Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
dcuai
dlexamples
Commits
142dcf29
Commit
142dcf29
authored
Apr 15, 2022
by
hepj
Browse files
增加conformer代码
parent
7f99c1c3
Changes
317
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
689 additions
and
0 deletions
+689
-0
PyTorch/NLP/Conformer-main/mmdetection/configs/mask_rcnn/mask_rcnn_conformer_small_patch32_fpn_1x_coco.py
...ask_rcnn/mask_rcnn_conformer_small_patch32_fpn_1x_coco.py
+201
-0
PyTorch/NLP/Conformer-main/mmdetection/configs/mask_rcnn/mask_rcnn_r101_caffe_fpn_1x_coco.py
...ion/configs/mask_rcnn/mask_rcnn_r101_caffe_fpn_1x_coco.py
+4
-0
PyTorch/NLP/Conformer-main/mmdetection/configs/mask_rcnn/mask_rcnn_r101_fpn_1x_coco.py
...detection/configs/mask_rcnn/mask_rcnn_r101_fpn_1x_coco.py
+2
-0
PyTorch/NLP/Conformer-main/mmdetection/configs/mask_rcnn/mask_rcnn_r101_fpn_2x_coco.py
...detection/configs/mask_rcnn/mask_rcnn_r101_fpn_2x_coco.py
+2
-0
PyTorch/NLP/Conformer-main/mmdetection/configs/mask_rcnn/mask_rcnn_r50_caffe_c4_1x_coco.py
...ction/configs/mask_rcnn/mask_rcnn_r50_caffe_c4_1x_coco.py
+39
-0
PyTorch/NLP/Conformer-main/mmdetection/configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_1x_coco.py
...tion/configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_1x_coco.py
+36
-0
PyTorch/NLP/Conformer-main/mmdetection/configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_1x_coco.py
...mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_1x_coco.py
+45
-0
PyTorch/NLP/Conformer-main/mmdetection/configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_2x_coco.py
...mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_2x_coco.py
+4
-0
PyTorch/NLP/Conformer-main/mmdetection/configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco.py
...mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco.py
+4
-0
PyTorch/NLP/Conformer-main/mmdetection/configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain_1x_coco.py
...figs/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain_1x_coco.py
+41
-0
PyTorch/NLP/Conformer-main/mmdetection/configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_poly_1x_coco_v1.py
...figs/mask_rcnn/mask_rcnn_r50_caffe_fpn_poly_1x_coco_v1.py
+57
-0
PyTorch/NLP/Conformer-main/mmdetection/configs/mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py
...mdetection/configs/mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py
+5
-0
PyTorch/NLP/Conformer-main/mmdetection/configs/mask_rcnn/mask_rcnn_r50_fpn_2x_coco.py
...mdetection/configs/mask_rcnn/mask_rcnn_r50_fpn_2x_coco.py
+5
-0
PyTorch/NLP/Conformer-main/mmdetection/configs/mask_rcnn/mask_rcnn_r50_fpn_poly_1x_coco.py
...ction/configs/mask_rcnn/mask_rcnn_r50_fpn_poly_1x_coco.py
+23
-0
PyTorch/NLP/Conformer-main/mmdetection/configs/mask_rcnn/mask_rcnn_x101_32x4d_fpn_1x_coco.py
...ion/configs/mask_rcnn/mask_rcnn_x101_32x4d_fpn_1x_coco.py
+13
-0
PyTorch/NLP/Conformer-main/mmdetection/configs/mask_rcnn/mask_rcnn_x101_32x4d_fpn_2x_coco.py
...ion/configs/mask_rcnn/mask_rcnn_x101_32x4d_fpn_2x_coco.py
+13
-0
PyTorch/NLP/Conformer-main/mmdetection/configs/mask_rcnn/mask_rcnn_x101_32x8d_fpn_1x_coco.py
...ion/configs/mask_rcnn/mask_rcnn_x101_32x8d_fpn_1x_coco.py
+63
-0
PyTorch/NLP/Conformer-main/mmdetection/configs/mask_rcnn/mask_rcnn_x101_32x8d_fpn_mstrain-poly_1x_coco.py
...ask_rcnn/mask_rcnn_x101_32x8d_fpn_mstrain-poly_1x_coco.py
+58
-0
PyTorch/NLP/Conformer-main/mmdetection/configs/mask_rcnn/mask_rcnn_x101_32x8d_fpn_mstrain-poly_3x_coco.py
...ask_rcnn/mask_rcnn_x101_32x8d_fpn_mstrain-poly_3x_coco.py
+61
-0
PyTorch/NLP/Conformer-main/mmdetection/configs/mask_rcnn/mask_rcnn_x101_64x4d_fpn_1x_coco.py
...ion/configs/mask_rcnn/mask_rcnn_x101_64x4d_fpn_1x_coco.py
+13
-0
No files found.
Too many changes to show.
To preserve performance only
317 of 317+
files are displayed.
Plain diff
Email patch
PyTorch/NLP/Conformer-main/mmdetection/configs/mask_rcnn/mask_rcnn_conformer_small_patch32_fpn_1x_coco.py
0 → 100644
View file @
142dcf29
_base_
=
[
'../_base_/default_runtime.py'
]
# model settings
model
=
dict
(
type
=
'MaskRCNN'
,
pretrained
=
None
,
backbone
=
dict
(
type
=
'Conformer'
,
embed_dim
=
384
,
depth
=
12
,
patch_size
=
32
,
channel_ratio
=
4
,
num_heads
=
6
,
mlp_ratio
=
4
,
qkv_bias
=
True
,
norm_eval
=
True
,
frozen_stages
=
1
),
neck
=
dict
(
type
=
'FPN'
,
in_channels
=
[
256
,
512
,
1024
,
1024
],
out_channels
=
256
,
num_outs
=
5
),
rpn_head
=
dict
(
type
=
'RPNHead'
,
in_channels
=
256
,
feat_channels
=
256
,
anchor_generator
=
dict
(
type
=
'AnchorGenerator'
,
scales
=
[
8
],
ratios
=
[
0.5
,
1.0
,
2.0
],
strides
=
[
4
,
8
,
16
,
32
,
64
]),
bbox_coder
=
dict
(
type
=
'DeltaXYWHBBoxCoder'
,
target_means
=
[.
0
,
.
0
,
.
0
,
.
0
],
target_stds
=
[
1.0
,
1.0
,
1.0
,
1.0
]),
loss_cls
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
True
,
loss_weight
=
1.0
),
loss_bbox
=
dict
(
type
=
'L1Loss'
,
loss_weight
=
1.0
)),
roi_head
=
dict
(
type
=
'StandardRoIHead'
,
bbox_roi_extractor
=
dict
(
type
=
'SingleRoIExtractor'
,
roi_layer
=
dict
(
type
=
'RoIAlign'
,
output_size
=
7
,
sampling_ratio
=
0
),
out_channels
=
256
,
featmap_strides
=
[
4
,
8
,
16
,
32
]),
bbox_head
=
dict
(
type
=
'Shared2FCBBoxHead'
,
in_channels
=
256
,
fc_out_channels
=
1024
,
roi_feat_size
=
7
,
num_classes
=
80
,
bbox_coder
=
dict
(
type
=
'DeltaXYWHBBoxCoder'
,
target_means
=
[
0.
,
0.
,
0.
,
0.
],
target_stds
=
[
0.1
,
0.1
,
0.2
,
0.2
]),
reg_class_agnostic
=
False
,
loss_cls
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
False
,
loss_weight
=
1.0
),
loss_bbox
=
dict
(
type
=
'L1Loss'
,
loss_weight
=
1.0
)),
mask_roi_extractor
=
dict
(
type
=
'SingleRoIExtractor'
,
roi_layer
=
dict
(
type
=
'RoIAlign'
,
output_size
=
14
,
sampling_ratio
=
0
),
out_channels
=
256
,
featmap_strides
=
[
4
,
8
,
16
,
32
]),
mask_head
=
dict
(
type
=
'FCNMaskHead'
,
num_convs
=
4
,
in_channels
=
256
,
conv_out_channels
=
256
,
num_classes
=
80
,
loss_mask
=
dict
(
type
=
'CrossEntropyLoss'
,
use_mask
=
True
,
loss_weight
=
1.0
))),
# model training and testing settings
train_cfg
=
dict
(
rpn
=
dict
(
assigner
=
dict
(
type
=
'MaxIoUAssigner'
,
pos_iou_thr
=
0.7
,
neg_iou_thr
=
0.3
,
min_pos_iou
=
0.3
,
match_low_quality
=
True
,
ignore_iof_thr
=-
1
),
sampler
=
dict
(
type
=
'RandomSampler'
,
num
=
256
,
pos_fraction
=
0.5
,
neg_pos_ub
=-
1
,
add_gt_as_proposals
=
False
),
allowed_border
=-
1
,
pos_weight
=-
1
,
debug
=
False
),
rpn_proposal
=
dict
(
nms_across_levels
=
False
,
nms_pre
=
2000
,
nms_post
=
1000
,
max_num
=
1000
,
nms_thr
=
0.7
,
min_bbox_size
=
0
),
rcnn
=
dict
(
assigner
=
dict
(
type
=
'MaxIoUAssigner'
,
pos_iou_thr
=
0.5
,
neg_iou_thr
=
0.5
,
min_pos_iou
=
0.5
,
match_low_quality
=
True
,
ignore_iof_thr
=-
1
),
sampler
=
dict
(
type
=
'RandomSampler'
,
num
=
512
,
pos_fraction
=
0.25
,
neg_pos_ub
=-
1
,
add_gt_as_proposals
=
True
),
mask_size
=
28
,
pos_weight
=-
1
,
debug
=
False
)),
test_cfg
=
dict
(
rpn
=
dict
(
nms_across_levels
=
False
,
nms_pre
=
1000
,
nms_post
=
1000
,
max_num
=
1000
,
nms_thr
=
0.7
,
min_bbox_size
=
0
),
rcnn
=
dict
(
score_thr
=
0.05
,
nms
=
dict
(
type
=
'nms'
,
iou_threshold
=
0.5
),
max_per_img
=
100
,
mask_thr_binary
=
0.5
)))
dataset_type
=
'CocoDataset'
data_root
=
'data/coco/'
img_norm_cfg
=
dict
(
mean
=
[
123.675
,
116.28
,
103.53
],
std
=
[
58.395
,
57.12
,
57.375
],
to_rgb
=
True
)
train_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
),
dict
(
type
=
'LoadAnnotations'
,
with_bbox
=
True
,
with_mask
=
True
),
dict
(
type
=
'Resize'
,
img_scale
=
(
1344
,
800
),
keep_ratio
=
True
),
dict
(
type
=
'RandomFlip'
,
flip_ratio
=
0.5
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'Pad'
,
size_divisor
=
32
),
dict
(
type
=
'DefaultFormatBundle'
),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
,
'gt_bboxes'
,
'gt_labels'
,
'gt_masks'
]),
]
test_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
),
dict
(
type
=
'MultiScaleFlipAug'
,
img_scale
=
(
1344
,
800
),
flip
=
False
,
transforms
=
[
dict
(
type
=
'Resize'
,
keep_ratio
=
True
),
dict
(
type
=
'RandomFlip'
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'Pad'
,
size_divisor
=
32
),
dict
(
type
=
'ImageToTensor'
,
keys
=
[
'img'
]),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
]),
])
]
data
=
dict
(
samples_per_gpu
=
2
,
workers_per_gpu
=
2
,
train
=
dict
(
type
=
dataset_type
,
ann_file
=
data_root
+
'annotations/instances_train2017.json'
,
img_prefix
=
data_root
+
'train2017/'
,
pipeline
=
train_pipeline
),
val
=
dict
(
type
=
dataset_type
,
ann_file
=
data_root
+
'annotations/instances_val2017.json'
,
img_prefix
=
data_root
+
'val2017/'
,
pipeline
=
test_pipeline
),
test
=
dict
(
type
=
dataset_type
,
ann_file
=
data_root
+
'annotations/instances_val2017.json'
,
img_prefix
=
data_root
+
'val2017/'
,
pipeline
=
test_pipeline
))
evaluation
=
dict
(
metric
=
[
'bbox'
,
'segm'
])
# optimizer
optimizer
=
dict
(
type
=
'AdamW'
,
lr
=
0.0001
,
weight_decay
=
0.0001
,
)
optimizer_config
=
dict
(
grad_clip
=
None
)
# learning policy
lr_config
=
dict
(
policy
=
'step'
,
warmup
=
'linear'
,
warmup_iters
=
500
,
warmup_ratio
=
0.001
,
step
=
[
8
,
11
])
total_epochs
=
12
# optimizer_config = dict(grad_clip=dict(max_norm=0.1, norm_type=2))
\ No newline at end of file
PyTorch/NLP/Conformer-main/mmdetection/configs/mask_rcnn/mask_rcnn_r101_caffe_fpn_1x_coco.py
0 → 100644
View file @
142dcf29
_base_
=
'./mask_rcnn_r50_caffe_fpn_1x_coco.py'
model
=
dict
(
pretrained
=
'open-mmlab://detectron2/resnet101_caffe'
,
backbone
=
dict
(
depth
=
101
))
PyTorch/NLP/Conformer-main/mmdetection/configs/mask_rcnn/mask_rcnn_r101_fpn_1x_coco.py
0 → 100644
View file @
142dcf29
_base_
=
'./mask_rcnn_r50_fpn_1x_coco.py'
model
=
dict
(
pretrained
=
'torchvision://resnet101'
,
backbone
=
dict
(
depth
=
101
))
PyTorch/NLP/Conformer-main/mmdetection/configs/mask_rcnn/mask_rcnn_r101_fpn_2x_coco.py
0 → 100644
View file @
142dcf29
_base_
=
'./mask_rcnn_r50_fpn_2x_coco.py'
model
=
dict
(
pretrained
=
'torchvision://resnet101'
,
backbone
=
dict
(
depth
=
101
))
PyTorch/NLP/Conformer-main/mmdetection/configs/mask_rcnn/mask_rcnn_r50_caffe_c4_1x_coco.py
0 → 100644
View file @
142dcf29
_base_
=
[
'../_base_/models/mask_rcnn_r50_caffe_c4.py'
,
'../_base_/datasets/coco_instance.py'
,
'../_base_/schedules/schedule_1x.py'
,
'../_base_/default_runtime.py'
]
# use caffe img_norm
img_norm_cfg
=
dict
(
mean
=
[
103.530
,
116.280
,
123.675
],
std
=
[
1.0
,
1.0
,
1.0
],
to_rgb
=
False
)
train_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
),
dict
(
type
=
'LoadAnnotations'
,
with_bbox
=
True
,
with_mask
=
True
),
dict
(
type
=
'Resize'
,
img_scale
=
(
1333
,
800
),
keep_ratio
=
True
),
dict
(
type
=
'RandomFlip'
,
flip_ratio
=
0.5
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'Pad'
,
size_divisor
=
32
),
dict
(
type
=
'DefaultFormatBundle'
),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
,
'gt_bboxes'
,
'gt_labels'
,
'gt_masks'
]),
]
test_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
),
dict
(
type
=
'MultiScaleFlipAug'
,
img_scale
=
(
1333
,
800
),
flip
=
False
,
transforms
=
[
dict
(
type
=
'Resize'
,
keep_ratio
=
True
),
dict
(
type
=
'RandomFlip'
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'Pad'
,
size_divisor
=
32
),
dict
(
type
=
'ImageToTensor'
,
keys
=
[
'img'
]),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
]),
])
]
data
=
dict
(
train
=
dict
(
pipeline
=
train_pipeline
),
val
=
dict
(
pipeline
=
test_pipeline
),
test
=
dict
(
pipeline
=
test_pipeline
))
# optimizer
optimizer
=
dict
(
type
=
'SGD'
,
lr
=
0.01
,
momentum
=
0.9
,
weight_decay
=
0.0001
)
PyTorch/NLP/Conformer-main/mmdetection/configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_1x_coco.py
0 → 100644
View file @
142dcf29
_base_
=
'./mask_rcnn_r50_fpn_1x_coco.py'
model
=
dict
(
pretrained
=
'open-mmlab://detectron2/resnet50_caffe'
,
backbone
=
dict
(
norm_cfg
=
dict
(
requires_grad
=
False
),
style
=
'caffe'
))
# use caffe img_norm
img_norm_cfg
=
dict
(
mean
=
[
103.530
,
116.280
,
123.675
],
std
=
[
1.0
,
1.0
,
1.0
],
to_rgb
=
False
)
train_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
),
dict
(
type
=
'LoadAnnotations'
,
with_bbox
=
True
,
with_mask
=
True
),
dict
(
type
=
'Resize'
,
img_scale
=
(
1333
,
800
),
keep_ratio
=
True
),
dict
(
type
=
'RandomFlip'
,
flip_ratio
=
0.5
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'Pad'
,
size_divisor
=
32
),
dict
(
type
=
'DefaultFormatBundle'
),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
,
'gt_bboxes'
,
'gt_labels'
,
'gt_masks'
]),
]
test_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
),
dict
(
type
=
'MultiScaleFlipAug'
,
img_scale
=
(
1333
,
800
),
flip
=
False
,
transforms
=
[
dict
(
type
=
'Resize'
,
keep_ratio
=
True
),
dict
(
type
=
'RandomFlip'
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'Pad'
,
size_divisor
=
32
),
dict
(
type
=
'ImageToTensor'
,
keys
=
[
'img'
]),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
]),
])
]
data
=
dict
(
train
=
dict
(
pipeline
=
train_pipeline
),
val
=
dict
(
pipeline
=
test_pipeline
),
test
=
dict
(
pipeline
=
test_pipeline
))
PyTorch/NLP/Conformer-main/mmdetection/configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_1x_coco.py
0 → 100644
View file @
142dcf29
_base_
=
'./mask_rcnn_r50_fpn_1x_coco.py'
model
=
dict
(
pretrained
=
'open-mmlab://detectron2/resnet50_caffe'
,
backbone
=
dict
(
norm_cfg
=
dict
(
requires_grad
=
False
),
style
=
'caffe'
))
# use caffe img_norm
img_norm_cfg
=
dict
(
mean
=
[
103.530
,
116.280
,
123.675
],
std
=
[
1.0
,
1.0
,
1.0
],
to_rgb
=
False
)
train_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
),
dict
(
type
=
'LoadAnnotations'
,
with_bbox
=
True
,
with_mask
=
True
,
poly2mask
=
False
),
dict
(
type
=
'Resize'
,
img_scale
=
[(
1333
,
640
),
(
1333
,
672
),
(
1333
,
704
),
(
1333
,
736
),
(
1333
,
768
),
(
1333
,
800
)],
multiscale_mode
=
'value'
,
keep_ratio
=
True
),
dict
(
type
=
'RandomFlip'
,
flip_ratio
=
0.5
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'Pad'
,
size_divisor
=
32
),
dict
(
type
=
'DefaultFormatBundle'
),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
,
'gt_bboxes'
,
'gt_labels'
,
'gt_masks'
]),
]
test_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
),
dict
(
type
=
'MultiScaleFlipAug'
,
img_scale
=
(
1333
,
800
),
flip
=
False
,
transforms
=
[
dict
(
type
=
'Resize'
,
keep_ratio
=
True
),
dict
(
type
=
'RandomFlip'
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'Pad'
,
size_divisor
=
32
),
dict
(
type
=
'ImageToTensor'
,
keys
=
[
'img'
]),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
]),
])
]
data
=
dict
(
train
=
dict
(
pipeline
=
train_pipeline
),
val
=
dict
(
pipeline
=
test_pipeline
),
test
=
dict
(
pipeline
=
test_pipeline
))
PyTorch/NLP/Conformer-main/mmdetection/configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_2x_coco.py
0 → 100644
View file @
142dcf29
_base_
=
'./mask_rcnn_r50_caffe_fpn_mstrain-poly_1x_coco.py'
# learning policy
lr_config
=
dict
(
step
=
[
16
,
23
])
total_epochs
=
24
PyTorch/NLP/Conformer-main/mmdetection/configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco.py
0 → 100644
View file @
142dcf29
_base_
=
'./mask_rcnn_r50_caffe_fpn_mstrain-poly_1x_coco.py'
# learning policy
lr_config
=
dict
(
step
=
[
28
,
34
])
total_epochs
=
36
PyTorch/NLP/Conformer-main/mmdetection/configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain_1x_coco.py
0 → 100644
View file @
142dcf29
_base_
=
'./mask_rcnn_r50_fpn_1x_coco.py'
model
=
dict
(
pretrained
=
'open-mmlab://detectron2/resnet50_caffe'
,
backbone
=
dict
(
norm_cfg
=
dict
(
requires_grad
=
False
),
style
=
'caffe'
))
# use caffe img_norm
img_norm_cfg
=
dict
(
mean
=
[
103.530
,
116.280
,
123.675
],
std
=
[
1.0
,
1.0
,
1.0
],
to_rgb
=
False
)
train_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
),
dict
(
type
=
'LoadAnnotations'
,
with_bbox
=
True
,
with_mask
=
True
),
dict
(
type
=
'Resize'
,
img_scale
=
[(
1333
,
640
),
(
1333
,
672
),
(
1333
,
704
),
(
1333
,
736
),
(
1333
,
768
),
(
1333
,
800
)],
multiscale_mode
=
'value'
,
keep_ratio
=
True
),
dict
(
type
=
'RandomFlip'
,
flip_ratio
=
0.5
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'Pad'
,
size_divisor
=
32
),
dict
(
type
=
'DefaultFormatBundle'
),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
,
'gt_bboxes'
,
'gt_labels'
,
'gt_masks'
]),
]
test_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
),
dict
(
type
=
'MultiScaleFlipAug'
,
img_scale
=
(
1333
,
800
),
flip
=
False
,
transforms
=
[
dict
(
type
=
'Resize'
,
keep_ratio
=
True
),
dict
(
type
=
'RandomFlip'
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'Pad'
,
size_divisor
=
32
),
dict
(
type
=
'ImageToTensor'
,
keys
=
[
'img'
]),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
]),
])
]
data
=
dict
(
train
=
dict
(
pipeline
=
train_pipeline
),
val
=
dict
(
pipeline
=
test_pipeline
),
test
=
dict
(
pipeline
=
test_pipeline
))
PyTorch/NLP/Conformer-main/mmdetection/configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_poly_1x_coco_v1.py
0 → 100644
View file @
142dcf29
_base_
=
'./mask_rcnn_r50_fpn_1x_coco.py'
model
=
dict
(
pretrained
=
'open-mmlab://resnet50_caffe_bgr'
,
backbone
=
dict
(
norm_cfg
=
dict
(
requires_grad
=
False
),
style
=
'caffe'
),
rpn_head
=
dict
(
loss_bbox
=
dict
(
type
=
'SmoothL1Loss'
,
beta
=
1.0
/
9.0
,
loss_weight
=
1.0
)),
roi_head
=
dict
(
bbox_roi_extractor
=
dict
(
roi_layer
=
dict
(
type
=
'RoIAlign'
,
output_size
=
7
,
sampling_ratio
=
2
,
aligned
=
False
)),
bbox_head
=
dict
(
loss_bbox
=
dict
(
type
=
'SmoothL1Loss'
,
beta
=
1.0
,
loss_weight
=
1.0
)),
mask_roi_extractor
=
dict
(
roi_layer
=
dict
(
type
=
'RoIAlign'
,
output_size
=
14
,
sampling_ratio
=
2
,
aligned
=
False
))))
# use caffe img_norm
img_norm_cfg
=
dict
(
mean
=
[
103.530
,
116.280
,
123.675
],
std
=
[
1.0
,
1.0
,
1.0
],
to_rgb
=
False
)
train_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
),
dict
(
type
=
'LoadAnnotations'
,
with_bbox
=
True
,
with_mask
=
True
,
poly2mask
=
False
),
dict
(
type
=
'Resize'
,
img_scale
=
(
1333
,
800
),
keep_ratio
=
True
),
dict
(
type
=
'RandomFlip'
,
flip_ratio
=
0.5
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'Pad'
,
size_divisor
=
32
),
dict
(
type
=
'DefaultFormatBundle'
),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
,
'gt_bboxes'
,
'gt_labels'
,
'gt_masks'
]),
]
test_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
),
dict
(
type
=
'MultiScaleFlipAug'
,
img_scale
=
(
1333
,
800
),
flip
=
False
,
transforms
=
[
dict
(
type
=
'Resize'
,
keep_ratio
=
True
),
dict
(
type
=
'RandomFlip'
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'Pad'
,
size_divisor
=
32
),
dict
(
type
=
'ImageToTensor'
,
keys
=
[
'img'
]),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
]),
])
]
data
=
dict
(
train
=
dict
(
pipeline
=
train_pipeline
),
val
=
dict
(
pipeline
=
test_pipeline
),
test
=
dict
(
pipeline
=
test_pipeline
))
PyTorch/NLP/Conformer-main/mmdetection/configs/mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py
0 → 100644
View file @
142dcf29
_base_
=
[
'../_base_/models/mask_rcnn_r50_fpn.py'
,
'../_base_/datasets/coco_instance.py'
,
'../_base_/schedules/schedule_1x.py'
,
'../_base_/default_runtime.py'
]
PyTorch/NLP/Conformer-main/mmdetection/configs/mask_rcnn/mask_rcnn_r50_fpn_2x_coco.py
0 → 100644
View file @
142dcf29
_base_
=
[
'../_base_/models/mask_rcnn_r50_fpn.py'
,
'../_base_/datasets/coco_instance.py'
,
'../_base_/schedules/schedule_2x.py'
,
'../_base_/default_runtime.py'
]
PyTorch/NLP/Conformer-main/mmdetection/configs/mask_rcnn/mask_rcnn_r50_fpn_poly_1x_coco.py
0 → 100644
View file @
142dcf29
_base_
=
[
'../_base_/models/mask_rcnn_r50_fpn.py'
,
'../_base_/datasets/coco_instance.py'
,
'../_base_/schedules/schedule_1x.py'
,
'../_base_/default_runtime.py'
]
img_norm_cfg
=
dict
(
mean
=
[
123.675
,
116.28
,
103.53
],
std
=
[
58.395
,
57.12
,
57.375
],
to_rgb
=
True
)
train_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
),
dict
(
type
=
'LoadAnnotations'
,
with_bbox
=
True
,
with_mask
=
True
,
poly2mask
=
False
),
dict
(
type
=
'Resize'
,
img_scale
=
(
1333
,
800
),
keep_ratio
=
True
),
dict
(
type
=
'RandomFlip'
,
flip_ratio
=
0.5
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'Pad'
,
size_divisor
=
32
),
dict
(
type
=
'DefaultFormatBundle'
),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
,
'gt_bboxes'
,
'gt_labels'
,
'gt_masks'
]),
]
data
=
dict
(
train
=
dict
(
pipeline
=
train_pipeline
))
PyTorch/NLP/Conformer-main/mmdetection/configs/mask_rcnn/mask_rcnn_x101_32x4d_fpn_1x_coco.py
0 → 100644
View file @
142dcf29
_base_
=
'./mask_rcnn_r101_fpn_1x_coco.py'
model
=
dict
(
pretrained
=
'open-mmlab://resnext101_32x4d'
,
backbone
=
dict
(
type
=
'ResNeXt'
,
depth
=
101
,
groups
=
32
,
base_width
=
4
,
num_stages
=
4
,
out_indices
=
(
0
,
1
,
2
,
3
),
frozen_stages
=
1
,
norm_cfg
=
dict
(
type
=
'BN'
,
requires_grad
=
True
),
style
=
'pytorch'
))
PyTorch/NLP/Conformer-main/mmdetection/configs/mask_rcnn/mask_rcnn_x101_32x4d_fpn_2x_coco.py
0 → 100644
View file @
142dcf29
_base_
=
'./mask_rcnn_r101_fpn_2x_coco.py'
model
=
dict
(
pretrained
=
'open-mmlab://resnext101_32x4d'
,
backbone
=
dict
(
type
=
'ResNeXt'
,
depth
=
101
,
groups
=
32
,
base_width
=
4
,
num_stages
=
4
,
out_indices
=
(
0
,
1
,
2
,
3
),
frozen_stages
=
1
,
norm_cfg
=
dict
(
type
=
'BN'
,
requires_grad
=
True
),
style
=
'pytorch'
))
PyTorch/NLP/Conformer-main/mmdetection/configs/mask_rcnn/mask_rcnn_x101_32x8d_fpn_1x_coco.py
0 → 100644
View file @
142dcf29
_base_
=
'./mask_rcnn_r101_fpn_1x_coco.py'
model
=
dict
(
pretrained
=
'open-mmlab://detectron2/resnext101_32x8d'
,
backbone
=
dict
(
type
=
'ResNeXt'
,
depth
=
101
,
groups
=
32
,
base_width
=
8
,
num_stages
=
4
,
out_indices
=
(
0
,
1
,
2
,
3
),
frozen_stages
=
1
,
norm_cfg
=
dict
(
type
=
'BN'
,
requires_grad
=
False
),
style
=
'pytorch'
))
dataset_type
=
'CocoDataset'
data_root
=
'data/coco/'
img_norm_cfg
=
dict
(
mean
=
[
103.530
,
116.280
,
123.675
],
std
=
[
57.375
,
57.120
,
58.395
],
to_rgb
=
False
)
train_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
),
dict
(
type
=
'LoadAnnotations'
,
with_bbox
=
True
,
with_mask
=
True
),
dict
(
type
=
'Resize'
,
img_scale
=
(
1333
,
800
),
keep_ratio
=
True
),
dict
(
type
=
'RandomFlip'
,
flip_ratio
=
0.5
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'Pad'
,
size_divisor
=
32
),
dict
(
type
=
'DefaultFormatBundle'
),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
,
'gt_bboxes'
,
'gt_labels'
,
'gt_masks'
]),
]
test_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
),
dict
(
type
=
'MultiScaleFlipAug'
,
img_scale
=
(
1333
,
800
),
flip
=
False
,
transforms
=
[
dict
(
type
=
'Resize'
,
keep_ratio
=
True
),
dict
(
type
=
'RandomFlip'
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'Pad'
,
size_divisor
=
32
),
dict
(
type
=
'ImageToTensor'
,
keys
=
[
'img'
]),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
]),
])
]
data
=
dict
(
samples_per_gpu
=
2
,
workers_per_gpu
=
2
,
train
=
dict
(
type
=
dataset_type
,
ann_file
=
data_root
+
'annotations/instances_train2017.json'
,
img_prefix
=
data_root
+
'train2017/'
,
pipeline
=
train_pipeline
),
val
=
dict
(
type
=
dataset_type
,
ann_file
=
data_root
+
'annotations/instances_val2017.json'
,
img_prefix
=
data_root
+
'val2017/'
,
pipeline
=
test_pipeline
),
test
=
dict
(
type
=
dataset_type
,
ann_file
=
data_root
+
'annotations/instances_val2017.json'
,
img_prefix
=
data_root
+
'val2017/'
,
pipeline
=
test_pipeline
))
PyTorch/NLP/Conformer-main/mmdetection/configs/mask_rcnn/mask_rcnn_x101_32x8d_fpn_mstrain-poly_1x_coco.py
0 → 100644
View file @
142dcf29
_base_
=
'./mask_rcnn_r101_fpn_1x_coco.py'
model
=
dict
(
pretrained
=
'open-mmlab://detectron2/resnext101_32x8d'
,
backbone
=
dict
(
type
=
'ResNeXt'
,
depth
=
101
,
groups
=
32
,
base_width
=
8
,
num_stages
=
4
,
out_indices
=
(
0
,
1
,
2
,
3
),
frozen_stages
=
1
,
norm_cfg
=
dict
(
type
=
'BN'
,
requires_grad
=
False
),
style
=
'pytorch'
))
dataset_type
=
'CocoDataset'
data_root
=
'data/coco/'
img_norm_cfg
=
dict
(
mean
=
[
103.530
,
116.280
,
123.675
],
std
=
[
57.375
,
57.120
,
58.395
],
to_rgb
=
False
)
train_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
),
dict
(
type
=
'LoadAnnotations'
,
with_bbox
=
True
,
with_mask
=
True
,
poly2mask
=
False
),
dict
(
type
=
'Resize'
,
img_scale
=
[(
1333
,
640
),
(
1333
,
672
),
(
1333
,
704
),
(
1333
,
736
),
(
1333
,
768
),
(
1333
,
800
)],
multiscale_mode
=
'value'
,
keep_ratio
=
True
),
dict
(
type
=
'RandomFlip'
,
flip_ratio
=
0.5
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'Pad'
,
size_divisor
=
32
),
dict
(
type
=
'DefaultFormatBundle'
),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
,
'gt_bboxes'
,
'gt_labels'
,
'gt_masks'
]),
]
test_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
),
dict
(
type
=
'MultiScaleFlipAug'
,
img_scale
=
(
1333
,
800
),
flip
=
False
,
transforms
=
[
dict
(
type
=
'Resize'
,
keep_ratio
=
True
),
dict
(
type
=
'RandomFlip'
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'Pad'
,
size_divisor
=
32
),
dict
(
type
=
'ImageToTensor'
,
keys
=
[
'img'
]),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
]),
])
]
data
=
dict
(
train
=
dict
(
pipeline
=
train_pipeline
),
val
=
dict
(
pipeline
=
test_pipeline
),
test
=
dict
(
pipeline
=
test_pipeline
))
PyTorch/NLP/Conformer-main/mmdetection/configs/mask_rcnn/mask_rcnn_x101_32x8d_fpn_mstrain-poly_3x_coco.py
0 → 100644
View file @
142dcf29
_base_
=
'./mask_rcnn_r101_fpn_1x_coco.py'
model
=
dict
(
pretrained
=
'open-mmlab://detectron2/resnext101_32x8d'
,
backbone
=
dict
(
type
=
'ResNeXt'
,
depth
=
101
,
groups
=
32
,
base_width
=
8
,
num_stages
=
4
,
out_indices
=
(
0
,
1
,
2
,
3
),
frozen_stages
=
1
,
norm_cfg
=
dict
(
type
=
'BN'
,
requires_grad
=
False
),
style
=
'pytorch'
))
dataset_type
=
'CocoDataset'
data_root
=
'data/coco/'
img_norm_cfg
=
dict
(
mean
=
[
103.530
,
116.280
,
123.675
],
std
=
[
57.375
,
57.120
,
58.395
],
to_rgb
=
False
)
train_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
),
dict
(
type
=
'LoadAnnotations'
,
with_bbox
=
True
,
with_mask
=
True
,
poly2mask
=
False
),
dict
(
type
=
'Resize'
,
img_scale
=
[(
1333
,
640
),
(
1333
,
672
),
(
1333
,
704
),
(
1333
,
736
),
(
1333
,
768
),
(
1333
,
800
)],
multiscale_mode
=
'value'
,
keep_ratio
=
True
),
dict
(
type
=
'RandomFlip'
,
flip_ratio
=
0.5
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'Pad'
,
size_divisor
=
32
),
dict
(
type
=
'DefaultFormatBundle'
),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
,
'gt_bboxes'
,
'gt_labels'
,
'gt_masks'
]),
]
test_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
),
dict
(
type
=
'MultiScaleFlipAug'
,
img_scale
=
(
1333
,
800
),
flip
=
False
,
transforms
=
[
dict
(
type
=
'Resize'
,
keep_ratio
=
True
),
dict
(
type
=
'RandomFlip'
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'Pad'
,
size_divisor
=
32
),
dict
(
type
=
'ImageToTensor'
,
keys
=
[
'img'
]),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
]),
])
]
data
=
dict
(
train
=
dict
(
pipeline
=
train_pipeline
),
val
=
dict
(
pipeline
=
test_pipeline
),
test
=
dict
(
pipeline
=
test_pipeline
))
lr_config
=
dict
(
step
=
[
28
,
34
])
total_epochs
=
36
PyTorch/NLP/Conformer-main/mmdetection/configs/mask_rcnn/mask_rcnn_x101_64x4d_fpn_1x_coco.py
0 → 100644
View file @
142dcf29
_base_
=
'./mask_rcnn_x101_32x4d_fpn_1x_coco.py'
model
=
dict
(
pretrained
=
'open-mmlab://resnext101_64x4d'
,
backbone
=
dict
(
type
=
'ResNeXt'
,
depth
=
101
,
groups
=
64
,
base_width
=
4
,
num_stages
=
4
,
out_indices
=
(
0
,
1
,
2
,
3
),
frozen_stages
=
1
,
norm_cfg
=
dict
(
type
=
'BN'
,
requires_grad
=
True
),
style
=
'pytorch'
))
Prev
1
2
3
4
5
6
7
8
…
16
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment