Commit 0fd8347d authored by unknown's avatar unknown
Browse files

添加mmclassification-0.24.1代码,删除mmclassification-speed-benchmark

parent cc567e9e
_base_ = ['./van-b0_8xb128_in1k.py']
_deprecation_ = dict(
expected='van-b0_8xb128_in1k.py',
reference='https://github.com/open-mmlab/mmclassification/pull/1017',
)
# VGG
> [Very Deep Convolutional Networks for Large-Scale Image Recognition](https://arxiv.org/abs/1409.1556)
<!-- [ALGORITHM] -->
## Abstract
In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.
<div align=center>
<img src="https://user-images.githubusercontent.com/26739999/142578905-9be586ec-f6fd-4bfb-bbba-432f599d3b9b.png" width="60%"/>
</div>
## Results and models
### ImageNet-1k
| Model | Params(M) | Flops(G) | Top-1 (%) | Top-5 (%) | Config | Download |
| :-------: | :-------: | :------: | :-------: | :-------: | :---------------------------------------------------------------------------: | :-----------------------------------------------------------------------------: |
| VGG-11 | 132.86 | 7.63 | 68.75 | 88.87 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/vgg/vgg11_8xb32_in1k.py) | [model](https://download.openmmlab.com/mmclassification/v0/vgg/vgg11_batch256_imagenet_20210208-4271cd6c.pth) \| [log](https://download.openmmlab.com/mmclassification/v0/vgg/vgg11_batch256_imagenet_20210208-4271cd6c.log.json) |
| VGG-13 | 133.05 | 11.34 | 70.02 | 89.46 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/vgg/vgg13_8xb32_in1k.py) | [model](https://download.openmmlab.com/mmclassification/v0/vgg/vgg13_batch256_imagenet_20210208-4d1d6080.pth) \| [log](https://download.openmmlab.com/mmclassification/v0/vgg/vgg13_batch256_imagenet_20210208-4d1d6080.log.json) |
| VGG-16 | 138.36 | 15.5 | 71.62 | 90.49 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/vgg/vgg16_8xb32_in1k.py) | [model](https://download.openmmlab.com/mmclassification/v0/vgg/vgg16_batch256_imagenet_20210208-db26f1a5.pth) \| [log](https://download.openmmlab.com/mmclassification/v0/vgg/vgg16_batch256_imagenet_20210208-db26f1a5.log.json) |
| VGG-19 | 143.67 | 19.67 | 72.41 | 90.80 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/vgg/vgg19_8xb32_in1k.py) | [model](https://download.openmmlab.com/mmclassification/v0/vgg/vgg19_batch256_imagenet_20210208-e6920e4a.pth) \| [log](https://download.openmmlab.com/mmclassification/v0/vgg/vgg19_batch256_imagenet_20210208-e6920e4a.log.json) |
| VGG-11-BN | 132.87 | 7.64 | 70.67 | 90.16 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/vgg/vgg11bn_8xb32_in1k.py) | [model](https://download.openmmlab.com/mmclassification/v0/vgg/vgg11_bn_batch256_imagenet_20210207-f244902c.pth) \| [log](https://download.openmmlab.com/mmclassification/v0/vgg/vgg11_bn_batch256_imagenet_20210207-f244902c.log.json) |
| VGG-13-BN | 133.05 | 11.36 | 72.12 | 90.66 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/vgg/vgg13bn_8xb32_in1k.py) | [model](https://download.openmmlab.com/mmclassification/v0/vgg/vgg13_bn_batch256_imagenet_20210207-1a8b7864.pth) \| [log](https://download.openmmlab.com/mmclassification/v0/vgg/vgg13_bn_batch256_imagenet_20210207-1a8b7864.log.json) |
| VGG-16-BN | 138.37 | 15.53 | 73.74 | 91.66 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/vgg/vgg16_8xb32_in1k.py) | [model](https://download.openmmlab.com/mmclassification/v0/vgg/vgg16_bn_batch256_imagenet_20210208-7e55cd29.pth) \| [log](https://download.openmmlab.com/mmclassification/v0/vgg/vgg16_bn_batch256_imagenet_20210208-7e55cd29.log.json) |
| VGG-19-BN | 143.68 | 19.7 | 74.68 | 92.27 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/vgg/vgg19bn_8xb32_in1k.py) | [model](https://download.openmmlab.com/mmclassification/v0/vgg/vgg19_bn_batch256_imagenet_20210208-da620c4f.pth) \| [log](https://download.openmmlab.com/mmclassification/v0/vgg/vgg19_bn_batch256_imagenet_20210208-da620c4f.log.json) |
## Citation
```
@article{simonyan2014very,
title={Very deep convolutional networks for large-scale image recognition},
author={Simonyan, Karen and Zisserman, Andrew},
journal={arXiv preprint arXiv:1409.1556},
year={2014}
}
```
Collections:
- Name: VGG
Metadata:
Training Data: ImageNet-1k
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Resources: 8x Xp GPUs
Epochs: 100
Batch Size: 256
Architecture:
- VGG
Paper:
URL: https://arxiv.org/abs/1409.1556
Title: "Very Deep Convolutional Networks for Large-Scale Image"
README: configs/vgg/README.md
Code:
URL: https://github.com/open-mmlab/mmclassification/blob/v0.15.0/mmcls/models/backbones/vgg.py#L39
Version: v0.15.0
Models:
- Name: vgg11_8xb32_in1k
Metadata:
FLOPs: 7630000000
Parameters: 132860000
In Collection: VGG
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 68.75
Top 5 Accuracy: 88.87
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/vgg/vgg11_batch256_imagenet_20210208-4271cd6c.pth
Config: configs/vgg/vgg11_8xb32_in1k.py
- Name: vgg13_8xb32_in1k
Metadata:
FLOPs: 11340000000
Parameters: 133050000
In Collection: VGG
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 70.02
Top 5 Accuracy: 89.46
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/vgg/vgg13_batch256_imagenet_20210208-4d1d6080.pth
Config: configs/vgg/vgg13_8xb32_in1k.py
- Name: vgg16_8xb32_in1k
Metadata:
FLOPs: 15500000000
Parameters: 138360000
In Collection: VGG
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 71.62
Top 5 Accuracy: 90.49
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/vgg/vgg16_batch256_imagenet_20210208-db26f1a5.pth
Config: configs/vgg/vgg16_8xb32_in1k.py
- Name: vgg19_8xb32_in1k
Metadata:
FLOPs: 19670000000
Parameters: 143670000
In Collection: VGG
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 72.41
Top 5 Accuracy: 90.8
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/vgg/vgg19_batch256_imagenet_20210208-e6920e4a.pth
Config: configs/vgg/vgg19_8xb32_in1k.py
- Name: vgg11bn_8xb32_in1k
Metadata:
FLOPs: 7640000000
Parameters: 132870000
In Collection: VGG
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 70.67
Top 5 Accuracy: 90.16
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/vgg/vgg11_bn_batch256_imagenet_20210207-f244902c.pth
Config: configs/vgg/vgg11bn_8xb32_in1k.py
- Name: vgg13bn_8xb32_in1k
Metadata:
FLOPs: 11360000000
Parameters: 133050000
In Collection: VGG
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 72.12
Top 5 Accuracy: 90.66
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/vgg/vgg13_bn_batch256_imagenet_20210207-1a8b7864.pth
Config: configs/vgg/vgg13bn_8xb32_in1k.py
- Name: vgg16bn_8xb32_in1k
Metadata:
FLOPs: 15530000000
Parameters: 138370000
In Collection: VGG
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 73.74
Top 5 Accuracy: 91.66
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/vgg/vgg16_bn_batch256_imagenet_20210208-7e55cd29.pth
Config: configs/vgg/vgg16bn_8xb32_in1k.py
- Name: vgg19bn_8xb32_in1k
Metadata:
FLOPs: 19700000000
Parameters: 143680000
In Collection: VGG
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 74.68
Top 5 Accuracy: 92.27
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/vgg/vgg19_bn_batch256_imagenet_20210208-da620c4f.pth
Config: configs/vgg/vgg19bn_8xb32_in1k.py
_base_ = 'vgg11_8xb32_in1k.py'
_deprecation_ = dict(
expected='vgg11_8xb32_in1k.py',
reference='https://github.com/open-mmlab/mmclassification/pull/508',
)
_base_ = 'vgg11bn_8xb32_in1k.py'
_deprecation_ = dict(
expected='vgg11bn_8xb32_in1k.py',
reference='https://github.com/open-mmlab/mmclassification/pull/508',
)
_base_ = 'vgg13_8xb32_in1k.py'
_deprecation_ = dict(
expected='vgg13_8xb32_in1k.py',
reference='https://github.com/open-mmlab/mmclassification/pull/508',
)
_base_ = 'vgg13bn_8xb32_in1k.py'
_deprecation_ = dict(
expected='vgg13bn_8xb32_in1k.py',
reference='https://github.com/open-mmlab/mmclassification/pull/508',
)
_base_ = [
'../_base_/models/vgg16bn.py',
'../_base_/datasets/imagenet_bs32_pil_resize.py',
'../_base_/schedules/imagenet_bs256.py', '../_base_/default_runtime.py'
]
optimizer = dict(lr=0.01)
fp16 = dict(loss_scale=512.)
_base_ = 'vgg16_8xb16_voc.py'
_deprecation_ = dict(
expected='vgg16_8xb16_voc.py',
reference='https://github.com/open-mmlab/mmclassification/pull/508',
)
_base_ = 'vgg16_8xb32_in1k.py'
_deprecation_ = dict(
expected='vgg16_8xb32_in1k.py',
reference='https://github.com/open-mmlab/mmclassification/pull/508',
)
_base_ = 'vgg16bn_8xb32_in1k.py'
_deprecation_ = dict(
expected='vgg16bn_8xb32_in1k.py',
reference='https://github.com/open-mmlab/mmclassification/pull/508',
)
_base_ = 'vgg19_8xb32_in1k.py'
_deprecation_ = dict(
expected='vgg19_8xb32_in1k.py',
reference='https://github.com/open-mmlab/mmclassification/pull/508',
)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment