test_time.py 8.86 KB
Newer Older
1
# Copyright (c) OpenMMLab. All rights reserved.
unknown's avatar
unknown committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
import os.path as osp
import pickle
import shutil
import tempfile
import time

import mmcv
import numpy as np
import torch
import torch.distributed as dist
from mmcv.image import tensor2imgs
from mmcv.runner import get_dist_info


def single_gpu_test(model,
                    data_loader,
                    show=False,
                    out_dir=None,
                    **show_kwargs):
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
    """Test model with local single gpu.

    This method tests model with a single gpu and supports showing results.

    Args:
        model (:obj:`torch.nn.Module`): Model to be tested.
        data_loader (:obj:`torch.utils.data.DataLoader`): Pytorch data loader.
        show (bool): Whether to show the test results. Defaults to False.
        out_dir (str): The output directory of result plots of all samples.
            Defaults to None, which means not to write output files.
        **show_kwargs: Any other keyword arguments for showing results.

    Returns:
        list: The prediction results.
    """
   
    #dummy = torch.rand(1, 3, 608, 608).cuda()
    #model = torch.jit.script(model).eval()
    #model = torch_blade.optimize(model, allow_tracing=True,model_inputs=(dummy,))
unknown's avatar
unknown committed
40
41
    model.eval()
    results = []
42
43
    start=0
    end=0
unknown's avatar
unknown committed
44
    dataset = data_loader.dataset
45
46
47
48
49
    #prog_bar = mmcv.ProgressBar(len(dataset))
    ips_num=0
    j=0
    start=time.time()

unknown's avatar
unknown committed
50
    for i, data in enumerate(data_loader):
51
52
53
        end_time1=time.time()
        time1=end_time1-start
        with torch.no_grad():   
unknown's avatar
unknown committed
54
            result = model(return_loss=False, **data)
55
56
57
            end_time2=time.time()
            time2=end_time2-end_time1
        
unknown's avatar
unknown committed
58
        batch_size = len(result)
59
60
61
62
63
64

        ips=batch_size/time2
        if i >0:
            ips_num=ips_num+ips
            j=j+1
        print("=============batch_size1:",batch_size)
unknown's avatar
unknown committed
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
        results.extend(result)

        if show or out_dir:
            scores = np.vstack(result)
            pred_score = np.max(scores, axis=1)
            pred_label = np.argmax(scores, axis=1)
            pred_class = [model.CLASSES[lb] for lb in pred_label]

            img_metas = data['img_metas'].data[0]
            imgs = tensor2imgs(data['img'], **img_metas[0]['img_norm_cfg'])
            assert len(imgs) == len(img_metas)

            for i, (img, img_meta) in enumerate(zip(imgs, img_metas)):
                h, w, _ = img_meta['img_shape']
                img_show = img[:h, :w, :]

                ori_h, ori_w = img_meta['ori_shape'][:-1]
                img_show = mmcv.imresize(img_show, (ori_w, ori_h))

                if out_dir:
                    out_file = osp.join(out_dir, img_meta['ori_filename'])
                else:
                    out_file = None

                result_show = {
                    'pred_score': pred_score[i],
                    'pred_label': pred_label[i],
                    'pred_class': pred_class[i]
                }
                model.module.show_result(
                    img_show,
                    result_show,
                    show=show,
                    out_file=out_file,
                    **show_kwargs)

        batch_size = data['img'].size(0)
102
103
104
105
106
107
108
        print("=============batch_size2:",batch_size)
        #prog_bar.update(batch_size)
        print("batch size is %d ,data load cost time: %f s model cost time: %f s,ips: %f" % (batch_size,time1,time2,(batch_size/time2)))
        
        start=time.time()
    ips_avg=ips_num/j
    print("Avg ips is %f" %ips_avg)      
unknown's avatar
unknown committed
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
    return results


def multi_gpu_test(model, data_loader, tmpdir=None, gpu_collect=False):
    """Test model with multiple gpus.

    This method tests model with multiple gpus and collects the results
    under two different modes: gpu and cpu modes. By setting 'gpu_collect=True'
    it encodes results to gpu tensors and use gpu communication for results
    collection. On cpu mode it saves the results on different gpus to 'tmpdir'
    and collects them by the rank 0 worker.

    Args:
        model (nn.Module): Model to be tested.
        data_loader (nn.Dataloader): Pytorch data loader.
        tmpdir (str): Path of directory to save the temporary results from
            different gpus under cpu mode.
        gpu_collect (bool): Option to use either gpu or cpu to collect results.

    Returns:
        list: The prediction results.
    """
    model.eval()
    results = []
    dataset = data_loader.dataset
    rank, world_size = get_dist_info()
135
    
unknown's avatar
unknown committed
136
137
138
139
140
141
142
    if rank == 0:
        # Check if tmpdir is valid for cpu_collect
        if (not gpu_collect) and (tmpdir is not None and osp.exists(tmpdir)):
            raise OSError((f'The tmpdir {tmpdir} already exists.',
                           ' Since tmpdir will be deleted after testing,',
                           ' please make sure you specify an empty one.'))
        prog_bar = mmcv.ProgressBar(len(dataset))
143
144
145
146
147
148
149
    

    time.sleep(2)
    #dist.barrier()
    ips_num=0
    j_num=0
    satrt=time.time()
unknown's avatar
unknown committed
150
    for i, data in enumerate(data_loader):
151
152
        end_time1=time.time()
        time1=end_time1-satrt
unknown's avatar
unknown committed
153
154
        with torch.no_grad():
            result = model(return_loss=False, **data)
155
156
            end_time2=time.time()
            time2=end_time2-end_time1
unknown's avatar
unknown committed
157
158
159
160
161
162
163
164
165
        if isinstance(result, list):
            results.extend(result)
        else:
            results.append(result)

        if rank == 0:
            batch_size = data['img'].size(0)
            for _ in range(batch_size * world_size):
                prog_bar.update()
166
167
168
169
170
171
            batch_size_global=batch_size * world_size
            ips=batch_size_global/time2
            #print("samples_per_gpu is %d ,data load cost time %f s,ips:%f" % (batch_size,time1,ips))
            if i>0:
                ips_num=ips_num+ips
                j_num=j_num+1
unknown's avatar
unknown committed
172
173
174
175
176
    # collect results from all ranks
    if gpu_collect:
        results = collect_results_gpu(results, len(dataset))
    else:
        results = collect_results_cpu(results, len(dataset), tmpdir)
177
178
179
    if rank == 0:
        ips_avg=ips_num/j_num
        print("Avg IPS is %f " % ips_avg)
unknown's avatar
unknown committed
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
    return results


def collect_results_cpu(result_part, size, tmpdir=None):
    rank, world_size = get_dist_info()
    # create a tmp dir if it is not specified
    if tmpdir is None:
        MAX_LEN = 512
        # 32 is whitespace
        dir_tensor = torch.full((MAX_LEN, ),
                                32,
                                dtype=torch.uint8,
                                device='cuda')
        if rank == 0:
            mmcv.mkdir_or_exist('.dist_test')
            tmpdir = tempfile.mkdtemp(dir='.dist_test')
            tmpdir = torch.tensor(
                bytearray(tmpdir.encode()), dtype=torch.uint8, device='cuda')
            dir_tensor[:len(tmpdir)] = tmpdir
        dist.broadcast(dir_tensor, 0)
        tmpdir = dir_tensor.cpu().numpy().tobytes().decode().rstrip()
    else:
        mmcv.mkdir_or_exist(tmpdir)
    # dump the part result to the dir
    mmcv.dump(result_part, osp.join(tmpdir, f'part_{rank}.pkl'))
    dist.barrier()
    # collect all parts
    if rank != 0:
        return None
    else:
        # load results of all parts from tmp dir
        part_list = []
        for i in range(world_size):
            part_file = osp.join(tmpdir, f'part_{i}.pkl')
            part_result = mmcv.load(part_file)
            part_list.append(part_result)
        # sort the results
        ordered_results = []
        for res in zip(*part_list):
            ordered_results.extend(list(res))
        # the dataloader may pad some samples
        ordered_results = ordered_results[:size]
        # remove tmp dir
        shutil.rmtree(tmpdir)
        return ordered_results


def collect_results_gpu(result_part, size):
    rank, world_size = get_dist_info()
    # dump result part to tensor with pickle
    part_tensor = torch.tensor(
        bytearray(pickle.dumps(result_part)), dtype=torch.uint8, device='cuda')
    # gather all result part tensor shape
    shape_tensor = torch.tensor(part_tensor.shape, device='cuda')
    shape_list = [shape_tensor.clone() for _ in range(world_size)]
    dist.all_gather(shape_list, shape_tensor)
    # padding result part tensor to max length
    shape_max = torch.tensor(shape_list).max()
    part_send = torch.zeros(shape_max, dtype=torch.uint8, device='cuda')
    part_send[:shape_tensor[0]] = part_tensor
    part_recv_list = [
        part_tensor.new_zeros(shape_max) for _ in range(world_size)
    ]
    # gather all result part
    dist.all_gather(part_recv_list, part_send)

    if rank == 0:
        part_list = []
        for recv, shape in zip(part_recv_list, shape_list):
            part_result = pickle.loads(recv[:shape[0]].cpu().numpy().tobytes())
            part_list.append(part_result)
        # sort the results
        ordered_results = []
        for res in zip(*part_list):
            ordered_results.extend(list(res))
        # the dataloader may pad some samples
        ordered_results = ordered_results[:size]
        return ordered_results