Commit 0fd8347d authored by unknown's avatar unknown
Browse files

添加mmclassification-0.24.1代码,删除mmclassification-speed-benchmark

parent cc567e9e
# dataset settings
dataset_type = 'ImageNet'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='RandomResizedCrop',
size=224,
backend='pillow',
interpolation='bicubic'),
dict(type='RandomFlip', flip_prob=0.5, direction='horizontal'),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='ToTensor', keys=['gt_label']),
dict(type='Collect', keys=['img', 'gt_label'])
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='Resize',
size=(256, -1),
backend='pillow',
interpolation='bicubic'),
dict(type='CenterCrop', crop_size=224),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
]
data = dict(
samples_per_gpu=32,
workers_per_gpu=2,
train=dict(
type=dataset_type,
data_prefix='data/imagenet/train',
pipeline=train_pipeline),
val=dict(
type=dataset_type,
data_prefix='data/imagenet/val',
ann_file='data/imagenet/meta/val.txt',
pipeline=test_pipeline),
test=dict(
# replace `data/val` with `data/test` for standard test
type=dataset_type,
data_prefix='data/imagenet/val',
ann_file='data/imagenet/meta/val.txt',
pipeline=test_pipeline))
evaluation = dict(interval=1, metric='accuracy')
......@@ -20,7 +20,7 @@ test_pipeline = [
dict(type='Collect', keys=['img'])
]
data = dict(
samples_per_gpu=32,
samples_per_gpu=128,
workers_per_gpu=2,
train=dict(
type=dataset_type,
......@@ -34,7 +34,7 @@ data = dict(
test=dict(
# replace `data/val` with `data/test` for standard test
type=dataset_type,
data_prefix='data/imagenet/val',
ann_file='data/imagenet/meta/val.txt',
data_prefix='/public/DL_DATA/ImageNet-pytorch/val/',
#ann_file='data/val_list.txt',
pipeline=test_pipeline))
evaluation = dict(interval=1, metric='accuracy')
_base_ = ['./pipelines/auto_aug.py']
# dataset settings
dataset_type = 'ImageNet'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='RandomResizedCrop', size=224),
dict(type='RandomFlip', flip_prob=0.5, direction='horizontal'),
dict(type='AutoAugment', policies={{_base_.auto_increasing_policies}}),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='ToTensor', keys=['gt_label']),
dict(type='Collect', keys=['img', 'gt_label'])
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='Resize', size=(256, -1)),
dict(type='CenterCrop', crop_size=224),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
]
data = dict(
samples_per_gpu=64,
workers_per_gpu=2,
train=dict(
type=dataset_type,
data_prefix='data/imagenet/train',
pipeline=train_pipeline),
val=dict(
type=dataset_type,
data_prefix='data/imagenet/val',
ann_file='data/imagenet/meta/val.txt',
pipeline=test_pipeline),
test=dict(
# replace `data/val` with `data/test` for standard test
type=dataset_type,
data_prefix='data/imagenet/val',
ann_file='data/imagenet/meta/val.txt',
pipeline=test_pipeline))
evaluation = dict(interval=1, metric='accuracy')
_base_ = ['./pipelines/rand_aug.py']
# dataset settings
dataset_type = 'ImageNet'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='RandomResizedCrop',
size=224,
backend='pillow',
interpolation='bicubic'),
dict(type='RandomFlip', flip_prob=0.5, direction='horizontal'),
dict(
type='RandAugment',
policies={{_base_.rand_increasing_policies}},
num_policies=2,
total_level=10,
magnitude_level=9,
magnitude_std=0.5,
hparams=dict(
pad_val=[round(x) for x in img_norm_cfg['mean'][::-1]],
interpolation='bicubic')),
dict(
type='RandomErasing',
erase_prob=0.25,
mode='rand',
min_area_ratio=0.02,
max_area_ratio=1 / 3,
fill_color=img_norm_cfg['mean'][::-1],
fill_std=img_norm_cfg['std'][::-1]),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='ToTensor', keys=['gt_label']),
dict(type='Collect', keys=['img', 'gt_label'])
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='Resize',
size=(233, -1),
backend='pillow',
interpolation='bicubic'),
dict(type='CenterCrop', crop_size=224),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
]
data = dict(
samples_per_gpu=64,
workers_per_gpu=8,
train=dict(
type=dataset_type,
data_prefix='data/imagenet/train',
pipeline=train_pipeline),
val=dict(
type=dataset_type,
data_prefix='data/imagenet/val',
ann_file='data/imagenet/meta/val.txt',
pipeline=test_pipeline),
test=dict(
# replace `data/val` with `data/test` for standard test
type=dataset_type,
data_prefix='data/imagenet/val',
ann_file='data/imagenet/meta/val.txt',
pipeline=test_pipeline))
evaluation = dict(interval=10, metric='accuracy')
# dataset settings
dataset_type = 'ImageNet'
# change according to https://github.com/rwightman/pytorch-image-models/blob
# /master/timm/models/mlp_mixer.py
img_norm_cfg = dict(
mean=[127.5, 127.5, 127.5], std=[127.5, 127.5, 127.5], to_rgb=True)
# training is not supported for now
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='RandomResizedCrop', size=224, backend='cv2'),
dict(type='RandomFlip', flip_prob=0.5, direction='horizontal'),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='ToTensor', keys=['gt_label']),
dict(type='Collect', keys=['img', 'gt_label'])
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='Resize', size=(256, -1), backend='cv2', interpolation='bicubic'),
dict(type='CenterCrop', crop_size=224),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
]
data = dict(
samples_per_gpu=64,
workers_per_gpu=8,
train=dict(
type=dataset_type,
data_prefix='data/imagenet/train',
pipeline=train_pipeline),
val=dict(
type=dataset_type,
data_prefix='data/imagenet/val',
ann_file='data/imagenet/meta/val.txt',
pipeline=test_pipeline),
test=dict(
# replace `data/val` with `data/test` for standard test
type=dataset_type,
data_prefix='data/imagenet/val',
ann_file='data/imagenet/meta/val.txt',
pipeline=test_pipeline))
evaluation = dict(interval=10, metric='accuracy')
......@@ -34,7 +34,7 @@ data = dict(
test=dict(
# replace `data/val` with `data/test` for standard test
type=dataset_type,
data_prefix='data/imagenet/val',
ann_file='data/imagenet/meta/val.txt',
data_prefix='/public/DL_DATA/ImageNet-pytorch/val',
#ann_file='data/imagenet/meta/val.txt',
pipeline=test_pipeline))
evaluation = dict(interval=1, metric='accuracy')
_base_ = [
'pipelines/auto_aug.py',
]
# dataset settings
dataset_type = 'ImageNet'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='RandomResizedCrop',
size=224,
backend='pillow',
interpolation='bicubic'),
dict(type='RandomFlip', flip_prob=0.5, direction='horizontal'),
dict(type='AutoAugment', policies={{_base_.policy_imagenet}}),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='ToTensor', keys=['gt_label']),
dict(type='Collect', keys=['img', 'gt_label'])
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='Resize',
size=(256, -1),
backend='pillow',
interpolation='bicubic'),
dict(type='CenterCrop', crop_size=224),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
]
data = dict(
samples_per_gpu=64,
workers_per_gpu=2,
train=dict(
type=dataset_type,
data_prefix='data/imagenet/train',
pipeline=train_pipeline),
val=dict(
type=dataset_type,
data_prefix='data/imagenet/val',
ann_file='data/imagenet/meta/val.txt',
pipeline=test_pipeline),
test=dict(
# replace `data/val` with `data/test` for standard test
type=dataset_type,
data_prefix='data/imagenet/val',
ann_file='data/imagenet/meta/val.txt',
pipeline=test_pipeline))
evaluation = dict(interval=1, metric='accuracy')
_base_ = ['./pipelines/rand_aug.py']
# dataset settings
dataset_type = 'ImageNet'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='RandomResizedCrop',
size=224,
backend='pillow',
interpolation='bicubic'),
dict(type='RandomFlip', flip_prob=0.5, direction='horizontal'),
dict(
type='RandAugment',
policies={{_base_.rand_increasing_policies}},
num_policies=2,
total_level=10,
magnitude_level=9,
magnitude_std=0.5,
hparams=dict(
pad_val=[round(x) for x in img_norm_cfg['mean'][::-1]],
interpolation='bicubic')),
dict(
type='RandomErasing',
erase_prob=0.25,
mode='rand',
min_area_ratio=0.02,
max_area_ratio=1 / 3,
fill_color=img_norm_cfg['mean'][::-1],
fill_std=img_norm_cfg['std'][::-1]),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='ToTensor', keys=['gt_label']),
dict(type='Collect', keys=['img', 'gt_label'])
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='Resize',
size=(256, -1),
backend='pillow',
interpolation='bicubic'),
dict(type='CenterCrop', crop_size=224),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
]
data = dict(
samples_per_gpu=64,
workers_per_gpu=8,
train=dict(
type=dataset_type,
data_prefix='data/imagenet/train',
pipeline=train_pipeline),
val=dict(
type=dataset_type,
data_prefix='data/imagenet/val',
ann_file='data/imagenet/meta/val.txt',
pipeline=test_pipeline),
test=dict(
# replace `data/val` with `data/test` for standard test
type=dataset_type,
data_prefix='data/imagenet/val',
ann_file='data/imagenet/meta/val.txt',
pipeline=test_pipeline))
evaluation = dict(interval=10, metric='accuracy')
_base_ = ['./pipelines/rand_aug.py']
# dataset settings
dataset_type = 'ImageNet'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='RandomResizedCrop',
size=256,
backend='pillow',
interpolation='bicubic'),
dict(type='RandomFlip', flip_prob=0.5, direction='horizontal'),
dict(
type='RandAugment',
policies={{_base_.rand_increasing_policies}},
num_policies=2,
total_level=10,
magnitude_level=9,
magnitude_std=0.5,
hparams=dict(
pad_val=[round(x) for x in img_norm_cfg['mean'][::-1]],
interpolation='bicubic')),
dict(
type='RandomErasing',
erase_prob=0.25,
mode='rand',
min_area_ratio=0.02,
max_area_ratio=1 / 3,
fill_color=img_norm_cfg['mean'][::-1],
fill_std=img_norm_cfg['std'][::-1]),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='ToTensor', keys=['gt_label']),
dict(type='Collect', keys=['img', 'gt_label'])
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='Resize',
size=(292, -1), # ( 256 / 224 * 256 )
backend='pillow',
interpolation='bicubic'),
dict(type='CenterCrop', crop_size=256),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
]
data = dict(
samples_per_gpu=64,
workers_per_gpu=8,
train=dict(
type=dataset_type,
data_prefix='data/imagenet/train',
pipeline=train_pipeline),
val=dict(
type=dataset_type,
data_prefix='data/imagenet/val',
ann_file='data/imagenet/meta/val.txt',
pipeline=test_pipeline),
test=dict(
# replace `data/val` with `data/test` for standard test
type=dataset_type,
data_prefix='data/imagenet/val',
ann_file='data/imagenet/meta/val.txt',
pipeline=test_pipeline))
evaluation = dict(interval=10, metric='accuracy')
# dataset settings
dataset_type = 'ImageNet'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='RandomResizedCrop',
size=384,
backend='pillow',
interpolation='bicubic'),
dict(type='RandomFlip', flip_prob=0.5, direction='horizontal'),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='ToTensor', keys=['gt_label']),
dict(type='Collect', keys=['img', 'gt_label'])
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='Resize', size=384, backend='pillow', interpolation='bicubic'),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
]
data = dict(
samples_per_gpu=64,
workers_per_gpu=8,
train=dict(
type=dataset_type,
data_prefix='data/imagenet/train',
pipeline=train_pipeline),
val=dict(
type=dataset_type,
data_prefix='data/imagenet/val',
ann_file='data/imagenet/meta/val.txt',
pipeline=test_pipeline),
test=dict(
# replace `data/val` with `data/test` for standard test
type=dataset_type,
data_prefix='data/imagenet/val',
ann_file='data/imagenet/meta/val.txt',
pipeline=test_pipeline))
evaluation = dict(interval=10, metric='accuracy')
_base_ = ['./pipelines/rand_aug.py']
# dataset settings
dataset_type = 'ImageNet'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='RandomResizedCrop',
size=224,
backend='pillow',
interpolation='bicubic'),
dict(type='RandomFlip', flip_prob=0.5, direction='horizontal'),
dict(
type='RandAugment',
policies={{_base_.rand_increasing_policies}},
num_policies=2,
total_level=10,
magnitude_level=9,
magnitude_std=0.5,
hparams=dict(
pad_val=[round(x) for x in img_norm_cfg['mean'][::-1]],
interpolation='bicubic')),
dict(
type='RandomErasing',
erase_prob=0.25,
mode='rand',
min_area_ratio=0.02,
max_area_ratio=1 / 3,
fill_color=img_norm_cfg['mean'][::-1],
fill_std=img_norm_cfg['std'][::-1]),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='ToTensor', keys=['gt_label']),
dict(type='Collect', keys=['img', 'gt_label'])
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='Resize',
size=(248, -1),
backend='pillow',
interpolation='bicubic'),
dict(type='CenterCrop', crop_size=224),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
]
data = dict(
samples_per_gpu=64,
workers_per_gpu=4,
train=dict(
type=dataset_type,
data_prefix='data/imagenet/train',
pipeline=train_pipeline),
val=dict(
type=dataset_type,
data_prefix='data/imagenet/val',
ann_file='data/imagenet/meta/val.txt',
pipeline=test_pipeline),
test=dict(
# replace `data/val` with `data/test` for standard test
type=dataset_type,
data_prefix='data/imagenet/val',
ann_file='data/imagenet/meta/val.txt',
pipeline=test_pipeline))
evaluation = dict(interval=1, metric='accuracy', save_best='auto')
# Policy for ImageNet, refers to
# https://github.com/DeepVoltaire/AutoAugment/blame/master/autoaugment.py
policy_imagenet = [
[
dict(type='Posterize', bits=4, prob=0.4),
dict(type='Rotate', angle=30., prob=0.6)
],
[
dict(type='Solarize', thr=256 / 9 * 4, prob=0.6),
dict(type='AutoContrast', prob=0.6)
],
[dict(type='Equalize', prob=0.8),
dict(type='Equalize', prob=0.6)],
[
dict(type='Posterize', bits=5, prob=0.6),
dict(type='Posterize', bits=5, prob=0.6)
],
[
dict(type='Equalize', prob=0.4),
dict(type='Solarize', thr=256 / 9 * 5, prob=0.2)
],
[
dict(type='Equalize', prob=0.4),
dict(type='Rotate', angle=30 / 9 * 8, prob=0.8)
],
[
dict(type='Solarize', thr=256 / 9 * 6, prob=0.6),
dict(type='Equalize', prob=0.6)
],
[dict(type='Posterize', bits=6, prob=0.8),
dict(type='Equalize', prob=1.)],
[
dict(type='Rotate', angle=10., prob=0.2),
dict(type='Solarize', thr=256 / 9, prob=0.6)
],
[
dict(type='Equalize', prob=0.6),
dict(type='Posterize', bits=5, prob=0.4)
],
[
dict(type='Rotate', angle=30 / 9 * 8, prob=0.8),
dict(type='ColorTransform', magnitude=0., prob=0.4)
],
[
dict(type='Rotate', angle=30., prob=0.4),
dict(type='Equalize', prob=0.6)
],
[dict(type='Equalize', prob=0.0),
dict(type='Equalize', prob=0.8)],
[dict(type='Invert', prob=0.6),
dict(type='Equalize', prob=1.)],
[
dict(type='ColorTransform', magnitude=0.4, prob=0.6),
dict(type='Contrast', magnitude=0.8, prob=1.)
],
[
dict(type='Rotate', angle=30 / 9 * 8, prob=0.8),
dict(type='ColorTransform', magnitude=0.2, prob=1.)
],
[
dict(type='ColorTransform', magnitude=0.8, prob=0.8),
dict(type='Solarize', thr=256 / 9 * 2, prob=0.8)
],
[
dict(type='Sharpness', magnitude=0.7, prob=0.4),
dict(type='Invert', prob=0.6)
],
[
dict(
type='Shear',
magnitude=0.3 / 9 * 5,
prob=0.6,
direction='horizontal'),
dict(type='Equalize', prob=1.)
],
[
dict(type='ColorTransform', magnitude=0., prob=0.4),
dict(type='Equalize', prob=0.6)
],
[
dict(type='Equalize', prob=0.4),
dict(type='Solarize', thr=256 / 9 * 5, prob=0.2)
],
[
dict(type='Solarize', thr=256 / 9 * 4, prob=0.6),
dict(type='AutoContrast', prob=0.6)
],
[dict(type='Invert', prob=0.6),
dict(type='Equalize', prob=1.)],
[
dict(type='ColorTransform', magnitude=0.4, prob=0.6),
dict(type='Contrast', magnitude=0.8, prob=1.)
],
[dict(type='Equalize', prob=0.8),
dict(type='Equalize', prob=0.6)],
]
# Refers to `_RAND_INCREASING_TRANSFORMS` in pytorch-image-models
rand_increasing_policies = [
dict(type='AutoContrast'),
dict(type='Equalize'),
dict(type='Invert'),
dict(type='Rotate', magnitude_key='angle', magnitude_range=(0, 30)),
dict(type='Posterize', magnitude_key='bits', magnitude_range=(4, 0)),
dict(type='Solarize', magnitude_key='thr', magnitude_range=(256, 0)),
dict(
type='SolarizeAdd',
magnitude_key='magnitude',
magnitude_range=(0, 110)),
dict(
type='ColorTransform',
magnitude_key='magnitude',
magnitude_range=(0, 0.9)),
dict(type='Contrast', magnitude_key='magnitude', magnitude_range=(0, 0.9)),
dict(
type='Brightness', magnitude_key='magnitude',
magnitude_range=(0, 0.9)),
dict(
type='Sharpness', magnitude_key='magnitude', magnitude_range=(0, 0.9)),
dict(
type='Shear',
magnitude_key='magnitude',
magnitude_range=(0, 0.3),
direction='horizontal'),
dict(
type='Shear',
magnitude_key='magnitude',
magnitude_range=(0, 0.3),
direction='vertical'),
dict(
type='Translate',
magnitude_key='magnitude',
magnitude_range=(0, 0.45),
direction='horizontal'),
dict(
type='Translate',
magnitude_key='magnitude',
magnitude_range=(0, 0.45),
direction='vertical')
]
# dataset settings
dataset_type = 'StanfordCars'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='Resize', size=512),
dict(type='RandomCrop', size=448),
dict(type='RandomFlip', flip_prob=0.5, direction='horizontal'),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='ToTensor', keys=['gt_label']),
dict(type='Collect', keys=['img', 'gt_label'])
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='Resize', size=512),
dict(type='CenterCrop', crop_size=448),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
]
data_root = 'data/stanfordcars'
data = dict(
samples_per_gpu=8,
workers_per_gpu=2,
train=dict(
type=dataset_type,
data_prefix=data_root,
test_mode=False,
pipeline=train_pipeline),
val=dict(
type=dataset_type,
data_prefix=data_root,
test_mode=True,
pipeline=test_pipeline),
test=dict(
type=dataset_type,
data_prefix=data_root,
test_mode=True,
pipeline=test_pipeline))
evaluation = dict(
interval=1, metric='accuracy',
save_best='auto') # save the checkpoint with highest accuracy
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='Conformer', arch='base', drop_path_rate=0.1, init_cfg=None),
neck=None,
head=dict(
type='ConformerHead',
num_classes=1000,
in_channels=[1536, 576],
init_cfg=None,
loss=dict(
type='LabelSmoothLoss', label_smooth_val=0.1, mode='original'),
cal_acc=False),
init_cfg=[
dict(type='TruncNormal', layer='Linear', std=0.02, bias=0.),
dict(type='Constant', layer='LayerNorm', val=1., bias=0.)
],
train_cfg=dict(augments=[
dict(type='BatchMixup', alpha=0.8, num_classes=1000, prob=0.5),
dict(type='BatchCutMix', alpha=1.0, num_classes=1000, prob=0.5)
]))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='Conformer', arch='small', drop_path_rate=0.1, init_cfg=None),
neck=None,
head=dict(
type='ConformerHead',
num_classes=1000,
in_channels=[1024, 384],
init_cfg=None,
loss=dict(
type='LabelSmoothLoss', label_smooth_val=0.1, mode='original'),
cal_acc=False),
init_cfg=[
dict(type='TruncNormal', layer='Linear', std=0.02, bias=0.),
dict(type='Constant', layer='LayerNorm', val=1., bias=0.)
],
train_cfg=dict(augments=[
dict(type='BatchMixup', alpha=0.8, num_classes=1000, prob=0.5),
dict(type='BatchCutMix', alpha=1.0, num_classes=1000, prob=0.5)
]))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='Conformer',
arch='small',
patch_size=32,
drop_path_rate=0.1,
init_cfg=None),
neck=None,
head=dict(
type='ConformerHead',
num_classes=1000,
in_channels=[1024, 384],
init_cfg=None,
loss=dict(
type='LabelSmoothLoss', label_smooth_val=0.1, mode='original'),
cal_acc=False),
init_cfg=[
dict(type='TruncNormal', layer='Linear', std=0.02, bias=0.),
dict(type='Constant', layer='LayerNorm', val=1., bias=0.)
],
train_cfg=dict(augments=[
dict(type='BatchMixup', alpha=0.8, num_classes=1000, prob=0.5),
dict(type='BatchCutMix', alpha=1.0, num_classes=1000, prob=0.5)
]))
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment