Commit 0fd8347d authored by unknown's avatar unknown
Browse files

添加mmclassification-0.24.1代码,删除mmclassification-speed-benchmark

parent cc567e9e
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='MlpMixer',
arch='b',
img_size=224,
patch_size=16,
drop_rate=0.1,
init_cfg=[
dict(
type='Kaiming',
layer='Conv2d',
mode='fan_in',
nonlinearity='linear')
]),
neck=dict(type='GlobalAveragePooling', dim=1),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=768,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
),
)
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='MlpMixer',
arch='l',
img_size=224,
patch_size=16,
drop_rate=0.1,
init_cfg=[
dict(
type='Kaiming',
layer='Conv2d',
mode='fan_in',
nonlinearity='linear')
]),
neck=dict(type='GlobalAveragePooling', dim=1),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=1024,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
),
)
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='MobileNetV3', arch='large'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='StackedLinearClsHead',
num_classes=1000,
in_channels=960,
mid_channels=[1280],
dropout_rate=0.2,
act_cfg=dict(type='HSwish'),
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
init_cfg=dict(
type='Normal', layer='Linear', mean=0., std=0.01, bias=0.),
topk=(1, 5)))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='MobileNetV3', arch='small'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='StackedLinearClsHead',
num_classes=10,
in_channels=576,
mid_channels=[1280],
act_cfg=dict(type='HSwish'),
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5)))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='MobileNetV3', arch='small'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='StackedLinearClsHead',
num_classes=1000,
in_channels=576,
mid_channels=[1024],
dropout_rate=0.2,
act_cfg=dict(type='HSwish'),
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
init_cfg=dict(
type='Normal', layer='Linear', mean=0., std=0.01, bias=0.),
topk=(1, 5)))
model = dict(
type='ImageClassifier',
backbone=dict(type='MViT', arch='base', drop_path_rate=0.3),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
in_channels=768,
num_classes=1000,
loss=dict(
type='LabelSmoothLoss', label_smooth_val=0.1, mode='original'),
),
init_cfg=[
dict(type='TruncNormal', layer='Linear', std=0.02, bias=0.),
dict(type='Constant', layer='LayerNorm', val=1., bias=0.)
],
train_cfg=dict(augments=[
dict(type='BatchMixup', alpha=0.8, num_classes=1000, prob=0.5),
dict(type='BatchCutMix', alpha=1.0, num_classes=1000, prob=0.5)
]))
model = dict(
type='ImageClassifier',
backbone=dict(
type='MViT',
arch='large',
drop_path_rate=0.5,
dim_mul_in_attention=False),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
in_channels=1152,
num_classes=1000,
loss=dict(
type='LabelSmoothLoss', label_smooth_val=0.1, mode='original'),
),
init_cfg=[
dict(type='TruncNormal', layer='Linear', std=0.02, bias=0.),
dict(type='Constant', layer='LayerNorm', val=1., bias=0.)
],
train_cfg=dict(augments=[
dict(type='BatchMixup', alpha=0.8, num_classes=1000, prob=0.5),
dict(type='BatchCutMix', alpha=1.0, num_classes=1000, prob=0.5)
]))
model = dict(
type='ImageClassifier',
backbone=dict(type='MViT', arch='small', drop_path_rate=0.1),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
in_channels=768,
num_classes=1000,
loss=dict(
type='LabelSmoothLoss', label_smooth_val=0.1, mode='original'),
),
init_cfg=[
dict(type='TruncNormal', layer='Linear', std=0.02, bias=0.),
dict(type='Constant', layer='LayerNorm', val=1., bias=0.)
],
train_cfg=dict(augments=[
dict(type='BatchMixup', alpha=0.8, num_classes=1000, prob=0.5),
dict(type='BatchCutMix', alpha=1.0, num_classes=1000, prob=0.5)
]))
model = dict(
type='ImageClassifier',
backbone=dict(type='MViT', arch='tiny', drop_path_rate=0.1),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
in_channels=768,
num_classes=1000,
loss=dict(
type='LabelSmoothLoss', label_smooth_val=0.1, mode='original'),
),
init_cfg=[
dict(type='TruncNormal', layer='Linear', std=0.02, bias=0.),
dict(type='Constant', layer='LayerNorm', val=1., bias=0.)
],
train_cfg=dict(augments=[
dict(type='BatchMixup', alpha=0.8, num_classes=1000, prob=0.5),
dict(type='BatchCutMix', alpha=1.0, num_classes=1000, prob=0.5)
]))
# Model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='PoolFormer',
arch='m36',
drop_path_rate=0.1,
init_cfg=[
dict(
type='TruncNormal',
layer=['Conv2d', 'Linear'],
std=.02,
bias=0.),
dict(type='Constant', layer=['GroupNorm'], val=1., bias=0.),
]),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=768,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
))
# Model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='PoolFormer',
arch='m48',
drop_path_rate=0.1,
init_cfg=[
dict(
type='TruncNormal',
layer=['Conv2d', 'Linear'],
std=.02,
bias=0.),
dict(type='Constant', layer=['GroupNorm'], val=1., bias=0.),
]),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=768,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
))
# Model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='PoolFormer',
arch='s12',
drop_path_rate=0.1,
init_cfg=[
dict(
type='TruncNormal',
layer=['Conv2d', 'Linear'],
std=.02,
bias=0.),
dict(type='Constant', layer=['GroupNorm'], val=1., bias=0.),
]),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=512,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
))
# Model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='PoolFormer',
arch='s24',
drop_path_rate=0.1,
init_cfg=[
dict(
type='TruncNormal',
layer=['Conv2d', 'Linear'],
std=.02,
bias=0.),
dict(type='Constant', layer=['GroupNorm'], val=1., bias=0.),
]),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=512,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
))
# Model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='PoolFormer',
arch='s36',
drop_path_rate=0.1,
init_cfg=[
dict(
type='TruncNormal',
layer=['Conv2d', 'Linear'],
std=.02,
bias=0.),
dict(type='Constant', layer=['GroupNorm'], val=1., bias=0.),
]),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=512,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
))
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment