Commit 0fd8347d authored by unknown's avatar unknown
Browse files

添加mmclassification-0.24.1代码,删除mmclassification-speed-benchmark

parent cc567e9e
# RepVGG
> [Repvgg: Making vgg-style convnets great again](https://arxiv.org/abs/2101.03697)
<!-- [ALGORITHM] -->
## Abstract
We present a simple but powerful architecture of convolutional neural network, which has a VGG-like inference-time body composed of nothing but a stack of 3x3 convolution and ReLU, while the training-time model has a multi-branch topology. Such decoupling of the training-time and inference-time architecture is realized by a structural re-parameterization technique so that the model is named RepVGG. On ImageNet, RepVGG reaches over 80% top-1 accuracy, which is the first time for a plain model, to the best of our knowledge. On NVIDIA 1080Ti GPU, RepVGG models run 83% faster than ResNet-50 or 101% faster than ResNet-101 with higher accuracy and show favorable accuracy-speed trade-off compared to the state-of-the-art models like EfficientNet and RegNet.
<div align=center>
<img src="https://user-images.githubusercontent.com/26739999/142573223-f7f14d32-ea08-43a1-81ad-5a6a83ee0122.png" width="60%"/>
</div>
## Results and models
### ImageNet-1k
| Model | Epochs | Params(M) | Flops(G) | Top-1 (%) | Top-5 (%) | Config | Download |
| :-----------: | :----: | :-------------------------------: | :-----------------------------: | :-------: | :-------: | :----------------------------------------------: | :-------------------------------------------------: |
| RepVGG-A0\* | 120 | 9.11(train) \| 8.31 (deploy) | 1.52 (train) \| 1.36 (deploy) | 72.41 | 90.50 | [config (train)](https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/repvgg-A0_4xb64-coslr-120e_in1k.py) \| [config (deploy)](https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/deploy/repvgg-A0_deploy_4xb64-coslr-120e_in1k.py) | [model](https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-A0_3rdparty_4xb64-coslr-120e_in1k_20210909-883ab98c.pth) |
| RepVGG-A1\* | 120 | 14.09 (train) \| 12.79 (deploy) | 2.64 (train) \| 2.37 (deploy) | 74.47 | 91.85 | [config (train)](https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/repvgg-A1_4xb64-coslr-120e_in1k.py) \| [config (deploy)](https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/deploy/repvgg-A1_deploy_4xb64-coslr-120e_in1k.py) | [model](https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-A1_3rdparty_4xb64-coslr-120e_in1k_20210909-24003a24.pth) |
| RepVGG-A2\* | 120 | 28.21 (train) \| 25.5 (deploy) | 5.7 (train) \| 5.12 (deploy) | 76.48 | 93.01 | [config (train)](https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/repvgg-A2_4xb64-coslr-120e_in1k.py) \|[config (deploy)](https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/deploy/repvgg-A2_deploy_4xb64-coslr-120e_in1k.py) | [model](https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-A2_3rdparty_4xb64-coslr-120e_in1k_20210909-97d7695a.pth) |
| RepVGG-B0\* | 120 | 15.82 (train) \| 14.34 (deploy) | 3.42 (train) \| 3.06 (deploy) | 75.14 | 92.42 | [config (train)](https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/repvgg-B0_4xb64-coslr-120e_in1k.py) \|[config (deploy)](https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/deploy/repvgg-B0_deploy_4xb64-coslr-120e_in1k.py) | [model](https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B0_3rdparty_4xb64-coslr-120e_in1k_20210909-446375f4.pth) |
| RepVGG-B1\* | 120 | 57.42 (train) \| 51.83 (deploy) | 13.16 (train) \| 11.82 (deploy) | 78.37 | 94.11 | [config (train)](https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/repvgg-B1_4xb64-coslr-120e_in1k.py) \|[config (deploy)](https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/deploy/repvgg-B1_deploy_4xb64-coslr-120e_in1k.py) | [model](https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B1_3rdparty_4xb64-coslr-120e_in1k_20210909-750cdf67.pth) |
| RepVGG-B1g2\* | 120 | 45.78 (train) \| 41.36 (deploy) | 9.82 (train) \| 8.82 (deploy) | 77.79 | 93.88 | [config (train)](https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/repvgg-B1g2_4xb64-coslr-120e_in1k.py) \|[config (deploy)](https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/deploy/repvgg-B1g2_deploy_4xb64-coslr-120e_in1k.py) | [model](https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B1g2_3rdparty_4xb64-coslr-120e_in1k_20210909-344f6422.pth) |
| RepVGG-B1g4\* | 120 | 39.97 (train) \| 36.13 (deploy) | 8.15 (train) \| 7.32 (deploy) | 77.58 | 93.84 | [config (train)](https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/repvgg-B1g4_4xb64-coslr-120e_in1k.py) \|[config (deploy)](https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/deploy/repvgg-B1g4_deploy_4xb64-coslr-120e_in1k.py) | [model](https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B1g4_3rdparty_4xb64-coslr-120e_in1k_20210909-d4c1a642.pth) |
| RepVGG-B2\* | 120 | 89.02 (train) \| 80.32 (deploy) | 20.46 (train) \| 18.39 (deploy) | 78.78 | 94.42 | [config (train)](https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/repvgg-B2_4xb64-coslr-120e_in1k.py) \|[config (deploy)](https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/deploy/repvgg-B2_deploy_4xb64-coslr-120e_in1k.py) | [model](https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B2_3rdparty_4xb64-coslr-120e_in1k_20210909-bd6b937c.pth) |
| RepVGG-B2g4\* | 200 | 61.76 (train) \| 55.78 (deploy) | 12.63 (train) \| 11.34 (deploy) | 79.38 | 94.68 | [config (train)](https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/repvgg-B2g4_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py) \|[config (deploy)](https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/deploy/repvgg-B2g4_deploy_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py) | [model](https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B2g4_3rdparty_4xb64-autoaug-lbs-mixup-coslr-200e_in1k_20210909-7b7955f0.pth) |
| RepVGG-B3\* | 200 | 123.09 (train) \| 110.96 (deploy) | 29.17 (train) \| 26.22 (deploy) | 80.52 | 95.26 | [config (train)](https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/repvgg-B3_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py) \|[config (deploy)](https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/deploy/repvgg-B3_deploy_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py) | [model](https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B3_3rdparty_4xb64-autoaug-lbs-mixup-coslr-200e_in1k_20210909-dda968bf.pth) |
| RepVGG-B3g4\* | 200 | 83.83 (train) \| 75.63 (deploy) | 17.9 (train) \| 16.08 (deploy) | 80.22 | 95.10 | [config (train)](https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/repvgg-B3g4_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py) \|[config (deploy)](https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/deploy/repvgg-B3g4_deploy_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py) | [model](https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B3g4_3rdparty_4xb64-autoaug-lbs-mixup-coslr-200e_in1k_20210909-4e54846a.pth) |
| RepVGG-D2se\* | 200 | 133.33 (train) \| 120.39 (deploy) | 36.56 (train) \| 32.85 (deploy) | 81.81 | 95.94 | [config (train)](https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/repvgg-D2se_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py) \|[config (deploy)](https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/deploy/repvgg-D2se_deploy_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py) | [model](https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-D2se_3rdparty_4xb64-autoaug-lbs-mixup-coslr-200e_in1k_20210909-cf3139b7.pth) |
*Models with * are converted from the [official repo](https://github.com/DingXiaoH/RepVGG). The config files of these models are only for validation. We don't ensure these config files' training accuracy and welcome you to contribute your reproduction results.*
## How to use
The checkpoints provided are all `training-time` models. Use the reparameterize tool to switch them to more efficient `inference-time` architecture, which not only has fewer parameters but also less calculations.
### Use tool
Use provided tool to reparameterize the given model and save the checkpoint:
```bash
python tools/convert_models/reparameterize_model.py ${CFG_PATH} ${SRC_CKPT_PATH} ${TARGET_CKPT_PATH}
```
`${CFG_PATH}` is the config file, `${SRC_CKPT_PATH}` is the source chenpoint file, `${TARGET_CKPT_PATH}` is the target deploy weight file path.
To use reparameterized weights, the config file must switch to the deploy config files.
```bash
python tools/test.py ${Deploy_CFG} ${Deploy_Checkpoint} --metrics accuracy
```
### In the code
Use `backbone.switch_to_deploy()` or `classificer.backbone.switch_to_deploy()` to switch to the deploy mode. For example:
```python
from mmcls.models import build_backbone
backbone_cfg=dict(type='RepVGG',arch='A0'),
backbone = build_backbone(backbone_cfg)
backbone.switch_to_deploy()
```
or
```python
from mmcls.models import build_classifier
cfg = dict(
type='ImageClassifier',
backbone=dict(
type='RepVGG',
arch='A0'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=1280,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
classifier = build_classifier(cfg)
classifier.backbone.switch_to_deploy()
```
## Citation
```
@inproceedings{ding2021repvgg,
title={Repvgg: Making vgg-style convnets great again},
author={Ding, Xiaohan and Zhang, Xiangyu and Ma, Ningning and Han, Jungong and Ding, Guiguang and Sun, Jian},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={13733--13742},
year={2021}
}
```
_base_ = '../repvgg-A0_4xb64-coslr-120e_in1k.py'
model = dict(backbone=dict(deploy=True))
_base_ = '../repvgg-A1_4xb64-coslr-120e_in1k.py'
model = dict(backbone=dict(deploy=True))
_base_ = '../repvgg-A2_4xb64-coslr-120e_in1k.py'
model = dict(backbone=dict(deploy=True))
_base_ = '../repvgg-B0_4xb64-coslr-120e_in1k.py'
model = dict(backbone=dict(deploy=True))
_base_ = '../repvgg-B1_4xb64-coslr-120e_in1k.py'
model = dict(backbone=dict(deploy=True))
_base_ = '../repvgg-B1g2_4xb64-coslr-120e_in1k.py'
model = dict(backbone=dict(deploy=True))
_base_ = '../repvgg-B1g4_4xb64-coslr-120e_in1k.py'
model = dict(backbone=dict(deploy=True))
_base_ = '../repvgg-B2_4xb64-coslr-120e_in1k.py'
model = dict(backbone=dict(deploy=True))
_base_ = '../repvgg-B2g4_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py'
model = dict(backbone=dict(deploy=True))
_base_ = '../repvgg-B3_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py'
model = dict(backbone=dict(deploy=True))
_base_ = '../repvgg-B3g4_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py'
model = dict(backbone=dict(deploy=True))
_base_ = '../repvgg-D2se_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py'
model = dict(backbone=dict(deploy=True))
Collections:
- Name: RepVGG
Metadata:
Training Data: ImageNet-1k
Architecture:
- re-parameterization Convolution
- VGG-style Neural Network
Paper:
URL: https://arxiv.org/abs/2101.03697
Title: 'RepVGG: Making VGG-style ConvNets Great Again'
README: configs/repvgg/README.md
Code:
URL: https://github.com/open-mmlab/mmclassification/blob/v0.16.0/mmcls/models/backbones/repvgg.py#L257
Version: v0.16.0
Models:
- Name: repvgg-A0_3rdparty_4xb64-coslr-120e_in1k
In Collection: RepVGG
Config: configs/repvgg/repvgg-A0_4xb64-coslr-120e_in1k.py
Metadata:
FLOPs: 1520000000
Parameters: 9110000
Results:
- Dataset: ImageNet-1k
Task: Image Classification
Metrics:
Top 1 Accuracy: 72.41
Top 5 Accuracy: 90.50
Weights: https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-A0_3rdparty_4xb64-coslr-120e_in1k_20210909-883ab98c.pth
Converted From:
Weights: https://drive.google.com/drive/folders/1Avome4KvNp0Lqh2QwhXO6L5URQjzCjUq
Code: https://github.com/DingXiaoH/RepVGG/blob/9f272318abfc47a2b702cd0e916fca8d25d683e7/repvgg.py#L196
- Name: repvgg-A1_3rdparty_4xb64-coslr-120e_in1k
In Collection: RepVGG
Config: configs/repvgg/repvgg-A1_4xb64-coslr-120e_in1k.py
Metadata:
FLOPs: 2640000000
Parameters: 14090000
Results:
- Dataset: ImageNet-1k
Task: Image Classification
Metrics:
Top 1 Accuracy: 74.47
Top 5 Accuracy: 91.85
Weights: https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-A1_3rdparty_4xb64-coslr-120e_in1k_20210909-24003a24.pth
Converted From:
Weights: https://drive.google.com/drive/folders/1Avome4KvNp0Lqh2QwhXO6L5URQjzCjUq
Code: https://github.com/DingXiaoH/RepVGG/blob/9f272318abfc47a2b702cd0e916fca8d25d683e7/repvgg.py#L200
- Name: repvgg-A2_3rdparty_4xb64-coslr-120e_in1k
In Collection: RepVGG
Config: configs/repvgg/repvgg-A2_4xb64-coslr-120e_in1k.py
Metadata:
FLOPs: 28210000000
Parameters: 5700000
Results:
- Dataset: ImageNet-1k
Task: Image Classification
Metrics:
Top 1 Accuracy: 76.48
Top 5 Accuracy: 93.01
Weights: https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-A2_3rdparty_4xb64-coslr-120e_in1k_20210909-97d7695a.pth
Converted From:
Weights: https://drive.google.com/drive/folders/1Avome4KvNp0Lqh2QwhXO6L5URQjzCjUq
Code: https://github.com/DingXiaoH/RepVGG/blob/9f272318abfc47a2b702cd0e916fca8d25d683e7/repvgg.py#L204
- Name: repvgg-B0_3rdparty_4xb64-coslr-120e_in1k
In Collection: RepVGG
Config: configs/repvgg/repvgg-B0_4xb64-coslr-120e_in1k.py
Metadata:
FLOPs: 15820000000
Parameters: 3420000
Results:
- Dataset: ImageNet-1k
Task: Image Classification
Metrics:
Top 1 Accuracy: 75.14
Top 5 Accuracy: 92.42
Weights: https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B0_3rdparty_4xb64-coslr-120e_in1k_20210909-446375f4.pth
Converted From:
Weights: https://drive.google.com/drive/folders/1Avome4KvNp0Lqh2QwhXO6L5URQjzCjUq
Code: https://github.com/DingXiaoH/RepVGG/blob/9f272318abfc47a2b702cd0e916fca8d25d683e7/repvgg.py#L208
- Name: repvgg-B1_3rdparty_4xb64-coslr-120e_in1k
In Collection: RepVGG
Config: configs/repvgg/repvgg-B1_4xb64-coslr-120e_in1k.py
Metadata:
FLOPs: 57420000000
Parameters: 13160000
Results:
- Dataset: ImageNet-1k
Task: Image Classification
Metrics:
Top 1 Accuracy: 78.37
Top 5 Accuracy: 94.11
Weights: https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B1_3rdparty_4xb64-coslr-120e_in1k_20210909-750cdf67.pth
Converted From:
Weights: https://drive.google.com/drive/folders/1Avome4KvNp0Lqh2QwhXO6L5URQjzCjUq
Code: https://github.com/DingXiaoH/RepVGG/blob/9f272318abfc47a2b702cd0e916fca8d25d683e7/repvgg.py#L212
- Name: repvgg-B1g2_3rdparty_4xb64-coslr-120e_in1k
In Collection: RepVGG
Config: configs/repvgg/repvgg-B1g2_4xb64-coslr-120e_in1k.py
Metadata:
FLOPs: 45780000000
Parameters: 9820000
Results:
- Dataset: ImageNet-1k
Task: Image Classification
Metrics:
Top 1 Accuracy: 77.79
Top 5 Accuracy: 93.88
Weights: https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B1g2_3rdparty_4xb64-coslr-120e_in1k_20210909-344f6422.pth
Converted From:
Weights: https://drive.google.com/drive/folders/1Avome4KvNp0Lqh2QwhXO6L5URQjzCjUq
Code: https://github.com/DingXiaoH/RepVGG/blob/9f272318abfc47a2b702cd0e916fca8d25d683e7/repvgg.py#L216
- Name: repvgg-B1g4_3rdparty_4xb64-coslr-120e_in1k
In Collection: RepVGG
Config: configs/repvgg/repvgg-B1g4_4xb64-coslr-120e_in1k.py
Metadata:
FLOPs: 39970000000
Parameters: 8150000
Results:
- Dataset: ImageNet-1k
Task: Image Classification
Metrics:
Top 1 Accuracy: 77.58
Top 5 Accuracy: 93.84
Weights: https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B1g4_3rdparty_4xb64-coslr-120e_in1k_20210909-d4c1a642.pth
Converted From:
Weights: https://drive.google.com/drive/folders/1Avome4KvNp0Lqh2QwhXO6L5URQjzCjUq
Code: https://github.com/DingXiaoH/RepVGG/blob/9f272318abfc47a2b702cd0e916fca8d25d683e7/repvgg.py#L220
- Name: repvgg-B2_3rdparty_4xb64-coslr-120e_in1k
In Collection: RepVGG
Config: configs/repvgg/repvgg-B2_4xb64-coslr-120e_in1k.py
Metadata:
FLOPs: 89020000000
Parameters: 20420000
Results:
- Dataset: ImageNet-1k
Task: Image Classification
Metrics:
Top 1 Accuracy: 78.78
Top 5 Accuracy: 94.42
Weights: https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B2_3rdparty_4xb64-coslr-120e_in1k_20210909-bd6b937c.pth
Converted From:
Weights: https://drive.google.com/drive/folders/1Avome4KvNp0Lqh2QwhXO6L5URQjzCjUq
Code: https://github.com/DingXiaoH/RepVGG/blob/9f272318abfc47a2b702cd0e916fca8d25d683e7/repvgg.py#L225
- Name: repvgg-B2g4_3rdparty_4xb64-autoaug-lbs-mixup-coslr-200e_in1k
In Collection: RepVGG
Config: configs/repvgg/repvgg-B2g4_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py
Metadata:
FLOPs: 61760000000
Parameters: 12630000
Results:
- Dataset: ImageNet-1k
Task: Image Classification
Metrics:
Top 1 Accuracy: 79.38
Top 5 Accuracy: 94.68
Weights: https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B2g4_3rdparty_4xb64-autoaug-lbs-mixup-coslr-200e_in1k_20210909-7b7955f0.pth
Converted From:
Weights: https://drive.google.com/drive/folders/1Avome4KvNp0Lqh2QwhXO6L5URQjzCjUq
Code: https://github.com/DingXiaoH/RepVGG/blob/9f272318abfc47a2b702cd0e916fca8d25d683e7/repvgg.py#L229
- Name: repvgg-B3_3rdparty_4xb64-autoaug-lbs-mixup-coslr-200e_in1k
In Collection: RepVGG
Config: configs/repvgg/repvgg-B3_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py
Metadata:
FLOPs: 123090000000
Parameters: 29170000
Results:
- Dataset: ImageNet-1k
Task: Image Classification
Metrics:
Top 1 Accuracy: 80.52
Top 5 Accuracy: 95.26
Weights: https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B3_3rdparty_4xb64-autoaug-lbs-mixup-coslr-200e_in1k_20210909-dda968bf.pth
Converted From:
Weights: https://drive.google.com/drive/folders/1Avome4KvNp0Lqh2QwhXO6L5URQjzCjUq
Code: https://github.com/DingXiaoH/RepVGG/blob/9f272318abfc47a2b702cd0e916fca8d25d683e7/repvgg.py#L238
- Name: repvgg-B3g4_3rdparty_4xb64-autoaug-lbs-mixup-coslr-200e_in1k
In Collection: RepVGG
Config: configs/repvgg/repvgg-B3g4_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py
Metadata:
FLOPs: 83830000000
Parameters: 17900000
Results:
- Dataset: ImageNet-1k
Task: Image Classification
Metrics:
Top 1 Accuracy: 80.22
Top 5 Accuracy: 95.10
Weights: https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B3g4_3rdparty_4xb64-autoaug-lbs-mixup-coslr-200e_in1k_20210909-4e54846a.pth
Converted From:
Weights: https://drive.google.com/drive/folders/1Avome4KvNp0Lqh2QwhXO6L5URQjzCjUq
Code: https://github.com/DingXiaoH/RepVGG/blob/9f272318abfc47a2b702cd0e916fca8d25d683e7/repvgg.py#L238
- Name: repvgg-D2se_3rdparty_4xb64-autoaug-lbs-mixup-coslr-200e_in1k
In Collection: RepVGG
Config: configs/repvgg/repvgg-D2se_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py
Metadata:
FLOPs: 133330000000
Parameters: 36560000
Results:
- Dataset: ImageNet-1k
Task: Image Classification
Metrics:
Top 1 Accuracy: 81.81
Top 5 Accuracy: 95.94
Weights: https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-D2se_3rdparty_4xb64-autoaug-lbs-mixup-coslr-200e_in1k_20210909-cf3139b7.pth
Converted From:
Weights: https://drive.google.com/drive/folders/1Avome4KvNp0Lqh2QwhXO6L5URQjzCjUq
Code: https://github.com/DingXiaoH/RepVGG/blob/9f272318abfc47a2b702cd0e916fca8d25d683e7/repvgg.py#L250
_base_ = [
'../_base_/models/repvgg-A0_in1k.py',
'../_base_/datasets/imagenet_bs64_pil_resize.py',
'../_base_/schedules/imagenet_bs256_coslr.py',
'../_base_/default_runtime.py'
]
runner = dict(max_epochs=120)
_base_ = './repvgg-A0_4xb64-coslr-120e_in1k.py'
model = dict(backbone=dict(arch='A1'))
_base_ = './repvgg-A0_4xb64-coslr-120e_in1k.py'
model = dict(backbone=dict(arch='A2'), head=dict(in_channels=1408))
_base_ = './repvgg-A0_4xb64-coslr-120e_in1k.py'
model = dict(backbone=dict(arch='B0'), head=dict(in_channels=1280))
_base_ = './repvgg-A0_4xb64-coslr-120e_in1k.py'
model = dict(backbone=dict(arch='B1'), head=dict(in_channels=2048))
_base_ = './repvgg-A0_4xb64-coslr-120e_in1k.py'
model = dict(backbone=dict(arch='B1g2'), head=dict(in_channels=2048))
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment