Commit 0fc002df authored by huchen's avatar huchen
Browse files

init the dlexamples new

parent 0e04b692
Video meta-information Notation
Video File Name
video: codec, fps
audio: codec, bits per sample, sample rate
Test videos are listed below.
--------------------------------
- RATRACE_wave_f_nm_np1_fr_goo_37.avi
- source: hmdb51
- video: DivX MPEG-4
- fps: 30
- audio: N/A
- SchoolRulesHowTheyHelpUs_wave_f_nm_np1_ba_med_0.avi
- source: hmdb51
- video: DivX MPEG-4
- fps: 30
- audio: N/A
- TrumanShow_wave_f_nm_np1_fr_med_26.avi
- source: hmdb51
- video: DivX MPEG-4
- fps: 30
- audio: N/A
- v_SoccerJuggling_g23_c01.avi
- source: ucf101
- video: Xvid MPEG-4
- fps: 29.97
- audio: N/A
- v_SoccerJuggling_g24_c01.avi
- source: ucf101
- video: Xvid MPEG-4
- fps: 29.97
- audio: N/A
- R6llTwEh07w.mp4
- source: kinetics-400
- video: H-264 - MPEG-4 AVC (part 10) (avc1)
- fps: 30
- audio: MPEG AAC audio (mp4a)
- sample rate: 44.1K Hz
- SOX5yA1l24A.mp4
- source: kinetics-400
- video: H-264 - MPEG-4 AVC (part 10) (avc1)
- fps: 29.97
- audio: MPEG AAC audio (mp4a)
- sample rate: 48K Hz
- WUzgd7C1pWA.mp4
- source: kinetics-400
- video: H-264 - MPEG-4 AVC (part 10) (avc1)
- fps: 29.97
- audio: MPEG AAC audio (mp4a)
- sample rate: 48K Hz
import os
import shutil
import tempfile
import contextlib
import unittest
import argparse
import sys
import io
import torch
import errno
import __main__
from numbers import Number
from torch._six import string_classes
from collections import OrderedDict
import numpy as np
from PIL import Image
@contextlib.contextmanager
def get_tmp_dir(src=None, **kwargs):
tmp_dir = tempfile.mkdtemp(**kwargs)
if src is not None:
os.rmdir(tmp_dir)
shutil.copytree(src, tmp_dir)
try:
yield tmp_dir
finally:
shutil.rmtree(tmp_dir)
ACCEPT = os.getenv('EXPECTTEST_ACCEPT')
TEST_WITH_SLOW = os.getenv('PYTORCH_TEST_WITH_SLOW', '0') == '1'
# TEST_WITH_SLOW = True # TODO: Delete this line once there is a PYTORCH_TEST_WITH_SLOW aware CI job
parser = argparse.ArgumentParser(add_help=False)
parser.add_argument('--accept', action='store_true')
args, remaining = parser.parse_known_args()
if not ACCEPT:
ACCEPT = args.accept
for i, arg in enumerate(sys.argv):
if arg == '--accept':
del sys.argv[i]
break
class MapNestedTensorObjectImpl(object):
def __init__(self, tensor_map_fn):
self.tensor_map_fn = tensor_map_fn
def __call__(self, object):
if isinstance(object, torch.Tensor):
return self.tensor_map_fn(object)
elif isinstance(object, dict):
mapped_dict = {}
for key, value in object.items():
mapped_dict[self(key)] = self(value)
return mapped_dict
elif isinstance(object, (list, tuple)):
mapped_iter = []
for iter in object:
mapped_iter.append(self(iter))
return mapped_iter if not isinstance(object, tuple) else tuple(mapped_iter)
else:
return object
def map_nested_tensor_object(object, tensor_map_fn):
impl = MapNestedTensorObjectImpl(tensor_map_fn)
return impl(object)
def is_iterable(obj):
try:
iter(obj)
return True
except TypeError:
return False
# adapted from TestCase in torch/test/common_utils to accept non-string
# inputs and set maximum binary size
class TestCase(unittest.TestCase):
precision = 1e-5
def assertExpected(self, output, subname=None, prec=None, strip_suffix=None):
r"""
Test that a python value matches the recorded contents of a file
derived from the name of this test and subname. The value must be
pickable with `torch.save`. This file
is placed in the 'expect' directory in the same directory
as the test script. You can automatically update the recorded test
output using --accept.
If you call this multiple times in a single function, you must
give a unique subname each time.
strip_suffix allows different tests that expect similar numerics, e.g.
"test_xyz_cuda" and "test_xyz_cpu", to use the same pickled data.
test_xyz_cuda would pass strip_suffix="_cuda", test_xyz_cpu would pass
strip_suffix="_cpu", and they would both use a data file name based on
"test_xyz".
"""
def remove_prefix_suffix(text, prefix, suffix):
if text.startswith(prefix):
text = text[len(prefix):]
if suffix is not None and text.endswith(suffix):
text = text[:len(text) - len(suffix)]
return text
# NB: we take __file__ from the module that defined the test
# class, so we place the expect directory where the test script
# lives, NOT where test/common_utils.py lives.
module_id = self.__class__.__module__
munged_id = remove_prefix_suffix(self.id(), module_id + ".", strip_suffix)
test_file = os.path.realpath(sys.modules[module_id].__file__)
expected_file = os.path.join(os.path.dirname(test_file),
"expect",
munged_id)
subname_output = ""
if subname:
expected_file += "_" + subname
subname_output = " ({})".format(subname)
expected_file += "_expect.pkl"
def accept_output(update_type):
print("Accepting {} for {}{}:\n\n{}".format(update_type, munged_id, subname_output, output))
torch.save(output, expected_file)
MAX_PICKLE_SIZE = 50 * 1000 # 50 KB
binary_size = os.path.getsize(expected_file)
self.assertTrue(binary_size <= MAX_PICKLE_SIZE)
try:
expected = torch.load(expected_file)
except IOError as e:
if e.errno != errno.ENOENT:
raise
elif ACCEPT:
accept_output("output")
return
else:
raise RuntimeError(
("I got this output for {}{}:\n\n{}\n\n"
"No expect file exists; to accept the current output, run:\n"
"python {} {} --accept").format(munged_id, subname_output, output, __main__.__file__, munged_id))
if ACCEPT:
try:
self.assertEqual(output, expected, prec=prec)
except Exception:
accept_output("updated output")
else:
self.assertEqual(output, expected, prec=prec)
def assertEqual(self, x, y, prec=None, message='', allow_inf=False):
"""
This is copied from pytorch/test/common_utils.py's TestCase.assertEqual
"""
if isinstance(prec, str) and message == '':
message = prec
prec = None
if prec is None:
prec = self.precision
if isinstance(x, torch.Tensor) and isinstance(y, Number):
self.assertEqual(x.item(), y, prec=prec, message=message,
allow_inf=allow_inf)
elif isinstance(y, torch.Tensor) and isinstance(x, Number):
self.assertEqual(x, y.item(), prec=prec, message=message,
allow_inf=allow_inf)
elif isinstance(x, torch.Tensor) and isinstance(y, torch.Tensor):
def assertTensorsEqual(a, b):
super(TestCase, self).assertEqual(a.size(), b.size(), message)
if a.numel() > 0:
if (a.device.type == 'cpu' and (a.dtype == torch.float16 or a.dtype == torch.bfloat16)):
# CPU half and bfloat16 tensors don't have the methods we need below
a = a.to(torch.float32)
b = b.to(a)
if (a.dtype == torch.bool) != (b.dtype == torch.bool):
raise TypeError("Was expecting both tensors to be bool type.")
else:
if a.dtype == torch.bool and b.dtype == torch.bool:
# we want to respect precision but as bool doesn't support substraction,
# boolean tensor has to be converted to int
a = a.to(torch.int)
b = b.to(torch.int)
diff = a - b
if a.is_floating_point():
# check that NaNs are in the same locations
nan_mask = torch.isnan(a)
self.assertTrue(torch.equal(nan_mask, torch.isnan(b)), message)
diff[nan_mask] = 0
# inf check if allow_inf=True
if allow_inf:
inf_mask = torch.isinf(a)
inf_sign = inf_mask.sign()
self.assertTrue(torch.equal(inf_sign, torch.isinf(b).sign()), message)
diff[inf_mask] = 0
# TODO: implement abs on CharTensor (int8)
if diff.is_signed() and diff.dtype != torch.int8:
diff = diff.abs()
max_err = diff.max()
tolerance = prec + prec * abs(a.max())
self.assertLessEqual(max_err, tolerance, message)
super(TestCase, self).assertEqual(x.is_sparse, y.is_sparse, message)
super(TestCase, self).assertEqual(x.is_quantized, y.is_quantized, message)
if x.is_sparse:
x = self.safeCoalesce(x)
y = self.safeCoalesce(y)
assertTensorsEqual(x._indices(), y._indices())
assertTensorsEqual(x._values(), y._values())
elif x.is_quantized and y.is_quantized:
self.assertEqual(x.qscheme(), y.qscheme(), prec=prec,
message=message, allow_inf=allow_inf)
if x.qscheme() == torch.per_tensor_affine:
self.assertEqual(x.q_scale(), y.q_scale(), prec=prec,
message=message, allow_inf=allow_inf)
self.assertEqual(x.q_zero_point(), y.q_zero_point(),
prec=prec, message=message,
allow_inf=allow_inf)
elif x.qscheme() == torch.per_channel_affine:
self.assertEqual(x.q_per_channel_scales(), y.q_per_channel_scales(), prec=prec,
message=message, allow_inf=allow_inf)
self.assertEqual(x.q_per_channel_zero_points(), y.q_per_channel_zero_points(),
prec=prec, message=message,
allow_inf=allow_inf)
self.assertEqual(x.q_per_channel_axis(), y.q_per_channel_axis(),
prec=prec, message=message)
self.assertEqual(x.dtype, y.dtype)
self.assertEqual(x.int_repr().to(torch.int32),
y.int_repr().to(torch.int32), prec=prec,
message=message, allow_inf=allow_inf)
else:
assertTensorsEqual(x, y)
elif isinstance(x, string_classes) and isinstance(y, string_classes):
super(TestCase, self).assertEqual(x, y, message)
elif type(x) == set and type(y) == set:
super(TestCase, self).assertEqual(x, y, message)
elif isinstance(x, dict) and isinstance(y, dict):
if isinstance(x, OrderedDict) and isinstance(y, OrderedDict):
self.assertEqual(x.items(), y.items(), prec=prec,
message=message, allow_inf=allow_inf)
else:
self.assertEqual(set(x.keys()), set(y.keys()), prec=prec,
message=message, allow_inf=allow_inf)
key_list = list(x.keys())
self.assertEqual([x[k] for k in key_list],
[y[k] for k in key_list],
prec=prec, message=message,
allow_inf=allow_inf)
elif is_iterable(x) and is_iterable(y):
super(TestCase, self).assertEqual(len(x), len(y), message)
for x_, y_ in zip(x, y):
self.assertEqual(x_, y_, prec=prec, message=message,
allow_inf=allow_inf)
elif isinstance(x, bool) and isinstance(y, bool):
super(TestCase, self).assertEqual(x, y, message)
elif isinstance(x, Number) and isinstance(y, Number):
inf = float("inf")
if abs(x) == inf or abs(y) == inf:
if allow_inf:
super(TestCase, self).assertEqual(x, y, message)
else:
self.fail("Expected finite numeric values - x={}, y={}".format(x, y))
return
super(TestCase, self).assertLessEqual(abs(x - y), prec, message)
else:
super(TestCase, self).assertEqual(x, y, message)
def checkModule(self, nn_module, args, unwrapper=None, skip=False):
"""
Check that a nn.Module's results in TorchScript match eager and that it
can be exported
"""
if not TEST_WITH_SLOW or skip:
# TorchScript is not enabled, skip these tests
return
sm = torch.jit.script(nn_module)
with freeze_rng_state():
eager_out = nn_module(*args)
with freeze_rng_state():
script_out = sm(*args)
if unwrapper:
script_out = unwrapper(script_out)
self.assertEqual(eager_out, script_out)
self.assertExportImportModule(sm, args)
return sm
def getExportImportCopy(self, m):
"""
Save and load a TorchScript model
"""
buffer = io.BytesIO()
torch.jit.save(m, buffer)
buffer.seek(0)
imported = torch.jit.load(buffer)
return imported
def assertExportImportModule(self, m, args):
"""
Check that the results of a model are the same after saving and loading
"""
m_import = self.getExportImportCopy(m)
with freeze_rng_state():
results = m(*args)
with freeze_rng_state():
results_from_imported = m_import(*args)
self.assertEqual(results, results_from_imported)
@contextlib.contextmanager
def freeze_rng_state():
rng_state = torch.get_rng_state()
if torch.cuda.is_available():
cuda_rng_state = torch.cuda.get_rng_state()
yield
if torch.cuda.is_available():
torch.cuda.set_rng_state(cuda_rng_state)
torch.set_rng_state(rng_state)
class TransformsTester(unittest.TestCase):
def _create_data(self, height=3, width=3, channels=3, device="cpu"):
tensor = torch.randint(0, 255, (channels, height, width), dtype=torch.uint8, device=device)
pil_img = Image.fromarray(tensor.permute(1, 2, 0).contiguous().cpu().numpy())
return tensor, pil_img
def _create_data_batch(self, height=3, width=3, channels=3, num_samples=4, device="cpu"):
batch_tensor = torch.randint(
0, 255,
(num_samples, channels, height, width),
dtype=torch.uint8,
device=device
)
return batch_tensor
def compareTensorToPIL(self, tensor, pil_image, msg=None):
np_pil_image = np.array(pil_image)
if np_pil_image.ndim == 2:
np_pil_image = np_pil_image[:, :, None]
pil_tensor = torch.as_tensor(np_pil_image.transpose((2, 0, 1)))
if msg is None:
msg = "tensor:\n{} \ndid not equal PIL tensor:\n{}".format(tensor, pil_tensor)
self.assertTrue(tensor.cpu().equal(pil_tensor), msg)
def approxEqualTensorToPIL(self, tensor, pil_image, tol=1e-5, msg=None, agg_method="mean"):
np_pil_image = np.array(pil_image)
if np_pil_image.ndim == 2:
np_pil_image = np_pil_image[:, :, None]
pil_tensor = torch.as_tensor(np_pil_image.transpose((2, 0, 1))).to(tensor)
err = getattr(torch, agg_method)(tensor - pil_tensor).item()
self.assertTrue(
err < tol,
msg="{}: err={}, tol={}: \n{}\nvs\n{}".format(msg, err, tol, tensor[0, :10, :10], pil_tensor[0, :10, :10])
)
def cycle_over(objs):
for idx, obj in enumerate(objs):
yield obj, objs[:idx] + objs[idx + 1:]
def int_dtypes():
return torch.testing.integral_types()
def float_dtypes():
return torch.testing.floating_types()
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment