Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
dcuai
dlexamples
Commits
0fd8347d
Commit
0fd8347d
authored
Jan 08, 2023
by
unknown
Browse files
添加mmclassification-0.24.1代码,删除mmclassification-speed-benchmark
parent
cc567e9e
Changes
1000
Show whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
298 additions
and
0 deletions
+298
-0
openmmlab_test/mmclassification-0.24.1/configs/_base_/models/conformer/tiny-p16.py
...cation-0.24.1/configs/_base_/models/conformer/tiny-p16.py
+22
-0
openmmlab_test/mmclassification-0.24.1/configs/_base_/models/convmixer/convmixer-1024-20.py
...24.1/configs/_base_/models/convmixer/convmixer-1024-20.py
+11
-0
openmmlab_test/mmclassification-0.24.1/configs/_base_/models/convmixer/convmixer-1536-20.py
...24.1/configs/_base_/models/convmixer/convmixer-1536-20.py
+11
-0
openmmlab_test/mmclassification-0.24.1/configs/_base_/models/convmixer/convmixer-768-32.py
....24.1/configs/_base_/models/convmixer/convmixer-768-32.py
+11
-0
openmmlab_test/mmclassification-0.24.1/configs/_base_/models/convnext/convnext-base.py
...on-0.24.1/configs/_base_/models/convnext/convnext-base.py
+23
-0
openmmlab_test/mmclassification-0.24.1/configs/_base_/models/convnext/convnext-large.py
...n-0.24.1/configs/_base_/models/convnext/convnext-large.py
+23
-0
openmmlab_test/mmclassification-0.24.1/configs/_base_/models/convnext/convnext-small.py
...n-0.24.1/configs/_base_/models/convnext/convnext-small.py
+23
-0
openmmlab_test/mmclassification-0.24.1/configs/_base_/models/convnext/convnext-tiny.py
...on-0.24.1/configs/_base_/models/convnext/convnext-tiny.py
+23
-0
openmmlab_test/mmclassification-0.24.1/configs/_base_/models/convnext/convnext-xlarge.py
...-0.24.1/configs/_base_/models/convnext/convnext-xlarge.py
+23
-0
openmmlab_test/mmclassification-0.24.1/configs/_base_/models/densenet/densenet121.py
...tion-0.24.1/configs/_base_/models/densenet/densenet121.py
+11
-0
openmmlab_test/mmclassification-0.24.1/configs/_base_/models/densenet/densenet161.py
...tion-0.24.1/configs/_base_/models/densenet/densenet161.py
+11
-0
openmmlab_test/mmclassification-0.24.1/configs/_base_/models/densenet/densenet169.py
...tion-0.24.1/configs/_base_/models/densenet/densenet169.py
+11
-0
openmmlab_test/mmclassification-0.24.1/configs/_base_/models/densenet/densenet201.py
...tion-0.24.1/configs/_base_/models/densenet/densenet201.py
+11
-0
openmmlab_test/mmclassification-0.24.1/configs/_base_/models/efficientnet_b0.py
...ification-0.24.1/configs/_base_/models/efficientnet_b0.py
+12
-0
openmmlab_test/mmclassification-0.24.1/configs/_base_/models/efficientnet_b1.py
...ification-0.24.1/configs/_base_/models/efficientnet_b1.py
+12
-0
openmmlab_test/mmclassification-0.24.1/configs/_base_/models/efficientnet_b2.py
...ification-0.24.1/configs/_base_/models/efficientnet_b2.py
+12
-0
openmmlab_test/mmclassification-0.24.1/configs/_base_/models/efficientnet_b3.py
...ification-0.24.1/configs/_base_/models/efficientnet_b3.py
+12
-0
openmmlab_test/mmclassification-0.24.1/configs/_base_/models/efficientnet_b4.py
...ification-0.24.1/configs/_base_/models/efficientnet_b4.py
+12
-0
openmmlab_test/mmclassification-0.24.1/configs/_base_/models/efficientnet_b5.py
...ification-0.24.1/configs/_base_/models/efficientnet_b5.py
+12
-0
openmmlab_test/mmclassification-0.24.1/configs/_base_/models/efficientnet_b6.py
...ification-0.24.1/configs/_base_/models/efficientnet_b6.py
+12
-0
No files found.
Too many changes to show.
To preserve performance only
1000 of 1000+
files are displayed.
Plain diff
Email patch
openmmlab_test/mmclassification-0.24.1/configs/_base_/models/conformer/tiny-p16.py
0 → 100644
View file @
0fd8347d
# model settings
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'Conformer'
,
arch
=
'tiny'
,
drop_path_rate
=
0.1
,
init_cfg
=
None
),
neck
=
None
,
head
=
dict
(
type
=
'ConformerHead'
,
num_classes
=
1000
,
in_channels
=
[
256
,
384
],
init_cfg
=
None
,
loss
=
dict
(
type
=
'LabelSmoothLoss'
,
label_smooth_val
=
0.1
,
mode
=
'original'
),
cal_acc
=
False
),
init_cfg
=
[
dict
(
type
=
'TruncNormal'
,
layer
=
'Linear'
,
std
=
0.02
,
bias
=
0.
),
dict
(
type
=
'Constant'
,
layer
=
'LayerNorm'
,
val
=
1.
,
bias
=
0.
)
],
train_cfg
=
dict
(
augments
=
[
dict
(
type
=
'BatchMixup'
,
alpha
=
0.8
,
num_classes
=
1000
,
prob
=
0.5
),
dict
(
type
=
'BatchCutMix'
,
alpha
=
1.0
,
num_classes
=
1000
,
prob
=
0.5
)
]))
openmmlab_test/mmclassification-0.24.1/configs/_base_/models/convmixer/convmixer-1024-20.py
0 → 100644
View file @
0fd8347d
# Model settings
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'ConvMixer'
,
arch
=
'1024/20'
),
neck
=
dict
(
type
=
'GlobalAveragePooling'
),
head
=
dict
(
type
=
'LinearClsHead'
,
num_classes
=
1000
,
in_channels
=
1024
,
loss
=
dict
(
type
=
'CrossEntropyLoss'
,
loss_weight
=
1.0
),
))
openmmlab_test/mmclassification-0.24.1/configs/_base_/models/convmixer/convmixer-1536-20.py
0 → 100644
View file @
0fd8347d
# Model settings
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'ConvMixer'
,
arch
=
'1536/20'
),
neck
=
dict
(
type
=
'GlobalAveragePooling'
),
head
=
dict
(
type
=
'LinearClsHead'
,
num_classes
=
1000
,
in_channels
=
1536
,
loss
=
dict
(
type
=
'CrossEntropyLoss'
,
loss_weight
=
1.0
),
))
openmmlab_test/mmclassification-0.24.1/configs/_base_/models/convmixer/convmixer-768-32.py
0 → 100644
View file @
0fd8347d
# Model settings
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'ConvMixer'
,
arch
=
'768/32'
,
act_cfg
=
dict
(
type
=
'ReLU'
)),
neck
=
dict
(
type
=
'GlobalAveragePooling'
),
head
=
dict
(
type
=
'LinearClsHead'
,
num_classes
=
1000
,
in_channels
=
768
,
loss
=
dict
(
type
=
'CrossEntropyLoss'
,
loss_weight
=
1.0
),
))
openmmlab_test/mmclassification-0.24.1/configs/_base_/models/convnext/convnext-base.py
0 → 100644
View file @
0fd8347d
# Model settings
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'ConvNeXt'
,
arch
=
'base'
,
out_indices
=
(
3
,
),
drop_path_rate
=
0.5
,
gap_before_final_norm
=
True
,
init_cfg
=
[
dict
(
type
=
'TruncNormal'
,
layer
=
[
'Conv2d'
,
'Linear'
],
std
=
.
02
,
bias
=
0.
),
dict
(
type
=
'Constant'
,
layer
=
[
'LayerNorm'
],
val
=
1.
,
bias
=
0.
),
]),
head
=
dict
(
type
=
'LinearClsHead'
,
num_classes
=
1000
,
in_channels
=
1024
,
loss
=
dict
(
type
=
'CrossEntropyLoss'
,
loss_weight
=
1.0
),
))
openmmlab_test/mmclassification-0.24.1/configs/_base_/models/convnext/convnext-large.py
0 → 100644
View file @
0fd8347d
# Model settings
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'ConvNeXt'
,
arch
=
'large'
,
out_indices
=
(
3
,
),
drop_path_rate
=
0.5
,
gap_before_final_norm
=
True
,
init_cfg
=
[
dict
(
type
=
'TruncNormal'
,
layer
=
[
'Conv2d'
,
'Linear'
],
std
=
.
02
,
bias
=
0.
),
dict
(
type
=
'Constant'
,
layer
=
[
'LayerNorm'
],
val
=
1.
,
bias
=
0.
),
]),
head
=
dict
(
type
=
'LinearClsHead'
,
num_classes
=
1000
,
in_channels
=
1536
,
loss
=
dict
(
type
=
'CrossEntropyLoss'
,
loss_weight
=
1.0
),
))
openmmlab_test/mmclassification-0.24.1/configs/_base_/models/convnext/convnext-small.py
0 → 100644
View file @
0fd8347d
# Model settings
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'ConvNeXt'
,
arch
=
'small'
,
out_indices
=
(
3
,
),
drop_path_rate
=
0.4
,
gap_before_final_norm
=
True
,
init_cfg
=
[
dict
(
type
=
'TruncNormal'
,
layer
=
[
'Conv2d'
,
'Linear'
],
std
=
.
02
,
bias
=
0.
),
dict
(
type
=
'Constant'
,
layer
=
[
'LayerNorm'
],
val
=
1.
,
bias
=
0.
),
]),
head
=
dict
(
type
=
'LinearClsHead'
,
num_classes
=
1000
,
in_channels
=
768
,
loss
=
dict
(
type
=
'CrossEntropyLoss'
,
loss_weight
=
1.0
),
))
openmmlab_test/mmclassification-0.24.1/configs/_base_/models/convnext/convnext-tiny.py
0 → 100644
View file @
0fd8347d
# Model settings
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'ConvNeXt'
,
arch
=
'tiny'
,
out_indices
=
(
3
,
),
drop_path_rate
=
0.1
,
gap_before_final_norm
=
True
,
init_cfg
=
[
dict
(
type
=
'TruncNormal'
,
layer
=
[
'Conv2d'
,
'Linear'
],
std
=
.
02
,
bias
=
0.
),
dict
(
type
=
'Constant'
,
layer
=
[
'LayerNorm'
],
val
=
1.
,
bias
=
0.
),
]),
head
=
dict
(
type
=
'LinearClsHead'
,
num_classes
=
1000
,
in_channels
=
768
,
loss
=
dict
(
type
=
'CrossEntropyLoss'
,
loss_weight
=
1.0
),
))
openmmlab_test/mmclassification-0.24.1/configs/_base_/models/convnext/convnext-xlarge.py
0 → 100644
View file @
0fd8347d
# Model settings
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'ConvNeXt'
,
arch
=
'xlarge'
,
out_indices
=
(
3
,
),
drop_path_rate
=
0.5
,
gap_before_final_norm
=
True
,
init_cfg
=
[
dict
(
type
=
'TruncNormal'
,
layer
=
[
'Conv2d'
,
'Linear'
],
std
=
.
02
,
bias
=
0.
),
dict
(
type
=
'Constant'
,
layer
=
[
'LayerNorm'
],
val
=
1.
,
bias
=
0.
),
]),
head
=
dict
(
type
=
'LinearClsHead'
,
num_classes
=
1000
,
in_channels
=
2048
,
loss
=
dict
(
type
=
'CrossEntropyLoss'
,
loss_weight
=
1.0
),
))
openmmlab_test/mmclassification-0.24.1/configs/_base_/models/densenet/densenet121.py
0 → 100644
View file @
0fd8347d
# Model settings
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'DenseNet'
,
arch
=
'121'
),
neck
=
dict
(
type
=
'GlobalAveragePooling'
),
head
=
dict
(
type
=
'LinearClsHead'
,
num_classes
=
1000
,
in_channels
=
1024
,
loss
=
dict
(
type
=
'CrossEntropyLoss'
,
loss_weight
=
1.0
),
))
openmmlab_test/mmclassification-0.24.1/configs/_base_/models/densenet/densenet161.py
0 → 100644
View file @
0fd8347d
# Model settings
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'DenseNet'
,
arch
=
'161'
),
neck
=
dict
(
type
=
'GlobalAveragePooling'
),
head
=
dict
(
type
=
'LinearClsHead'
,
num_classes
=
1000
,
in_channels
=
2208
,
loss
=
dict
(
type
=
'CrossEntropyLoss'
,
loss_weight
=
1.0
),
))
openmmlab_test/mmclassification-0.24.1/configs/_base_/models/densenet/densenet169.py
0 → 100644
View file @
0fd8347d
# Model settings
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'DenseNet'
,
arch
=
'169'
),
neck
=
dict
(
type
=
'GlobalAveragePooling'
),
head
=
dict
(
type
=
'LinearClsHead'
,
num_classes
=
1000
,
in_channels
=
1664
,
loss
=
dict
(
type
=
'CrossEntropyLoss'
,
loss_weight
=
1.0
),
))
openmmlab_test/mmclassification-0.24.1/configs/_base_/models/densenet/densenet201.py
0 → 100644
View file @
0fd8347d
# Model settings
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'DenseNet'
,
arch
=
'201'
),
neck
=
dict
(
type
=
'GlobalAveragePooling'
),
head
=
dict
(
type
=
'LinearClsHead'
,
num_classes
=
1000
,
in_channels
=
1920
,
loss
=
dict
(
type
=
'CrossEntropyLoss'
,
loss_weight
=
1.0
),
))
openmmlab_test/mmclassification-0.24.1/configs/_base_/models/efficientnet_b0.py
0 → 100644
View file @
0fd8347d
# model settings
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'EfficientNet'
,
arch
=
'b0'
),
neck
=
dict
(
type
=
'GlobalAveragePooling'
),
head
=
dict
(
type
=
'LinearClsHead'
,
num_classes
=
1000
,
in_channels
=
1280
,
loss
=
dict
(
type
=
'CrossEntropyLoss'
,
loss_weight
=
1.0
),
topk
=
(
1
,
5
),
))
openmmlab_test/mmclassification-0.24.1/configs/_base_/models/efficientnet_b1.py
0 → 100644
View file @
0fd8347d
# model settings
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'EfficientNet'
,
arch
=
'b1'
),
neck
=
dict
(
type
=
'GlobalAveragePooling'
),
head
=
dict
(
type
=
'LinearClsHead'
,
num_classes
=
1000
,
in_channels
=
1280
,
loss
=
dict
(
type
=
'CrossEntropyLoss'
,
loss_weight
=
1.0
),
topk
=
(
1
,
5
),
))
openmmlab_test/mmclassification-0.24.1/configs/_base_/models/efficientnet_b2.py
0 → 100644
View file @
0fd8347d
# model settings
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'EfficientNet'
,
arch
=
'b2'
),
neck
=
dict
(
type
=
'GlobalAveragePooling'
),
head
=
dict
(
type
=
'LinearClsHead'
,
num_classes
=
1000
,
in_channels
=
1408
,
loss
=
dict
(
type
=
'CrossEntropyLoss'
,
loss_weight
=
1.0
),
topk
=
(
1
,
5
),
))
openmmlab_test/mmclassification-0.24.1/configs/_base_/models/efficientnet_b3.py
0 → 100644
View file @
0fd8347d
# model settings
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'EfficientNet'
,
arch
=
'b3'
),
neck
=
dict
(
type
=
'GlobalAveragePooling'
),
head
=
dict
(
type
=
'LinearClsHead'
,
num_classes
=
1000
,
in_channels
=
1536
,
loss
=
dict
(
type
=
'CrossEntropyLoss'
,
loss_weight
=
1.0
),
topk
=
(
1
,
5
),
))
openmmlab_test/mmclassification-0.24.1/configs/_base_/models/efficientnet_b4.py
0 → 100644
View file @
0fd8347d
# model settings
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'EfficientNet'
,
arch
=
'b4'
),
neck
=
dict
(
type
=
'GlobalAveragePooling'
),
head
=
dict
(
type
=
'LinearClsHead'
,
num_classes
=
1000
,
in_channels
=
1792
,
loss
=
dict
(
type
=
'CrossEntropyLoss'
,
loss_weight
=
1.0
),
topk
=
(
1
,
5
),
))
openmmlab_test/mmclassification-0.24.1/configs/_base_/models/efficientnet_b5.py
0 → 100644
View file @
0fd8347d
# model settings
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'EfficientNet'
,
arch
=
'b5'
),
neck
=
dict
(
type
=
'GlobalAveragePooling'
),
head
=
dict
(
type
=
'LinearClsHead'
,
num_classes
=
1000
,
in_channels
=
2048
,
loss
=
dict
(
type
=
'CrossEntropyLoss'
,
loss_weight
=
1.0
),
topk
=
(
1
,
5
),
))
openmmlab_test/mmclassification-0.24.1/configs/_base_/models/efficientnet_b6.py
0 → 100644
View file @
0fd8347d
# model settings
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'EfficientNet'
,
arch
=
'b6'
),
neck
=
dict
(
type
=
'GlobalAveragePooling'
),
head
=
dict
(
type
=
'LinearClsHead'
,
num_classes
=
1000
,
in_channels
=
2304
,
loss
=
dict
(
type
=
'CrossEntropyLoss'
,
loss_weight
=
1.0
),
topk
=
(
1
,
5
),
))
Prev
1
2
3
4
5
6
7
…
50
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment