:.2f}: {bpr:.4f} best possible recall, {aat:.2f} anchors past thr')
print(f'{prefix}n={n}, img_size={img_size}, metric_all={x.mean():.3f}/{best.mean():.3f}-mean/best, '
f'past_thr={x[x > thr].mean():.3f}-mean: ', end='')
for i, x in enumerate(k):
s += '%i,%i, ' % (round(x[0]), round(x[1]))
if verbose:
LOGGER.info(s[:-2])
print('%i,%i' % (round(x[0]), round(x[1])), end=', ' if i < len(k) - 1 else '\n') # use in *.cfg
return k
if isinstance(dataset, str): # *.yaml file
......@@ -119,19 +117,19 @@ def kmean_anchors(dataset='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen
# Filter
i = (wh0 < 3.0).any(1).sum()
if i:
LOGGER.info(f'{PREFIX}WARNING: Extremely small objects found. {i} of {len(wh0)} labels are < 3 pixels in size.')
print(f'{prefix}WARNING: Extremely small objects found. {i} of {len(wh0)} labels are < 3 pixels in size.')
wh = wh0[(wh0 >= 2.0).any(1)] # filter > 2 pixels
# wh = wh * (np.random.rand(wh.shape[0], 1) * 0.9 + 0.1) # multiply by random scale 0-1
# Kmeans calculation
LOGGER.info(f'{PREFIX}Running kmeans for {n} anchors on {len(wh)} points...')
print(f'{prefix}Running kmeans for {n} anchors on {len(wh)} points...')
s = wh.std(0) # sigmas for whitening
k, dist = kmeans(wh / s, n, iter=30) # points, mean distance
assert len(k) == n, f'{PREFIX}ERROR: scipy.cluster.vq.kmeans requested {n} points but returned only {len(k)}'
assert len(k) == n, f'{prefix}ERROR: scipy.cluster.vq.kmeans requested {n} points but returned only {len(k)}'
k *= s
wh = torch.tensor(wh, dtype=torch.float32) # filtered
wh0 = torch.tensor(wh0, dtype=torch.float32) # unfiltered
k = print_results(k, verbose=False)
k = print_results(k)
# Plot
# k, d = [None] * 20, [None] * 20
......@@ -148,7 +146,7 @@ def kmean_anchors(dataset='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen
# Evolve
npr = np.random
f, sh, mp, s = anchor_fitness(k), k.shape, 0.9, 0.1 # fitness, generations, mutation prob, sigma
pbar = tqdm(range(gen), desc=f'{PREFIX}Evolving anchors with Genetic Algorithm:') # progress bar
pbar = tqdm(range(gen), desc=f'{prefix}Evolving anchors with Genetic Algorithm:') # progress bar
for _ in pbar:
v = np.ones(sh)
while (v == 1).all(): # mutate until a change occurs (prevent duplicates)
......@@ -157,8 +155,8 @@ def kmean_anchors(dataset='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen
fg = anchor_fitness(kg)
if fg > f:
f, k = fg, kg.copy()
pbar.desc = f'{PREFIX}Evolving anchors with Genetic Algorithm: fitness = {f:.4f}'
pbar.desc = f'{prefix}Evolving anchors with Genetic Algorithm: fitness = {f:.4f}'
if verbose:
print_results(k, verbose)
print_results(k)
return print_results(k)
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
"""
Auto-batch utils
"""
from copy import deepcopy
import numpy as np
import torch
from torch.cuda import amp
from utils.general import LOGGER, colorstr
from utils.torch_utils import profile
def check_train_batch_size(model, imgsz=640):
# Check YOLOv5 training batch size
with amp.autocast():
return autobatch(deepcopy(model).train(), imgsz) # compute optimal batch size
def autobatch(model, imgsz=640, fraction=0.9, batch_size=16):
# Automatically estimate best batch size to use `fraction` of available CUDA memory
# Usage:
# import torch
# from utils.autobatch import autobatch
# model = torch.hub.load('ultralytics/yolov5', 'yolov5s', autoshape=False)
# print(autobatch(model))
prefix = colorstr('AutoBatch: ')
LOGGER.info(f'{prefix}Computing optimal batch size for --imgsz {imgsz}')
device = next(model.parameters()).device # get model device
if device.type == 'cpu':
LOGGER.info(f'{prefix}CUDA not detected, using default CPU batch-size {batch_size}')
return batch_size
d = str(device).upper() # 'CUDA:0'
properties = torch.cuda.get_device_properties(device) # device properties
t = properties.total_memory / 1024 ** 3 # (GiB)
r = torch.cuda.memory_reserved(device) / 1024 ** 3 # (GiB)
a = torch.cuda.memory_allocated(device) / 1024 ** 3 # (GiB)
f = t - (r + a) # free inside reserved
LOGGER.info(f'{prefix}{d} ({properties.name}) {t:.2f}G total, {r:.2f}G reserved, {a:.2f}G allocated, {f:.2f}G free')
batch_sizes = [1, 2, 4, 8, 16]
try:
img = [torch.zeros(b, 3, imgsz, imgsz) for b in batch_sizes]
y = profile(img, model, n=3, device=device)
except Exception as e:
LOGGER.warning(f'{prefix}{e}')
y = [x[2] for x in y if x] # memory [2]
batch_sizes = batch_sizes[:len(y)]
p = np.polyfit(batch_sizes, y, deg=1) # first degree polynomial fit
b = int((f * fraction - p[1]) / p[0]) # y intercept (optimal batch size)
LOGGER.info(f'{prefix}Using batch-size {b} for {d} {t * fraction:.2f}G/{t:.2f}G ({fraction * 100:.0f}%)')
return b
# add these requirements in your app on top of the existing ones
pip==21.1
pip==19.2
Flask==1.0.2
gunicorn==19.9.0
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment