> [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/pdf/2010.11929.pdf)
<!-- [ALGORITHM] -->
## Abstract
While the Transformer architecture has become the de-facto standard for natural language processing tasks, its applications to computer vision remain limited. In vision, attention is either applied in conjunction with convolutional networks, or used to replace certain components of convolutional networks while keeping their overall structure in place. We show that this reliance on CNNs is not necessary and a pure transformer applied directly to sequences of image patches can perform very well on image classification tasks. When pre-trained on large amounts of data and transferred to multiple mid-sized or small image recognition benchmarks (ImageNet, CIFAR-100, VTAB, etc.), Vision Transformer (ViT) attains excellent results compared to state-of-the-art convolutional networks while requiring substantially fewer computational resources to train.
*Models with * are converted from the [official repo](https://github.com/google-research/vision_transformer#available-vit-models). The config files of these models are only for validation. We don't ensure these config files' training accuracy and welcome you to contribute your reproduction results.*
## Citation
```
@inproceedings{
dosovitskiy2021an,
title={An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale},
author={Alexey Dosovitskiy and Lucas Beyer and Alexander Kolesnikov and Dirk Weissenborn and Xiaohua Zhai and Thomas Unterthiner and Mostafa Dehghani and Matthias Minderer and Georg Heigold and Sylvain Gelly and Jakob Uszkoreit and Neil Houlsby},
booktitle={International Conference on Learning Representations},
Deep residual networks were shown to be able to scale up to thousands of layers and still have improving performance. However, each fraction of a percent of improved accuracy costs nearly doubling the number of layers, and so training very deep residual networks has a problem of diminishing feature reuse, which makes these networks very slow to train. To tackle these problems, in this paper we conduct a detailed experimental study on the architecture of ResNet blocks, based on which we propose a novel architecture where we decrease depth and increase width of residual networks. We call the resulting network structures wide residual networks (WRNs) and show that these are far superior over their commonly used thin and very deep counterparts. For example, we demonstrate that even a simple 16-layer-deep wide residual network outperforms in accuracy and efficiency all previous deep residual networks, including thousand-layer-deep networks, achieving new state-of-the-art results on CIFAR, SVHN, COCO, and significant improvements on ImageNet.
*Models with * are converted from the [TorchVision](https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py) and [TIMM](https://github.com/rwightman/pytorch-image-models/blob/master). The config files of these models are only for inference. We don't ensure these config files' training accuracy and welcome you to contribute your reproduction results.*