Commit 0fd8347d authored by unknown's avatar unknown
Browse files

添加mmclassification-0.24.1代码,删除mmclassification-speed-benchmark

parent cc567e9e
_base_ = 'resnet50_8xb16-mixup_cifar10.py'
_deprecation_ = dict(
expected='resnet50_8xb16-mixup_cifar10.py',
reference='https://github.com/open-mmlab/mmclassification/pull/508',
)
_base_ = 'resnet50_8xb32-coslr_in1k.py'
_deprecation_ = dict(
expected='resnet50_8xb32-coslr_in1k.py',
reference='https://github.com/open-mmlab/mmclassification/pull/508',
)
_base_ = 'resnet50_8xb32-cutmix_in1k.py'
_deprecation_ = dict(
expected='resnet50_8xb32-cutmix_in1k.py',
reference='https://github.com/open-mmlab/mmclassification/pull/508',
)
_base_ = 'resnet50_8xb32_in1k.py'
_deprecation_ = dict(
expected='resnet50_8xb32_in1k.py',
reference='https://github.com/open-mmlab/mmclassification/pull/508',
)
_base_ = 'resnet50_8xb32-lbs_in1k.py'
_deprecation_ = dict(
expected='resnet50_8xb32-lbs_in1k.py',
reference='https://github.com/open-mmlab/mmclassification/pull/508',
)
_base_ = 'resnet50_8xb32-mixup_in1k.py'
_deprecation_ = dict(
expected='resnet50_8xb32-mixup_in1k.py',
reference='https://github.com/open-mmlab/mmclassification/pull/508',
)
_base_ = 'resnet50_32xb64-warmup-coslr_in1k.py'
_deprecation_ = dict(
expected='resnet50_32xb64-warmup-coslr_in1k.py',
reference='https://github.com/open-mmlab/mmclassification/pull/508',
)
_base_ = 'resnet50_32xb64-warmup_in1k.py'
_deprecation_ = dict(
expected='resnet50_32xb64-warmup_in1k.py',
reference='https://github.com/open-mmlab/mmclassification/pull/508',
)
_base_ = 'resnet50_32xb64-warmup-lbs_in1k.py'
_deprecation_ = dict(
expected='resnet50_32xb64-warmup-lbs_in1k.py',
reference='https://github.com/open-mmlab/mmclassification/pull/508',
)
_base_ = [
'../_base_/models/resnetv1c50.py',
'../_base_/datasets/imagenet_bs32_pil_resize.py',
'../_base_/schedules/imagenet_bs256.py', '../_base_/default_runtime.py'
]
model = dict(backbone=dict(depth=101))
_base_ = [
'../_base_/models/resnetv1c50.py',
'../_base_/datasets/imagenet_bs32_pil_resize.py',
'../_base_/schedules/imagenet_bs256.py', '../_base_/default_runtime.py'
]
model = dict(backbone=dict(depth=152))
_base_ = [
'../_base_/models/resnetv1c50.py',
'../_base_/datasets/imagenet_bs32_pil_resize.py',
'../_base_/schedules/imagenet_bs256.py', '../_base_/default_runtime.py'
]
_base_ = 'resnetv1d101_8xb32_in1k.py'
_deprecation_ = dict(
expected='resnetv1d101_8xb32_in1k.py',
reference='https://github.com/open-mmlab/mmclassification/pull/508',
)
_base_ = 'resnetv1d152_8xb32_in1k.py'
_deprecation_ = dict(
expected='resnetv1d152_8xb32_in1k.py',
reference='https://github.com/open-mmlab/mmclassification/pull/508',
)
_base_ = 'resnetv1d50_8xb32_in1k.py'
_deprecation_ = dict(
expected='resnetv1d50_8xb32_in1k.py',
reference='https://github.com/open-mmlab/mmclassification/pull/508',
)
# ResNeXt
> [Aggregated Residual Transformations for Deep Neural Networks](https://openaccess.thecvf.com/content_cvpr_2017/html/Xie_Aggregated_Residual_Transformations_CVPR_2017_paper.html)
<!-- [ALGORITHM] -->
## Abstract
We present a simple, highly modularized network architecture for image classification. Our network is constructed by repeating a building block that aggregates a set of transformations with the same topology. Our simple design results in a homogeneous, multi-branch architecture that has only a few hyper-parameters to set. This strategy exposes a new dimension, which we call "cardinality" (the size of the set of transformations), as an essential factor in addition to the dimensions of depth and width. On the ImageNet-1K dataset, we empirically show that even under the restricted condition of maintaining complexity, increasing cardinality is able to improve classification accuracy. Moreover, increasing cardinality is more effective than going deeper or wider when we increase the capacity. Our models, named ResNeXt, are the foundations of our entry to the ILSVRC 2016 classification task in which we secured 2nd place. We further investigate ResNeXt on an ImageNet-5K set and the COCO detection set, also showing better results than its ResNet counterpart. The code and models are publicly available online.
<div align=center>
<img src="https://user-images.githubusercontent.com/26739999/142574479-21fb00a2-e63e-4bc6-a9f2-989cd6e15528.png" width="70%"/>
</div>
## Results and models
### ImageNet-1k
| Model | Params(M) | Flops(G) | Top-1 (%) | Top-5 (%) | Config | Download |
| :---------------: | :-------: | :------: | :-------: | :-------: | :-----------------------------------------------------------------------: | :-------------------------------------------------------------------------: |
| ResNeXt-32x4d-50 | 25.03 | 4.27 | 77.90 | 93.66 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/resnext/resnext50-32x4d_8xb32_in1k.py) | [model](https://download.openmmlab.com/mmclassification/v0/resnext/resnext50_32x4d_b32x8_imagenet_20210429-56066e27.pth) \| [log](https://download.openmmlab.com/mmclassification/v0/resnext/resnext50_32x4d_b32x8_imagenet_20210429-56066e27.log.json) |
| ResNeXt-32x4d-101 | 44.18 | 8.03 | 78.61 | 94.17 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/resnext/resnext101-32x4d_8xb32_in1k.py) | [model](https://download.openmmlab.com/mmclassification/v0/resnext/resnext101_32x4d_b32x8_imagenet_20210506-e0fa3dd5.pth) \| [log](https://download.openmmlab.com/mmclassification/v0/resnext/resnext101_32x4d_b32x8_imagenet_20210506-e0fa3dd5.log.json) |
| ResNeXt-32x8d-101 | 88.79 | 16.5 | 79.27 | 94.58 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/resnext/resnext101-32x8d_8xb32_in1k.py) | [model](https://download.openmmlab.com/mmclassification/v0/resnext/resnext101_32x8d_b32x8_imagenet_20210506-23a247d5.pth) \| [log](https://download.openmmlab.com/mmclassification/v0/resnext/resnext101_32x8d_b32x8_imagenet_20210506-23a247d5.log.json) |
| ResNeXt-32x4d-152 | 59.95 | 11.8 | 78.88 | 94.33 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/resnext/resnext152-32x4d_8xb32_in1k.py) | [model](https://download.openmmlab.com/mmclassification/v0/resnext/resnext152_32x4d_b32x8_imagenet_20210524-927787be.pth) \| [log](https://download.openmmlab.com/mmclassification/v0/resnext/resnext152_32x4d_b32x8_imagenet_20210524-927787be.log.json) |
## Citation
```
@inproceedings{xie2017aggregated,
title={Aggregated residual transformations for deep neural networks},
author={Xie, Saining and Girshick, Ross and Doll{\'a}r, Piotr and Tu, Zhuowen and He, Kaiming},
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
pages={1492--1500},
year={2017}
}
```
Collections:
- Name: ResNeXt
Metadata:
Training Data: ImageNet-1k
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Resources: 8x V100 GPUs
Epochs: 100
Batch Size: 256
Architecture:
- ResNeXt
Paper:
URL: https://openaccess.thecvf.com/content_cvpr_2017/html/Xie_Aggregated_Residual_Transformations_CVPR_2017_paper.html
Title: "Aggregated Residual Transformations for Deep Neural Networks"
README: configs/resnext/README.md
Code:
URL: https://github.com/open-mmlab/mmclassification/blob/v0.15.0/mmcls/models/backbones/resnext.py#L90
Version: v0.15.0
Models:
- Name: resnext50-32x4d_8xb32_in1k
Metadata:
FLOPs: 4270000000
Parameters: 25030000
In Collection: ResNeXt
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 77.90
Top 5 Accuracy: 93.66
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/resnext/resnext50_32x4d_b32x8_imagenet_20210429-56066e27.pth
Config: configs/resnext/resnext50-32x4d_8xb32_in1k.py
- Name: resnext101-32x4d_8xb32_in1k
Metadata:
FLOPs: 8030000000
Parameters: 44180000
In Collection: ResNeXt
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 78.61
Top 5 Accuracy: 94.17
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/resnext/resnext101_32x4d_b32x8_imagenet_20210506-e0fa3dd5.pth
Config: configs/resnext/resnext101-32x4d_8xb32_in1k.py
- Name: resnext101-32x8d_8xb32_in1k
Metadata:
FLOPs: 16500000000
Parameters: 88790000
In Collection: ResNeXt
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 79.27
Top 5 Accuracy: 94.58
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/resnext/resnext101_32x8d_b32x8_imagenet_20210506-23a247d5.pth
Config: configs/resnext/resnext101-32x8d_8xb32_in1k.py
- Name: resnext152-32x4d_8xb32_in1k
Metadata:
FLOPs: 11800000000
Parameters: 59950000
In Collection: ResNeXt
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 78.88
Top 5 Accuracy: 94.33
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/resnext/resnext152_32x4d_b32x8_imagenet_20210524-927787be.pth
Config: configs/resnext/resnext152-32x4d_8xb32_in1k.py
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment