Commit 0fd8347d authored by unknown's avatar unknown
Browse files

添加mmclassification-0.24.1代码,删除mmclassification-speed-benchmark

parent cc567e9e
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='VisionTransformer',
arch='b',
img_size=224,
patch_size=16,
drop_rate=0.1,
init_cfg=[
dict(
type='Kaiming',
layer='Conv2d',
mode='fan_in',
nonlinearity='linear')
]),
neck=None,
head=dict(
type='VisionTransformerClsHead',
num_classes=1000,
in_channels=768,
loss=dict(
type='LabelSmoothLoss', label_smooth_val=0.1,
mode='classy_vision'),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='VisionTransformer',
arch='b',
img_size=224,
patch_size=32,
drop_rate=0.1,
init_cfg=[
dict(
type='Kaiming',
layer='Conv2d',
mode='fan_in',
nonlinearity='linear')
]),
neck=None,
head=dict(
type='VisionTransformerClsHead',
num_classes=1000,
in_channels=768,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='VisionTransformer',
arch='l',
img_size=224,
patch_size=16,
drop_rate=0.1,
init_cfg=[
dict(
type='Kaiming',
layer='Conv2d',
mode='fan_in',
nonlinearity='linear')
]),
neck=None,
head=dict(
type='VisionTransformerClsHead',
num_classes=1000,
in_channels=1024,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='VisionTransformer',
arch='l',
img_size=224,
patch_size=32,
drop_rate=0.1,
init_cfg=[
dict(
type='Kaiming',
layer='Conv2d',
mode='fan_in',
nonlinearity='linear')
]),
neck=None,
head=dict(
type='VisionTransformerClsHead',
num_classes=1000,
in_channels=1024,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='ResNet',
depth=50,
num_stages=4,
out_indices=(3, ),
stem_channels=64,
base_channels=128,
expansion=2,
style='pytorch'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=2048,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# optimizer
optimizer = dict(
type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005, nesterov=True)
optimizer_config = dict(grad_clip=None)
# learning policy
lr_config = dict(
policy='CosineAnnealing',
min_lr=0,
warmup='linear',
warmup_iters=5,
warmup_ratio=0.01,
warmup_by_epoch=True)
runner = dict(type='EpochBasedRunner', max_epochs=100)
paramwise_cfg = dict(
norm_decay_mult=0.0,
bias_decay_mult=0.0,
custom_keys={
'.cls_token': dict(decay_mult=0.0),
})
# for batch in each gpu is 128, 8 gpu
# lr = 5e-4 * 128 * 8 / 512 = 0.001
optimizer = dict(
type='AdamW',
lr=5e-4 * 128 * 8 / 512,
weight_decay=0.05,
eps=1e-8,
betas=(0.9, 0.999),
paramwise_cfg=paramwise_cfg)
optimizer_config = dict(grad_clip=None)
# learning policy
lr_config = dict(
policy='CosineAnnealing',
by_epoch=False,
min_lr_ratio=1e-2,
warmup='linear',
warmup_ratio=1e-3,
warmup_iters=5 * 1252,
warmup_by_epoch=False)
runner = dict(type='EpochBasedRunner', max_epochs=300)
paramwise_cfg = dict(
norm_decay_mult=0.0,
bias_decay_mult=0.0,
custom_keys={
'.absolute_pos_embed': dict(decay_mult=0.0),
'.relative_position_bias_table': dict(decay_mult=0.0)
})
# for batch in each gpu is 128, 8 gpu
# lr = 5e-4 * 128 * 8 / 512 = 0.001
optimizer = dict(
type='AdamW',
lr=5e-4 * 1024 / 512,
weight_decay=0.05,
eps=1e-8,
betas=(0.9, 0.999),
paramwise_cfg=paramwise_cfg)
optimizer_config = dict(grad_clip=dict(max_norm=5.0))
# learning policy
lr_config = dict(
policy='CosineAnnealing',
by_epoch=False,
min_lr_ratio=1e-2,
warmup='linear',
warmup_ratio=1e-3,
warmup_iters=20,
warmup_by_epoch=True)
runner = dict(type='EpochBasedRunner', max_epochs=300)
# optimizer
optimizer = dict(type='SGD', lr=0.8, momentum=0.9, weight_decay=5e-5)
optimizer_config = dict(grad_clip=None)
# learning policy
lr_config = dict(
policy='CosineAnnealing',
min_lr=0,
warmup='linear',
warmup_iters=5,
warmup_ratio=0.1,
warmup_by_epoch=True)
runner = dict(type='EpochBasedRunner', max_epochs=100)
# optimizer
optimizer = dict(type='Lamb', lr=0.005, weight_decay=0.02)
optimizer_config = dict(grad_clip=None)
# learning policy
lr_config = dict(
policy='CosineAnnealing',
min_lr=1.0e-6,
warmup='linear',
# For ImageNet-1k, 626 iters per epoch, warmup 5 epochs.
warmup_iters=5 * 626,
warmup_ratio=0.0001)
runner = dict(type='EpochBasedRunner', max_epochs=100)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment