Commit 0fd8347d authored by unknown's avatar unknown
Browse files

添加mmclassification-0.24.1代码,删除mmclassification-speed-benchmark

parent cc567e9e
_base_ = [
'../_base_/models/resnet50.py', '../_base_/datasets/imagenet21k_bs128.py',
'../_base_/schedules/imagenet_bs1024_coslr.py',
'../_base_/default_runtime.py'
]
# model settings
model = dict(head=dict(num_classes=21843))
# runtime settings
runner = dict(type='EpochBasedRunner', max_epochs=90)
_base_ = [
'../_base_/models/resnet50.py',
'../_base_/datasets/imagenet_bs256_rsb_a12.py',
'../_base_/schedules/imagenet_bs2048_rsb.py',
'../_base_/default_runtime.py'
]
# Model settings
model = dict(
backbone=dict(
norm_cfg=dict(type='SyncBN', requires_grad=True),
drop_path_rate=0.05,
),
head=dict(
loss=dict(
type='LabelSmoothLoss',
label_smooth_val=0.1,
mode='original',
)),
train_cfg=dict(augments=[
dict(type='BatchMixup', alpha=0.2, num_classes=1000, prob=0.5),
dict(type='BatchCutMix', alpha=1.0, num_classes=1000, prob=0.5)
]))
# Dataset settings
sampler = dict(type='RepeatAugSampler')
# Schedule settings
runner = dict(max_epochs=600)
optimizer = dict(
weight_decay=0.01,
paramwise_cfg=dict(bias_decay_mult=0., norm_decay_mult=0.),
)
_base_ = [
'../_base_/models/resnet50.py',
'../_base_/datasets/imagenet_bs256_rsb_a12.py',
'../_base_/schedules/imagenet_bs2048_rsb.py',
'../_base_/default_runtime.py'
]
# Model settings
model = dict(
backbone=dict(
norm_cfg=dict(type='SyncBN', requires_grad=True),
drop_path_rate=0.05,
),
head=dict(loss=dict(use_sigmoid=True)),
train_cfg=dict(augments=[
dict(type='BatchMixup', alpha=0.1, num_classes=1000, prob=0.5),
dict(type='BatchCutMix', alpha=1.0, num_classes=1000, prob=0.5)
]))
# Dataset settings
sampler = dict(type='RepeatAugSampler')
# Schedule settings
runner = dict(max_epochs=300)
optimizer = dict(paramwise_cfg=dict(bias_decay_mult=0., norm_decay_mult=0.))
_base_ = [
'../_base_/models/resnet50.py',
'../_base_/datasets/imagenet_bs256_rsb_a3.py',
'../_base_/schedules/imagenet_bs2048_rsb.py',
'../_base_/default_runtime.py'
]
# Model settings
model = dict(
backbone=dict(norm_cfg=dict(type='SyncBN', requires_grad=True)),
head=dict(loss=dict(use_sigmoid=True)),
train_cfg=dict(augments=[
dict(type='BatchMixup', alpha=0.1, num_classes=1000, prob=0.5),
dict(type='BatchCutMix', alpha=1.0, num_classes=1000, prob=0.5)
]))
# Schedule settings
optimizer = dict(
lr=0.008, paramwise_cfg=dict(bias_decay_mult=0., norm_decay_mult=0.))
_base_ = 'resnet50_8xb32-coslr_in1k.py'
# Precise BN hook will update the bn stats, so this hook should be executed
# before CheckpointHook, which has priority of 'NORMAL'. So set the
# priority of PreciseBNHook to 'ABOVE_NORMAL' here.
custom_hooks = [
dict(
type='PreciseBNHook',
num_samples=8192,
interval=1,
priority='ABOVE_NORMAL')
]
_base_ = ['./resnet50_8xb32_in1k.py']
# fp16 settings
fp16 = dict(loss_scale='dynamic')
_base_ = ['./resnet50_8xb32_in1k.py']
# fp16 settings
fp16 = dict(loss_scale=512.)
_base_ = [
'../_base_/models/resnet50.py', '../_base_/datasets/imagenet_bs32.py',
'../_base_/schedules/imagenet_bs256.py', '../_base_/default_runtime.py'
]
fp16 = dict(loss_scale=512.)
_base_ = [
'../_base_/models/resnet50.py',
'../_base_/datasets/stanford_cars_bs8_448.py',
'../_base_/schedules/stanford_cars_bs8.py', '../_base_/default_runtime.py'
]
# use pre-train weight converted from https://github.com/Alibaba-MIIL/ImageNet21K # noqa
checkpoint = 'https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_3rdparty-mill_in21k_20220331-faac000b.pth' # noqa
model = dict(
type='ImageClassifier',
backbone=dict(
init_cfg=dict(
type='Pretrained', checkpoint=checkpoint, prefix='backbone')),
head=dict(num_classes=196, ))
log_config = dict(interval=50)
checkpoint_config = dict(
interval=1, max_keep_ckpts=3) # save last three checkpoints
_base_ = [
'../_base_/models/resnet50.py', '../_base_/datasets/cub_bs8_448.py',
'../_base_/schedules/cub_bs64.py', '../_base_/default_runtime.py'
]
# use pre-train weight converted from https://github.com/Alibaba-MIIL/ImageNet21K # noqa
checkpoint = 'https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_3rdparty-mill_in21k_20220331-faac000b.pth' # noqa
model = dict(
type='ImageClassifier',
backbone=dict(
init_cfg=dict(
type='Pretrained', checkpoint=checkpoint, prefix='backbone')),
head=dict(num_classes=200, ))
log_config = dict(interval=20) # log every 20 intervals
checkpoint_config = dict(
interval=1, max_keep_ckpts=3) # save last three checkpoints
_base_ = 'resnet50_8xb16_cifar10.py'
_deprecation_ = dict(
expected='resnet50_8xb16_cifar10.py',
reference='https://github.com/open-mmlab/mmclassification/pull/508',
)
_base_ = 'resnet50_8xb16_cifar100.py'
_deprecation_ = dict(
expected='resnet50_8xb16_cifar100.py',
reference='https://github.com/open-mmlab/mmclassification/pull/508',
)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment