Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
dcuai
dlexamples
Commits
0fd8347d
Commit
0fd8347d
authored
Jan 08, 2023
by
unknown
Browse files
添加mmclassification-0.24.1代码,删除mmclassification-speed-benchmark
parent
cc567e9e
Changes
1000
Show whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
340 additions
and
0 deletions
+340
-0
openmmlab_test/mmclassification-0.24.1/configs/_base_/models/efficientnet_b7.py
...ification-0.24.1/configs/_base_/models/efficientnet_b7.py
+12
-0
openmmlab_test/mmclassification-0.24.1/configs/_base_/models/efficientnet_b8.py
...ification-0.24.1/configs/_base_/models/efficientnet_b8.py
+12
-0
openmmlab_test/mmclassification-0.24.1/configs/_base_/models/efficientnet_em.py
...ification-0.24.1/configs/_base_/models/efficientnet_em.py
+13
-0
openmmlab_test/mmclassification-0.24.1/configs/_base_/models/efficientnet_es.py
...ification-0.24.1/configs/_base_/models/efficientnet_es.py
+13
-0
openmmlab_test/mmclassification-0.24.1/configs/_base_/models/hornet/hornet-base-gf.py
...ion-0.24.1/configs/_base_/models/hornet/hornet-base-gf.py
+21
-0
openmmlab_test/mmclassification-0.24.1/configs/_base_/models/hornet/hornet-base.py
...cation-0.24.1/configs/_base_/models/hornet/hornet-base.py
+21
-0
openmmlab_test/mmclassification-0.24.1/configs/_base_/models/hornet/hornet-large-gf.py
...on-0.24.1/configs/_base_/models/hornet/hornet-large-gf.py
+21
-0
openmmlab_test/mmclassification-0.24.1/configs/_base_/models/hornet/hornet-large-gf384.py
...0.24.1/configs/_base_/models/hornet/hornet-large-gf384.py
+17
-0
openmmlab_test/mmclassification-0.24.1/configs/_base_/models/hornet/hornet-large.py
...ation-0.24.1/configs/_base_/models/hornet/hornet-large.py
+21
-0
openmmlab_test/mmclassification-0.24.1/configs/_base_/models/hornet/hornet-small-gf.py
...on-0.24.1/configs/_base_/models/hornet/hornet-small-gf.py
+21
-0
openmmlab_test/mmclassification-0.24.1/configs/_base_/models/hornet/hornet-small.py
...ation-0.24.1/configs/_base_/models/hornet/hornet-small.py
+21
-0
openmmlab_test/mmclassification-0.24.1/configs/_base_/models/hornet/hornet-tiny-gf.py
...ion-0.24.1/configs/_base_/models/hornet/hornet-tiny-gf.py
+21
-0
openmmlab_test/mmclassification-0.24.1/configs/_base_/models/hornet/hornet-tiny.py
...cation-0.24.1/configs/_base_/models/hornet/hornet-tiny.py
+21
-0
openmmlab_test/mmclassification-0.24.1/configs/_base_/models/hrnet/hrnet-w18.py
...ification-0.24.1/configs/_base_/models/hrnet/hrnet-w18.py
+15
-0
openmmlab_test/mmclassification-0.24.1/configs/_base_/models/hrnet/hrnet-w30.py
...ification-0.24.1/configs/_base_/models/hrnet/hrnet-w30.py
+15
-0
openmmlab_test/mmclassification-0.24.1/configs/_base_/models/hrnet/hrnet-w32.py
...ification-0.24.1/configs/_base_/models/hrnet/hrnet-w32.py
+15
-0
openmmlab_test/mmclassification-0.24.1/configs/_base_/models/hrnet/hrnet-w40.py
...ification-0.24.1/configs/_base_/models/hrnet/hrnet-w40.py
+15
-0
openmmlab_test/mmclassification-0.24.1/configs/_base_/models/hrnet/hrnet-w44.py
...ification-0.24.1/configs/_base_/models/hrnet/hrnet-w44.py
+15
-0
openmmlab_test/mmclassification-0.24.1/configs/_base_/models/hrnet/hrnet-w48.py
...ification-0.24.1/configs/_base_/models/hrnet/hrnet-w48.py
+15
-0
openmmlab_test/mmclassification-0.24.1/configs/_base_/models/hrnet/hrnet-w64.py
...ification-0.24.1/configs/_base_/models/hrnet/hrnet-w64.py
+15
-0
No files found.
Too many changes to show.
To preserve performance only
1000 of 1000+
files are displayed.
Plain diff
Email patch
openmmlab_test/mmclassification-0.24.1/configs/_base_/models/efficientnet_b7.py
0 → 100644
View file @
0fd8347d
# model settings
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'EfficientNet'
,
arch
=
'b7'
),
neck
=
dict
(
type
=
'GlobalAveragePooling'
),
head
=
dict
(
type
=
'LinearClsHead'
,
num_classes
=
1000
,
in_channels
=
2560
,
loss
=
dict
(
type
=
'CrossEntropyLoss'
,
loss_weight
=
1.0
),
topk
=
(
1
,
5
),
))
openmmlab_test/mmclassification-0.24.1/configs/_base_/models/efficientnet_b8.py
0 → 100644
View file @
0fd8347d
# model settings
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'EfficientNet'
,
arch
=
'b8'
),
neck
=
dict
(
type
=
'GlobalAveragePooling'
),
head
=
dict
(
type
=
'LinearClsHead'
,
num_classes
=
1000
,
in_channels
=
2816
,
loss
=
dict
(
type
=
'CrossEntropyLoss'
,
loss_weight
=
1.0
),
topk
=
(
1
,
5
),
))
openmmlab_test/mmclassification-0.24.1/configs/_base_/models/efficientnet_em.py
0 → 100644
View file @
0fd8347d
# model settings
model
=
dict
(
type
=
'ImageClassifier'
,
# `em` means EfficientNet-EdgeTPU-M arch
backbone
=
dict
(
type
=
'EfficientNet'
,
arch
=
'em'
,
act_cfg
=
dict
(
type
=
'ReLU'
)),
neck
=
dict
(
type
=
'GlobalAveragePooling'
),
head
=
dict
(
type
=
'LinearClsHead'
,
num_classes
=
1000
,
in_channels
=
1280
,
loss
=
dict
(
type
=
'CrossEntropyLoss'
,
loss_weight
=
1.0
),
topk
=
(
1
,
5
),
))
openmmlab_test/mmclassification-0.24.1/configs/_base_/models/efficientnet_es.py
0 → 100644
View file @
0fd8347d
# model settings
model
=
dict
(
type
=
'ImageClassifier'
,
# `es` means EfficientNet-EdgeTPU-S arch
backbone
=
dict
(
type
=
'EfficientNet'
,
arch
=
'es'
,
act_cfg
=
dict
(
type
=
'ReLU'
)),
neck
=
dict
(
type
=
'GlobalAveragePooling'
),
head
=
dict
(
type
=
'LinearClsHead'
,
num_classes
=
1000
,
in_channels
=
1280
,
loss
=
dict
(
type
=
'CrossEntropyLoss'
,
loss_weight
=
1.0
),
topk
=
(
1
,
5
),
))
openmmlab_test/mmclassification-0.24.1/configs/_base_/models/hornet/hornet-base-gf.py
0 → 100644
View file @
0fd8347d
# model settings
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'HorNet'
,
arch
=
'base-gf'
,
drop_path_rate
=
0.5
),
head
=
dict
(
type
=
'LinearClsHead'
,
num_classes
=
1000
,
in_channels
=
1024
,
init_cfg
=
None
,
# suppress the default init_cfg of LinearClsHead.
loss
=
dict
(
type
=
'LabelSmoothLoss'
,
label_smooth_val
=
0.1
,
mode
=
'original'
),
cal_acc
=
False
),
init_cfg
=
[
dict
(
type
=
'TruncNormal'
,
layer
=
'Linear'
,
std
=
0.02
,
bias
=
0.
),
dict
(
type
=
'Constant'
,
layer
=
'LayerNorm'
,
val
=
1.
,
bias
=
0.
),
dict
(
type
=
'Constant'
,
layer
=
[
'LayerScale'
],
val
=
1e-6
)
],
train_cfg
=
dict
(
augments
=
[
dict
(
type
=
'BatchMixup'
,
alpha
=
0.8
,
num_classes
=
1000
,
prob
=
0.5
),
dict
(
type
=
'BatchCutMix'
,
alpha
=
1.0
,
num_classes
=
1000
,
prob
=
0.5
)
]))
openmmlab_test/mmclassification-0.24.1/configs/_base_/models/hornet/hornet-base.py
0 → 100644
View file @
0fd8347d
# model settings
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'HorNet'
,
arch
=
'base'
,
drop_path_rate
=
0.5
),
head
=
dict
(
type
=
'LinearClsHead'
,
num_classes
=
1000
,
in_channels
=
1024
,
init_cfg
=
None
,
# suppress the default init_cfg of LinearClsHead.
loss
=
dict
(
type
=
'LabelSmoothLoss'
,
label_smooth_val
=
0.1
,
mode
=
'original'
),
cal_acc
=
False
),
init_cfg
=
[
dict
(
type
=
'TruncNormal'
,
layer
=
'Linear'
,
std
=
0.02
,
bias
=
0.
),
dict
(
type
=
'Constant'
,
layer
=
'LayerNorm'
,
val
=
1.
,
bias
=
0.
),
dict
(
type
=
'Constant'
,
layer
=
[
'LayerScale'
],
val
=
1e-6
)
],
train_cfg
=
dict
(
augments
=
[
dict
(
type
=
'BatchMixup'
,
alpha
=
0.8
,
num_classes
=
1000
,
prob
=
0.5
),
dict
(
type
=
'BatchCutMix'
,
alpha
=
1.0
,
num_classes
=
1000
,
prob
=
0.5
)
]))
openmmlab_test/mmclassification-0.24.1/configs/_base_/models/hornet/hornet-large-gf.py
0 → 100644
View file @
0fd8347d
# model settings
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'HorNet'
,
arch
=
'large-gf'
,
drop_path_rate
=
0.2
),
head
=
dict
(
type
=
'LinearClsHead'
,
num_classes
=
1000
,
in_channels
=
1536
,
init_cfg
=
None
,
# suppress the default init_cfg of LinearClsHead.
loss
=
dict
(
type
=
'LabelSmoothLoss'
,
label_smooth_val
=
0.1
,
mode
=
'original'
),
cal_acc
=
False
),
init_cfg
=
[
dict
(
type
=
'TruncNormal'
,
layer
=
'Linear'
,
std
=
0.02
,
bias
=
0.
),
dict
(
type
=
'Constant'
,
layer
=
'LayerNorm'
,
val
=
1.
,
bias
=
0.
),
dict
(
type
=
'Constant'
,
layer
=
[
'LayerScale'
],
val
=
1e-6
)
],
train_cfg
=
dict
(
augments
=
[
dict
(
type
=
'BatchMixup'
,
alpha
=
0.8
,
num_classes
=
1000
,
prob
=
0.5
),
dict
(
type
=
'BatchCutMix'
,
alpha
=
1.0
,
num_classes
=
1000
,
prob
=
0.5
)
]))
openmmlab_test/mmclassification-0.24.1/configs/_base_/models/hornet/hornet-large-gf384.py
0 → 100644
View file @
0fd8347d
# model settings
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'HorNet'
,
arch
=
'large-gf384'
,
drop_path_rate
=
0.4
),
head
=
dict
(
type
=
'LinearClsHead'
,
num_classes
=
1000
,
in_channels
=
1536
,
init_cfg
=
None
,
# suppress the default init_cfg of LinearClsHead.
loss
=
dict
(
type
=
'LabelSmoothLoss'
,
label_smooth_val
=
0.1
,
mode
=
'original'
),
cal_acc
=
False
),
init_cfg
=
[
dict
(
type
=
'TruncNormal'
,
layer
=
'Linear'
,
std
=
0.02
,
bias
=
0.
),
dict
(
type
=
'Constant'
,
layer
=
'LayerNorm'
,
val
=
1.
,
bias
=
0.
),
dict
(
type
=
'Constant'
,
layer
=
[
'LayerScale'
],
val
=
1e-6
)
])
openmmlab_test/mmclassification-0.24.1/configs/_base_/models/hornet/hornet-large.py
0 → 100644
View file @
0fd8347d
# model settings
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'HorNet'
,
arch
=
'large'
,
drop_path_rate
=
0.2
),
head
=
dict
(
type
=
'LinearClsHead'
,
num_classes
=
1000
,
in_channels
=
1536
,
init_cfg
=
None
,
# suppress the default init_cfg of LinearClsHead.
loss
=
dict
(
type
=
'LabelSmoothLoss'
,
label_smooth_val
=
0.1
,
mode
=
'original'
),
cal_acc
=
False
),
init_cfg
=
[
dict
(
type
=
'TruncNormal'
,
layer
=
'Linear'
,
std
=
0.02
,
bias
=
0.
),
dict
(
type
=
'Constant'
,
layer
=
'LayerNorm'
,
val
=
1.
,
bias
=
0.
),
dict
(
type
=
'Constant'
,
layer
=
[
'LayerScale'
],
val
=
1e-6
)
],
train_cfg
=
dict
(
augments
=
[
dict
(
type
=
'BatchMixup'
,
alpha
=
0.8
,
num_classes
=
1000
,
prob
=
0.5
),
dict
(
type
=
'BatchCutMix'
,
alpha
=
1.0
,
num_classes
=
1000
,
prob
=
0.5
)
]))
openmmlab_test/mmclassification-0.24.1/configs/_base_/models/hornet/hornet-small-gf.py
0 → 100644
View file @
0fd8347d
# model settings
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'HorNet'
,
arch
=
'small-gf'
,
drop_path_rate
=
0.4
),
head
=
dict
(
type
=
'LinearClsHead'
,
num_classes
=
1000
,
in_channels
=
768
,
init_cfg
=
None
,
# suppress the default init_cfg of LinearClsHead.
loss
=
dict
(
type
=
'LabelSmoothLoss'
,
label_smooth_val
=
0.1
,
mode
=
'original'
),
cal_acc
=
False
),
init_cfg
=
[
dict
(
type
=
'TruncNormal'
,
layer
=
'Linear'
,
std
=
0.02
,
bias
=
0.
),
dict
(
type
=
'Constant'
,
layer
=
'LayerNorm'
,
val
=
1.
,
bias
=
0.
),
dict
(
type
=
'Constant'
,
layer
=
[
'LayerScale'
],
val
=
1e-6
)
],
train_cfg
=
dict
(
augments
=
[
dict
(
type
=
'BatchMixup'
,
alpha
=
0.8
,
num_classes
=
1000
,
prob
=
0.5
),
dict
(
type
=
'BatchCutMix'
,
alpha
=
1.0
,
num_classes
=
1000
,
prob
=
0.5
)
]))
openmmlab_test/mmclassification-0.24.1/configs/_base_/models/hornet/hornet-small.py
0 → 100644
View file @
0fd8347d
# model settings
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'HorNet'
,
arch
=
'small'
,
drop_path_rate
=
0.4
),
head
=
dict
(
type
=
'LinearClsHead'
,
num_classes
=
1000
,
in_channels
=
768
,
init_cfg
=
None
,
# suppress the default init_cfg of LinearClsHead.
loss
=
dict
(
type
=
'LabelSmoothLoss'
,
label_smooth_val
=
0.1
,
mode
=
'original'
),
cal_acc
=
False
),
init_cfg
=
[
dict
(
type
=
'TruncNormal'
,
layer
=
'Linear'
,
std
=
0.02
,
bias
=
0.
),
dict
(
type
=
'Constant'
,
layer
=
'LayerNorm'
,
val
=
1.
,
bias
=
0.
),
dict
(
type
=
'Constant'
,
layer
=
[
'LayerScale'
],
val
=
1e-6
)
],
train_cfg
=
dict
(
augments
=
[
dict
(
type
=
'BatchMixup'
,
alpha
=
0.8
,
num_classes
=
1000
,
prob
=
0.5
),
dict
(
type
=
'BatchCutMix'
,
alpha
=
1.0
,
num_classes
=
1000
,
prob
=
0.5
)
]))
openmmlab_test/mmclassification-0.24.1/configs/_base_/models/hornet/hornet-tiny-gf.py
0 → 100644
View file @
0fd8347d
# model settings
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'HorNet'
,
arch
=
'tiny-gf'
,
drop_path_rate
=
0.2
),
head
=
dict
(
type
=
'LinearClsHead'
,
num_classes
=
1000
,
in_channels
=
512
,
init_cfg
=
None
,
# suppress the default init_cfg of LinearClsHead.
loss
=
dict
(
type
=
'LabelSmoothLoss'
,
label_smooth_val
=
0.1
,
mode
=
'original'
),
cal_acc
=
False
),
init_cfg
=
[
dict
(
type
=
'TruncNormal'
,
layer
=
'Linear'
,
std
=
0.02
,
bias
=
0.
),
dict
(
type
=
'Constant'
,
layer
=
'LayerNorm'
,
val
=
1.
,
bias
=
0.
),
dict
(
type
=
'Constant'
,
layer
=
[
'LayerScale'
],
val
=
1e-6
)
],
train_cfg
=
dict
(
augments
=
[
dict
(
type
=
'BatchMixup'
,
alpha
=
0.8
,
num_classes
=
1000
,
prob
=
0.5
),
dict
(
type
=
'BatchCutMix'
,
alpha
=
1.0
,
num_classes
=
1000
,
prob
=
0.5
)
]))
openmmlab_test/mmclassification-0.24.1/configs/_base_/models/hornet/hornet-tiny.py
0 → 100644
View file @
0fd8347d
# model settings
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'HorNet'
,
arch
=
'tiny'
,
drop_path_rate
=
0.2
),
head
=
dict
(
type
=
'LinearClsHead'
,
num_classes
=
1000
,
in_channels
=
512
,
init_cfg
=
None
,
# suppress the default init_cfg of LinearClsHead.
loss
=
dict
(
type
=
'LabelSmoothLoss'
,
label_smooth_val
=
0.1
,
mode
=
'original'
),
cal_acc
=
False
),
init_cfg
=
[
dict
(
type
=
'TruncNormal'
,
layer
=
'Linear'
,
std
=
0.02
,
bias
=
0.
),
dict
(
type
=
'Constant'
,
layer
=
'LayerNorm'
,
val
=
1.
,
bias
=
0.
),
dict
(
type
=
'Constant'
,
layer
=
[
'LayerScale'
],
val
=
1e-6
)
],
train_cfg
=
dict
(
augments
=
[
dict
(
type
=
'BatchMixup'
,
alpha
=
0.8
,
num_classes
=
1000
,
prob
=
0.5
),
dict
(
type
=
'BatchCutMix'
,
alpha
=
1.0
,
num_classes
=
1000
,
prob
=
0.5
)
]))
openmmlab_test/mmclassification-0.24.1/configs/_base_/models/hrnet/hrnet-w18.py
0 → 100644
View file @
0fd8347d
# model settings
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'HRNet'
,
arch
=
'w18'
),
neck
=
[
dict
(
type
=
'HRFuseScales'
,
in_channels
=
(
18
,
36
,
72
,
144
)),
dict
(
type
=
'GlobalAveragePooling'
),
],
head
=
dict
(
type
=
'LinearClsHead'
,
in_channels
=
2048
,
num_classes
=
1000
,
loss
=
dict
(
type
=
'CrossEntropyLoss'
,
loss_weight
=
1.0
),
topk
=
(
1
,
5
),
))
openmmlab_test/mmclassification-0.24.1/configs/_base_/models/hrnet/hrnet-w30.py
0 → 100644
View file @
0fd8347d
# model settings
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'HRNet'
,
arch
=
'w30'
),
neck
=
[
dict
(
type
=
'HRFuseScales'
,
in_channels
=
(
30
,
60
,
120
,
240
)),
dict
(
type
=
'GlobalAveragePooling'
),
],
head
=
dict
(
type
=
'LinearClsHead'
,
in_channels
=
2048
,
num_classes
=
1000
,
loss
=
dict
(
type
=
'CrossEntropyLoss'
,
loss_weight
=
1.0
),
topk
=
(
1
,
5
),
))
openmmlab_test/mmclassification-0.24.1/configs/_base_/models/hrnet/hrnet-w32.py
0 → 100644
View file @
0fd8347d
# model settings
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'HRNet'
,
arch
=
'w32'
),
neck
=
[
dict
(
type
=
'HRFuseScales'
,
in_channels
=
(
32
,
64
,
128
,
256
)),
dict
(
type
=
'GlobalAveragePooling'
),
],
head
=
dict
(
type
=
'LinearClsHead'
,
in_channels
=
2048
,
num_classes
=
1000
,
loss
=
dict
(
type
=
'CrossEntropyLoss'
,
loss_weight
=
1.0
),
topk
=
(
1
,
5
),
))
openmmlab_test/mmclassification-0.24.1/configs/_base_/models/hrnet/hrnet-w40.py
0 → 100644
View file @
0fd8347d
# model settings
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'HRNet'
,
arch
=
'w40'
),
neck
=
[
dict
(
type
=
'HRFuseScales'
,
in_channels
=
(
40
,
80
,
160
,
320
)),
dict
(
type
=
'GlobalAveragePooling'
),
],
head
=
dict
(
type
=
'LinearClsHead'
,
in_channels
=
2048
,
num_classes
=
1000
,
loss
=
dict
(
type
=
'CrossEntropyLoss'
,
loss_weight
=
1.0
),
topk
=
(
1
,
5
),
))
openmmlab_test/mmclassification-0.24.1/configs/_base_/models/hrnet/hrnet-w44.py
0 → 100644
View file @
0fd8347d
# model settings
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'HRNet'
,
arch
=
'w44'
),
neck
=
[
dict
(
type
=
'HRFuseScales'
,
in_channels
=
(
44
,
88
,
176
,
352
)),
dict
(
type
=
'GlobalAveragePooling'
),
],
head
=
dict
(
type
=
'LinearClsHead'
,
in_channels
=
2048
,
num_classes
=
1000
,
loss
=
dict
(
type
=
'CrossEntropyLoss'
,
loss_weight
=
1.0
),
topk
=
(
1
,
5
),
))
openmmlab_test/mmclassification-0.24.1/configs/_base_/models/hrnet/hrnet-w48.py
0 → 100644
View file @
0fd8347d
# model settings
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'HRNet'
,
arch
=
'w48'
),
neck
=
[
dict
(
type
=
'HRFuseScales'
,
in_channels
=
(
48
,
96
,
192
,
384
)),
dict
(
type
=
'GlobalAveragePooling'
),
],
head
=
dict
(
type
=
'LinearClsHead'
,
in_channels
=
2048
,
num_classes
=
1000
,
loss
=
dict
(
type
=
'CrossEntropyLoss'
,
loss_weight
=
1.0
),
topk
=
(
1
,
5
),
))
openmmlab_test/mmclassification-0.24.1/configs/_base_/models/hrnet/hrnet-w64.py
0 → 100644
View file @
0fd8347d
# model settings
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'HRNet'
,
arch
=
'w64'
),
neck
=
[
dict
(
type
=
'HRFuseScales'
,
in_channels
=
(
64
,
128
,
256
,
512
)),
dict
(
type
=
'GlobalAveragePooling'
),
],
head
=
dict
(
type
=
'LinearClsHead'
,
in_channels
=
2048
,
num_classes
=
1000
,
loss
=
dict
(
type
=
'CrossEntropyLoss'
,
loss_weight
=
1.0
),
topk
=
(
1
,
5
),
))
Prev
1
2
3
4
5
6
7
8
…
50
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment