Commit 43e8ec57 authored by longpanda's avatar longpanda
Browse files

Experimental Linux GUI based on web browser

parent 7279ba9b
/*
exfat.h (29.08.09)
Definitions of structures and constants used in exFAT file system
implementation.
Free exFAT implementation.
Copyright (C) 2010-2018 Andrew Nayenko
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#ifndef EXFAT_H_INCLUDED
#define EXFAT_H_INCLUDED
#ifndef ANDROID
/* Android.bp is used instead of autotools when targeting Android */
#include "config.h"
#endif
#include "compiler.h"
#include "exfatfs.h"
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <stdbool.h>
#include <sys/stat.h>
#include <sys/types.h>
#define EXFAT_NAME_MAX 255
/* UTF-16 encodes code points up to U+FFFF as single 16-bit code units.
UTF-8 uses up to 3 bytes (i.e. 8-bit code units) to encode code points
up to U+FFFF. One additional character is for null terminator. */
#define EXFAT_UTF8_NAME_BUFFER_MAX (EXFAT_NAME_MAX * 3 + 1)
#define EXFAT_UTF8_ENAME_BUFFER_MAX (EXFAT_ENAME_MAX * 3 + 1)
#define SECTOR_SIZE(sb) (1 << (sb).sector_bits)
#define CLUSTER_SIZE(sb) (SECTOR_SIZE(sb) << (sb).spc_bits)
#define CLUSTER_INVALID(sb, c) ((c) < EXFAT_FIRST_DATA_CLUSTER || \
(c) - EXFAT_FIRST_DATA_CLUSTER >= le32_to_cpu((sb).cluster_count))
#define MIN(a, b) ((a) < (b) ? (a) : (b))
#define MAX(a, b) ((a) > (b) ? (a) : (b))
#define DIV_ROUND_UP(x, d) (((x) + (d) - 1) / (d))
#define ROUND_UP(x, d) (DIV_ROUND_UP(x, d) * (d))
#define BMAP_SIZE(count) (ROUND_UP(count, sizeof(bitmap_t) * 8) / 8)
#define BMAP_BLOCK(index) ((index) / sizeof(bitmap_t) / 8)
#define BMAP_MASK(index) ((bitmap_t) 1 << ((index) % (sizeof(bitmap_t) * 8)))
#define BMAP_GET(bitmap, index) \
((bitmap)[BMAP_BLOCK(index)] & BMAP_MASK(index))
#define BMAP_SET(bitmap, index) \
((bitmap)[BMAP_BLOCK(index)] |= BMAP_MASK(index))
#define BMAP_CLR(bitmap, index) \
((bitmap)[BMAP_BLOCK(index)] &= ~BMAP_MASK(index))
#define EXFAT_REPAIR(hook, ef, ...) \
(exfat_ask_to_fix(ef) && exfat_fix_ ## hook(ef, __VA_ARGS__))
/* The size of off_t type must be 64 bits. File systems larger than 2 GB will
be corrupted with 32-bit off_t. */
STATIC_ASSERT(sizeof(off_t) == 8);
struct exfat_node
{
struct exfat_node* parent;
struct exfat_node* child;
struct exfat_node* next;
struct exfat_node* prev;
int references;
uint32_t fptr_index;
cluster_t fptr_cluster;
off_t entry_offset;
cluster_t start_cluster;
uint16_t attrib;
uint8_t continuations;
bool is_contiguous : 1;
bool is_cached : 1;
bool is_dirty : 1;
bool is_unlinked : 1;
uint64_t size;
time_t mtime, atime;
le16_t name[EXFAT_NAME_MAX + 1];
};
enum exfat_mode
{
EXFAT_MODE_RO,
EXFAT_MODE_RW,
EXFAT_MODE_ANY,
};
struct exfat_dev;
struct exfat
{
struct exfat_dev* dev;
struct exfat_super_block* sb;
uint16_t* upcase;
struct exfat_node* root;
struct
{
cluster_t start_cluster;
uint32_t size; /* in bits */
bitmap_t* chunk;
uint32_t chunk_size; /* in bits */
bool dirty;
}
cmap;
char label[EXFAT_UTF8_ENAME_BUFFER_MAX];
void* zero_cluster;
int dmask, fmask;
uid_t uid;
gid_t gid;
int ro;
bool noatime;
enum { EXFAT_REPAIR_NO, EXFAT_REPAIR_ASK, EXFAT_REPAIR_YES } repair;
};
/* in-core nodes iterator */
struct exfat_iterator
{
struct exfat_node* parent;
struct exfat_node* current;
};
struct exfat_human_bytes
{
uint64_t value;
const char* unit;
};
extern int exfat_errors;
extern int exfat_errors_fixed;
#define VLOG_LOG 1
#define VLOG_DEBUG 2
void ventoy_syslog_newline(int level, const char *Fmt, ...);
#define exfat_bug(fmt, args...) ventoy_syslog_newline(VLOG_LOG, fmt, ##args)
#define exfat_error(fmt, args...) ventoy_syslog_newline(VLOG_LOG, fmt, ##args)
#define exfat_error(fmt, args...) ventoy_syslog_newline(VLOG_LOG, fmt, ##args)
#define exfat_warn(fmt, args...) ventoy_syslog_newline(VLOG_LOG, fmt, ##args)
#define exfat_debug(fmt, args...) ventoy_syslog_newline(VLOG_DEBUG, fmt, ##args)
#if 0
void exfat_bug(const char* format, ...) PRINTF NORETURN;
void exfat_error(const char* format, ...) PRINTF;
void exfat_warn(const char* format, ...) PRINTF;
void exfat_debug(const char* format, ...) PRINTF;
#endif /* #if 0 */
struct exfat_dev* exfat_open(const char* spec, enum exfat_mode mode);
int exfat_close(struct exfat_dev* dev);
int exfat_fsync(struct exfat_dev* dev);
enum exfat_mode exfat_get_mode(const struct exfat_dev* dev);
off_t exfat_get_size(const struct exfat_dev* dev);
off_t exfat_seek(struct exfat_dev* dev, off_t offset, int whence);
ssize_t exfat_read(struct exfat_dev* dev, void* buffer, size_t size);
ssize_t exfat_write(struct exfat_dev* dev, const void* buffer, size_t size);
ssize_t exfat_pread(struct exfat_dev* dev, void* buffer, size_t size,
off_t offset);
ssize_t exfat_pwrite(struct exfat_dev* dev, const void* buffer, size_t size,
off_t offset);
ssize_t exfat_generic_pread(const struct exfat* ef, struct exfat_node* node,
void* buffer, size_t size, off_t offset);
ssize_t exfat_generic_pwrite(struct exfat* ef, struct exfat_node* node,
const void* buffer, size_t size, off_t offset);
int exfat_opendir(struct exfat* ef, struct exfat_node* dir,
struct exfat_iterator* it);
void exfat_closedir(struct exfat* ef, struct exfat_iterator* it);
struct exfat_node* exfat_readdir(struct exfat_iterator* it);
int exfat_lookup(struct exfat* ef, struct exfat_node** node,
const char* path);
int exfat_split(struct exfat* ef, struct exfat_node** parent,
struct exfat_node** node, le16_t* name, const char* path);
off_t exfat_c2o(const struct exfat* ef, cluster_t cluster);
cluster_t exfat_next_cluster(const struct exfat* ef,
const struct exfat_node* node, cluster_t cluster);
cluster_t exfat_advance_cluster(const struct exfat* ef,
struct exfat_node* node, uint32_t count);
int exfat_flush_nodes(struct exfat* ef);
int exfat_flush(struct exfat* ef);
int exfat_truncate(struct exfat* ef, struct exfat_node* node, uint64_t size,
bool erase);
uint32_t exfat_count_free_clusters(const struct exfat* ef);
int exfat_find_used_sectors(const struct exfat* ef, off_t* a, off_t* b);
void exfat_stat(const struct exfat* ef, const struct exfat_node* node,
struct stat* stbuf);
void exfat_get_name(const struct exfat_node* node,
char buffer[EXFAT_UTF8_NAME_BUFFER_MAX]);
uint16_t exfat_start_checksum(const struct exfat_entry_meta1* entry);
uint16_t exfat_add_checksum(const void* entry, uint16_t sum);
le16_t exfat_calc_checksum(const struct exfat_entry* entries, int n);
uint32_t exfat_vbr_start_checksum(const void* sector, size_t size);
uint32_t exfat_vbr_add_checksum(const void* sector, size_t size, uint32_t sum);
le16_t exfat_calc_name_hash(const struct exfat* ef, const le16_t* name,
size_t length);
void exfat_humanize_bytes(uint64_t value, struct exfat_human_bytes* hb);
void exfat_print_info(const struct exfat_super_block* sb,
uint32_t free_clusters);
int utf16_to_utf8(char* output, const le16_t* input, size_t outsize,
size_t insize);
int utf8_to_utf16(le16_t* output, const char* input, size_t outsize,
size_t insize);
size_t utf16_length(const le16_t* str);
struct exfat_node* exfat_get_node(struct exfat_node* node);
void exfat_put_node(struct exfat* ef, struct exfat_node* node);
int exfat_cleanup_node(struct exfat* ef, struct exfat_node* node);
int exfat_cache_directory(struct exfat* ef, struct exfat_node* dir);
void exfat_reset_cache(struct exfat* ef);
int exfat_flush_node(struct exfat* ef, struct exfat_node* node);
int exfat_unlink(struct exfat* ef, struct exfat_node* node);
int exfat_rmdir(struct exfat* ef, struct exfat_node* node);
int exfat_mknod(struct exfat* ef, const char* path);
int exfat_mkdir(struct exfat* ef, const char* path);
int exfat_rename(struct exfat* ef, const char* old_path, const char* new_path);
void exfat_utimes(struct exfat_node* node, const struct timespec tv[2]);
void exfat_update_atime(struct exfat_node* node);
void exfat_update_mtime(struct exfat_node* node);
const char* exfat_get_label(struct exfat* ef);
int exfat_set_label(struct exfat* ef, const char* label);
int exfat_mount(struct exfat* ef, const char* spec, const char* options);
void exfat_unmount(struct exfat* ef);
time_t exfat_exfat2unix(le16_t date, le16_t time, uint8_t centisec);
void exfat_unix2exfat(time_t unix_time, le16_t* date, le16_t* time,
uint8_t* centisec);
void exfat_tzset(void);
bool exfat_ask_to_fix(const struct exfat* ef);
bool exfat_fix_invalid_vbr_checksum(const struct exfat* ef, void* sector,
uint32_t vbr_checksum);
bool exfat_fix_invalid_node_checksum(const struct exfat* ef,
struct exfat_node* node);
bool exfat_fix_unknown_entry(struct exfat* ef, struct exfat_node* dir,
const struct exfat_entry* entry, off_t offset);
#endif /* ifndef EXFAT_H_INCLUDED */
/*
exfatfs.h (29.08.09)
Definitions of structures and constants used in exFAT file system.
Free exFAT implementation.
Copyright (C) 2010-2018 Andrew Nayenko
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#ifndef EXFATFS_H_INCLUDED
#define EXFATFS_H_INCLUDED
#include "byteorder.h"
#include "compiler.h"
typedef uint32_t cluster_t; /* cluster number */
#define EXFAT_FIRST_DATA_CLUSTER 2
#define EXFAT_LAST_DATA_CLUSTER 0xfffffff6
#define EXFAT_CLUSTER_FREE 0 /* free cluster */
#define EXFAT_CLUSTER_BAD 0xfffffff7 /* cluster contains bad sector */
#define EXFAT_CLUSTER_END 0xffffffff /* final cluster of file or directory */
#define EXFAT_STATE_MOUNTED 2
struct exfat_super_block
{
uint8_t jump[3]; /* 0x00 jmp and nop instructions */
uint8_t oem_name[8]; /* 0x03 "EXFAT " */
uint8_t __unused1[53]; /* 0x0B always 0 */
le64_t sector_start; /* 0x40 partition first sector */
le64_t sector_count; /* 0x48 partition sectors count */
le32_t fat_sector_start; /* 0x50 FAT first sector */
le32_t fat_sector_count; /* 0x54 FAT sectors count */
le32_t cluster_sector_start; /* 0x58 first cluster sector */
le32_t cluster_count; /* 0x5C total clusters count */
le32_t rootdir_cluster; /* 0x60 first cluster of the root dir */
le32_t volume_serial; /* 0x64 volume serial number */
struct /* 0x68 FS version */
{
uint8_t minor;
uint8_t major;
}
version;
le16_t volume_state; /* 0x6A volume state flags */
uint8_t sector_bits; /* 0x6C sector size as (1 << n) */
uint8_t spc_bits; /* 0x6D sectors per cluster as (1 << n) */
uint8_t fat_count; /* 0x6E always 1 */
uint8_t drive_no; /* 0x6F always 0x80 */
uint8_t allocated_percent; /* 0x70 percentage of allocated space */
uint8_t __unused2[397]; /* 0x71 always 0 */
le16_t boot_signature; /* the value of 0xAA55 */
}
PACKED;
STATIC_ASSERT(sizeof(struct exfat_super_block) == 512);
#define EXFAT_ENTRY_VALID 0x80
#define EXFAT_ENTRY_CONTINUED 0x40
#define EXFAT_ENTRY_OPTIONAL 0x20
#define EXFAT_ENTRY_BITMAP (0x01 | EXFAT_ENTRY_VALID)
#define EXFAT_ENTRY_UPCASE (0x02 | EXFAT_ENTRY_VALID)
#define EXFAT_ENTRY_LABEL (0x03 | EXFAT_ENTRY_VALID)
#define EXFAT_ENTRY_FILE (0x05 | EXFAT_ENTRY_VALID)
#define EXFAT_ENTRY_FILE_INFO (0x00 | EXFAT_ENTRY_VALID | EXFAT_ENTRY_CONTINUED)
#define EXFAT_ENTRY_FILE_NAME (0x01 | EXFAT_ENTRY_VALID | EXFAT_ENTRY_CONTINUED)
#define EXFAT_ENTRY_FILE_TAIL (0x00 | EXFAT_ENTRY_VALID \
| EXFAT_ENTRY_CONTINUED \
| EXFAT_ENTRY_OPTIONAL)
struct exfat_entry /* common container for all entries */
{
uint8_t type; /* any of EXFAT_ENTRY_xxx */
uint8_t data[31];
}
PACKED;
STATIC_ASSERT(sizeof(struct exfat_entry) == 32);
#define EXFAT_ENAME_MAX 15
struct exfat_entry_bitmap /* allocated clusters bitmap */
{
uint8_t type; /* EXFAT_ENTRY_BITMAP */
uint8_t __unknown1[19];
le32_t start_cluster;
le64_t size; /* in bytes */
}
PACKED;
STATIC_ASSERT(sizeof(struct exfat_entry_bitmap) == 32);
#define EXFAT_UPCASE_CHARS 0x10000
struct exfat_entry_upcase /* upper case translation table */
{
uint8_t type; /* EXFAT_ENTRY_UPCASE */
uint8_t __unknown1[3];
le32_t checksum;
uint8_t __unknown2[12];
le32_t start_cluster;
le64_t size; /* in bytes */
}
PACKED;
STATIC_ASSERT(sizeof(struct exfat_entry_upcase) == 32);
struct exfat_entry_label /* volume label */
{
uint8_t type; /* EXFAT_ENTRY_LABEL */
uint8_t length; /* number of characters */
le16_t name[EXFAT_ENAME_MAX]; /* in UTF-16LE */
}
PACKED;
STATIC_ASSERT(sizeof(struct exfat_entry_label) == 32);
#define EXFAT_ATTRIB_RO 0x01
#define EXFAT_ATTRIB_HIDDEN 0x02
#define EXFAT_ATTRIB_SYSTEM 0x04
#define EXFAT_ATTRIB_VOLUME 0x08
#define EXFAT_ATTRIB_DIR 0x10
#define EXFAT_ATTRIB_ARCH 0x20
struct exfat_entry_meta1 /* file or directory info (part 1) */
{
uint8_t type; /* EXFAT_ENTRY_FILE */
uint8_t continuations;
le16_t checksum;
le16_t attrib; /* combination of EXFAT_ATTRIB_xxx */
le16_t __unknown1;
le16_t crtime, crdate; /* creation date and time */
le16_t mtime, mdate; /* latest modification date and time */
le16_t atime, adate; /* latest access date and time */
uint8_t crtime_cs; /* creation time in cs (centiseconds) */
uint8_t mtime_cs; /* latest modification time in cs */
uint8_t __unknown2[10];
}
PACKED;
STATIC_ASSERT(sizeof(struct exfat_entry_meta1) == 32);
#define EXFAT_FLAG_ALWAYS1 (1u << 0)
#define EXFAT_FLAG_CONTIGUOUS (1u << 1)
struct exfat_entry_meta2 /* file or directory info (part 2) */
{
uint8_t type; /* EXFAT_ENTRY_FILE_INFO */
uint8_t flags; /* combination of EXFAT_FLAG_xxx */
uint8_t __unknown1;
uint8_t name_length;
le16_t name_hash;
le16_t __unknown2;
le64_t valid_size; /* in bytes, less or equal to size */
uint8_t __unknown3[4];
le32_t start_cluster;
le64_t size; /* in bytes */
}
PACKED;
STATIC_ASSERT(sizeof(struct exfat_entry_meta2) == 32);
struct exfat_entry_name /* file or directory name */
{
uint8_t type; /* EXFAT_ENTRY_FILE_NAME */
uint8_t __unknown;
le16_t name[EXFAT_ENAME_MAX]; /* in UTF-16LE */
}
PACKED;
STATIC_ASSERT(sizeof(struct exfat_entry_name) == 32);
#endif /* ifndef EXFATFS_H_INCLUDED */
/*
io.c (02.09.09)
exFAT file system implementation library.
Free exFAT implementation.
Copyright (C) 2010-2018 Andrew Nayenko
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "exfat.h"
#include <inttypes.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <string.h>
#include <errno.h>
#if defined(__APPLE__)
#include <sys/disk.h>
#elif defined(__OpenBSD__)
#include <sys/param.h>
#include <sys/disklabel.h>
#include <sys/dkio.h>
#include <sys/ioctl.h>
#elif __linux__
#include <sys/mount.h>
#endif
#ifdef USE_UBLIO
#include <sys/uio.h>
#include <ublio.h>
#endif
struct exfat_dev
{
int fd;
enum exfat_mode mode;
off_t size; /* in bytes */
#ifdef USE_UBLIO
off_t pos;
ublio_filehandle_t ufh;
#endif
};
int g_vtoy_exfat_disk_fd = -1;
uint64_t g_vtoy_exfat_part_size = 0;
static bool is_open(int fd)
{
return fcntl(fd, F_GETFD) != -1;
}
static int open_ro(const char* spec)
{
return open(spec, O_RDONLY);
}
static int open_rw(const char* spec)
{
int fd = open(spec, O_RDWR);
#ifdef __linux__
int ro = 0;
/*
This ioctl is needed because after "blockdev --setro" kernel still
allows to open the device in read-write mode but fails writes.
*/
if (fd != -1 && ioctl(fd, BLKROGET, &ro) == 0 && ro)
{
close(fd);
errno = EROFS;
return -1;
}
#endif
return fd;
}
struct exfat_dev* exfat_open(const char* spec, enum exfat_mode mode)
{
struct exfat_dev* dev;
struct stat stbuf;
#ifdef USE_UBLIO
struct ublio_param up;
#endif
/* The system allocates file descriptors sequentially. If we have been
started with stdin (0), stdout (1) or stderr (2) closed, the system
will give us descriptor 0, 1 or 2 later when we open block device,
FUSE communication pipe, etc. As a result, functions using stdin,
stdout or stderr will actually work with a different thing and can
corrupt it. Protect descriptors 0, 1 and 2 from such misuse. */
while (!is_open(STDIN_FILENO)
|| !is_open(STDOUT_FILENO)
|| !is_open(STDERR_FILENO))
{
/* we don't need those descriptors, let them leak */
if (open("/dev/null", O_RDWR) == -1)
{
exfat_error("failed to open /dev/null");
return NULL;
}
}
dev = malloc(sizeof(struct exfat_dev));
if (dev == NULL)
{
exfat_error("failed to allocate memory for device structure");
return NULL;
}
switch (mode)
{
case EXFAT_MODE_RO:
dev->fd = g_vtoy_exfat_disk_fd < 0 ? open_ro(spec) : g_vtoy_exfat_disk_fd;
if (dev->fd == -1)
{
free(dev);
exfat_error("failed to open '%s' in read-only mode: %s", spec,
strerror(errno));
return NULL;
}
dev->mode = EXFAT_MODE_RO;
break;
case EXFAT_MODE_RW:
dev->fd = g_vtoy_exfat_disk_fd < 0 ? open_rw(spec) : g_vtoy_exfat_disk_fd;
if (dev->fd == -1)
{
free(dev);
exfat_error("failed to open '%s' in read-write mode: %s", spec,
strerror(errno));
return NULL;
}
dev->mode = EXFAT_MODE_RW;
break;
case EXFAT_MODE_ANY:
dev->fd = g_vtoy_exfat_disk_fd < 0 ? open_rw(spec) : g_vtoy_exfat_disk_fd;
if (dev->fd != -1)
{
dev->mode = EXFAT_MODE_RW;
break;
}
dev->fd = g_vtoy_exfat_disk_fd < 0 ? open_ro(spec) : g_vtoy_exfat_disk_fd;
if (dev->fd != -1)
{
dev->mode = EXFAT_MODE_RO;
exfat_warn("'%s' is write-protected, mounting read-only", spec);
break;
}
free(dev);
exfat_error("failed to open '%s': %s", spec, strerror(errno));
return NULL;
}
if (fstat(dev->fd, &stbuf) != 0)
{
close(dev->fd);
free(dev);
exfat_error("failed to fstat '%s'", spec);
return NULL;
}
if (!S_ISBLK(stbuf.st_mode) &&
!S_ISCHR(stbuf.st_mode) &&
!S_ISREG(stbuf.st_mode))
{
close(dev->fd);
free(dev);
exfat_error("'%s' is neither a device, nor a regular file", spec);
return NULL;
}
#if defined(__APPLE__)
if (!S_ISREG(stbuf.st_mode))
{
uint32_t block_size = 0;
uint64_t blocks = 0;
if (ioctl(dev->fd, DKIOCGETBLOCKSIZE, &block_size) != 0)
{
close(dev->fd);
free(dev);
exfat_error("failed to get block size");
return NULL;
}
if (ioctl(dev->fd, DKIOCGETBLOCKCOUNT, &blocks) != 0)
{
close(dev->fd);
free(dev);
exfat_error("failed to get blocks count");
return NULL;
}
dev->size = blocks * block_size;
}
else
#elif defined(__OpenBSD__)
if (!S_ISREG(stbuf.st_mode))
{
struct disklabel lab;
struct partition* pp;
char* partition;
if (ioctl(dev->fd, DIOCGDINFO, &lab) == -1)
{
close(dev->fd);
free(dev);
exfat_error("failed to get disklabel");
return NULL;
}
/* Don't need to check that partition letter is valid as we won't get
this far otherwise. */
partition = strchr(spec, '\0') - 1;
pp = &(lab.d_partitions[*partition - 'a']);
dev->size = DL_GETPSIZE(pp) * lab.d_secsize;
if (pp->p_fstype != FS_NTFS)
exfat_warn("partition type is not 0x07 (NTFS/exFAT); "
"you can fix this with fdisk(8)");
}
else
#endif
{
/* works for Linux, FreeBSD, Solaris */
dev->size = exfat_seek(dev, 0, SEEK_END);
if (dev->size <= 0)
{
close(dev->fd);
free(dev);
exfat_error("failed to get size of '%s'", spec);
return NULL;
}
if (exfat_seek(dev, 0, SEEK_SET) == -1)
{
close(dev->fd);
free(dev);
exfat_error("failed to seek to the beginning of '%s'", spec);
return NULL;
}
}
#ifdef USE_UBLIO
memset(&up, 0, sizeof(struct ublio_param));
up.up_blocksize = 256 * 1024;
up.up_items = 64;
up.up_grace = 32;
up.up_priv = &dev->fd;
dev->pos = 0;
dev->ufh = ublio_open(&up);
if (dev->ufh == NULL)
{
close(dev->fd);
free(dev);
exfat_error("failed to initialize ublio");
return NULL;
}
#endif
return dev;
}
int exfat_close(struct exfat_dev* dev)
{
int rc = 0;
#ifdef USE_UBLIO
if (ublio_close(dev->ufh) != 0)
{
exfat_error("failed to close ublio");
rc = -EIO;
}
#endif
if (dev->fd != g_vtoy_exfat_disk_fd)
{
if (close(dev->fd) != 0)
{
exfat_error("failed to close device: %s", strerror(errno));
rc = -EIO;
}
}
free(dev);
return rc;
}
int exfat_fsync(struct exfat_dev* dev)
{
int rc = 0;
#ifdef USE_UBLIO
if (ublio_fsync(dev->ufh) != 0)
{
exfat_error("ublio fsync failed");
rc = -EIO;
}
#endif
if (fsync(dev->fd) != 0)
{
exfat_error("fsync failed: %s", strerror(errno));
rc = -EIO;
}
return rc;
}
enum exfat_mode exfat_get_mode(const struct exfat_dev* dev)
{
return dev->mode;
}
off_t exfat_get_size(const struct exfat_dev* dev)
{
return dev->size;
}
off_t exfat_seek(struct exfat_dev* dev, off_t offset, int whence)
{
#ifdef USE_UBLIO
/* XXX SEEK_CUR will be handled incorrectly */
return dev->pos = lseek(dev->fd, offset, whence);
#else
if (SEEK_SET == whence)
{
if (offset > g_vtoy_exfat_part_size)
{
return -1;
}
lseek(dev->fd, 512 * 2048 + offset, SEEK_SET);
return offset;
}
else if (SEEK_END == whence)
{
if (offset == 0)
{
offset = 512 * 2048 + g_vtoy_exfat_part_size;
lseek(dev->fd, offset, SEEK_SET);
return (off_t)g_vtoy_exfat_part_size;
}
else
{
exfat_error("Invalid SEEK_END offset %llu", (unsigned long long)offset);
return -1;
}
}
else
{
exfat_error("Invalid seek whence %d", whence);
return lseek(dev->fd, offset, whence);
}
#endif
}
ssize_t exfat_read(struct exfat_dev* dev, void* buffer, size_t size)
{
#ifdef USE_UBLIO
ssize_t result = ublio_pread(dev->ufh, buffer, size, dev->pos);
if (result >= 0)
dev->pos += size;
return result;
#else
return read(dev->fd, buffer, size);
#endif
}
ssize_t exfat_write(struct exfat_dev* dev, const void* buffer, size_t size)
{
#ifdef USE_UBLIO
ssize_t result = ublio_pwrite(dev->ufh, buffer, size, dev->pos);
if (result >= 0)
dev->pos += size;
return result;
#else
return write(dev->fd, buffer, size);
#endif
}
ssize_t exfat_pread(struct exfat_dev* dev, void* buffer, size_t size,
off_t offset)
{
#ifdef USE_UBLIO
return ublio_pread(dev->ufh, buffer, size, offset);
#else
return pread(dev->fd, buffer, size, offset);
#endif
}
ssize_t exfat_pwrite(struct exfat_dev* dev, const void* buffer, size_t size,
off_t offset)
{
#ifdef USE_UBLIO
return ublio_pwrite(dev->ufh, buffer, size, offset);
#else
return pwrite(dev->fd, buffer, size, offset);
#endif
}
ssize_t exfat_generic_pread(const struct exfat* ef, struct exfat_node* node,
void* buffer, size_t size, off_t offset)
{
cluster_t cluster;
char* bufp = buffer;
off_t lsize, loffset, remainder;
if (offset >= node->size)
return 0;
if (size == 0)
return 0;
cluster = exfat_advance_cluster(ef, node, offset / CLUSTER_SIZE(*ef->sb));
if (CLUSTER_INVALID(*ef->sb, cluster))
{
exfat_error("invalid cluster 0x%x while reading", cluster);
return -EIO;
}
loffset = offset % CLUSTER_SIZE(*ef->sb);
remainder = MIN(size, node->size - offset);
while (remainder > 0)
{
if (CLUSTER_INVALID(*ef->sb, cluster))
{
exfat_error("invalid cluster 0x%x while reading", cluster);
return -EIO;
}
lsize = MIN(CLUSTER_SIZE(*ef->sb) - loffset, remainder);
if (exfat_pread(ef->dev, bufp, lsize,
exfat_c2o(ef, cluster) + loffset) < 0)
{
exfat_error("failed to read cluster %#x", cluster);
return -EIO;
}
bufp += lsize;
loffset = 0;
remainder -= lsize;
cluster = exfat_next_cluster(ef, node, cluster);
}
if (!(node->attrib & EXFAT_ATTRIB_DIR) && !ef->ro && !ef->noatime)
exfat_update_atime(node);
return MIN(size, node->size - offset) - remainder;
}
ssize_t exfat_generic_pwrite(struct exfat* ef, struct exfat_node* node,
const void* buffer, size_t size, off_t offset)
{
int rc;
cluster_t cluster;
const char* bufp = buffer;
off_t lsize, loffset, remainder;
if (offset > node->size)
{
rc = exfat_truncate(ef, node, offset, true);
if (rc != 0)
return rc;
}
if (offset + size > node->size)
{
rc = exfat_truncate(ef, node, offset + size, false);
if (rc != 0)
return rc;
}
if (size == 0)
return 0;
cluster = exfat_advance_cluster(ef, node, offset / CLUSTER_SIZE(*ef->sb));
if (CLUSTER_INVALID(*ef->sb, cluster))
{
exfat_error("invalid cluster 0x%x while writing", cluster);
return -EIO;
}
loffset = offset % CLUSTER_SIZE(*ef->sb);
remainder = size;
while (remainder > 0)
{
if (CLUSTER_INVALID(*ef->sb, cluster))
{
exfat_error("invalid cluster 0x%x while writing", cluster);
return -EIO;
}
lsize = MIN(CLUSTER_SIZE(*ef->sb) - loffset, remainder);
if (exfat_pwrite(ef->dev, bufp, lsize,
exfat_c2o(ef, cluster) + loffset) < 0)
{
exfat_error("failed to write cluster %#x", cluster);
return -EIO;
}
bufp += lsize;
loffset = 0;
remainder -= lsize;
cluster = exfat_next_cluster(ef, node, cluster);
}
if (!(node->attrib & EXFAT_ATTRIB_DIR))
/* directory's mtime should be updated by the caller only when it
creates or removes something in this directory */
exfat_update_mtime(node);
return size - remainder;
}
/*
lookup.c (02.09.09)
exFAT file system implementation library.
Free exFAT implementation.
Copyright (C) 2010-2018 Andrew Nayenko
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "exfat.h"
#include <string.h>
#include <errno.h>
#include <inttypes.h>
int exfat_opendir(struct exfat* ef, struct exfat_node* dir,
struct exfat_iterator* it)
{
int rc;
exfat_get_node(dir);
it->parent = dir;
it->current = NULL;
rc = exfat_cache_directory(ef, dir);
if (rc != 0)
exfat_put_node(ef, dir);
return rc;
}
void exfat_closedir(struct exfat* ef, struct exfat_iterator* it)
{
exfat_put_node(ef, it->parent);
it->parent = NULL;
it->current = NULL;
}
struct exfat_node* exfat_readdir(struct exfat_iterator* it)
{
if (it->current == NULL)
it->current = it->parent->child;
else
it->current = it->current->next;
if (it->current != NULL)
return exfat_get_node(it->current);
else
return NULL;
}
static int compare_char(struct exfat* ef, uint16_t a, uint16_t b)
{
return (int) ef->upcase[a] - (int) ef->upcase[b];
}
static int compare_name(struct exfat* ef, const le16_t* a, const le16_t* b)
{
while (le16_to_cpu(*a) && le16_to_cpu(*b))
{
int rc = compare_char(ef, le16_to_cpu(*a), le16_to_cpu(*b));
if (rc != 0)
return rc;
a++;
b++;
}
return compare_char(ef, le16_to_cpu(*a), le16_to_cpu(*b));
}
static int lookup_name(struct exfat* ef, struct exfat_node* parent,
struct exfat_node** node, const char* name, size_t n)
{
struct exfat_iterator it;
le16_t buffer[EXFAT_NAME_MAX + 1];
int rc;
*node = NULL;
rc = utf8_to_utf16(buffer, name, EXFAT_NAME_MAX + 1, n);
if (rc != 0)
return rc;
rc = exfat_opendir(ef, parent, &it);
if (rc != 0)
return rc;
while ((*node = exfat_readdir(&it)))
{
if (compare_name(ef, buffer, (*node)->name) == 0)
{
exfat_closedir(ef, &it);
return 0;
}
exfat_put_node(ef, *node);
}
exfat_closedir(ef, &it);
return -ENOENT;
}
static size_t get_comp(const char* path, const char** comp)
{
const char* end;
*comp = path + strspn(path, "/"); /* skip leading slashes */
end = strchr(*comp, '/');
if (end == NULL)
return strlen(*comp);
else
return end - *comp;
}
int exfat_lookup(struct exfat* ef, struct exfat_node** node,
const char* path)
{
struct exfat_node* parent;
const char* p;
size_t n;
int rc;
/* start from the root directory */
parent = *node = exfat_get_node(ef->root);
for (p = path; (n = get_comp(p, &p)); p += n)
{
if (n == 1 && *p == '.') /* skip "." component */
continue;
rc = lookup_name(ef, parent, node, p, n);
if (rc != 0)
{
exfat_put_node(ef, parent);
return rc;
}
exfat_put_node(ef, parent);
parent = *node;
}
return 0;
}
static bool is_last_comp(const char* comp, size_t length)
{
const char* p = comp + length;
return get_comp(p, &p) == 0;
}
static bool is_allowed(const char* comp, size_t length)
{
size_t i;
for (i = 0; i < length; i++)
switch (comp[i])
{
case 0x01 ... 0x1f:
case '/':
case '\\':
case ':':
case '*':
case '?':
case '"':
case '<':
case '>':
case '|':
return false;
}
return true;
}
int exfat_split(struct exfat* ef, struct exfat_node** parent,
struct exfat_node** node, le16_t* name, const char* path)
{
const char* p;
size_t n;
int rc;
memset(name, 0, (EXFAT_NAME_MAX + 1) * sizeof(le16_t));
*parent = *node = exfat_get_node(ef->root);
for (p = path; (n = get_comp(p, &p)); p += n)
{
if (n == 1 && *p == '.')
continue;
if (is_last_comp(p, n))
{
if (!is_allowed(p, n))
{
/* contains characters that are not allowed */
exfat_put_node(ef, *parent);
return -ENOENT;
}
rc = utf8_to_utf16(name, p, EXFAT_NAME_MAX + 1, n);
if (rc != 0)
{
exfat_put_node(ef, *parent);
return rc;
}
rc = lookup_name(ef, *parent, node, p, n);
if (rc != 0 && rc != -ENOENT)
{
exfat_put_node(ef, *parent);
return rc;
}
return 0;
}
rc = lookup_name(ef, *parent, node, p, n);
if (rc != 0)
{
exfat_put_node(ef, *parent);
return rc;
}
exfat_put_node(ef, *parent);
*parent = *node;
}
exfat_bug("impossible");
return 1;
}
/*
mount.c (22.10.09)
exFAT file system implementation library.
Free exFAT implementation.
Copyright (C) 2010-2018 Andrew Nayenko
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "exfat.h"
#include <string.h>
#include <stdlib.h>
#include <errno.h>
#include <inttypes.h>
#include <unistd.h>
#include <sys/types.h>
static uint64_t rootdir_size(const struct exfat* ef)
{
uint32_t clusters = 0;
uint32_t clusters_max = le32_to_cpu(ef->sb->cluster_count);
cluster_t rootdir_cluster = le32_to_cpu(ef->sb->rootdir_cluster);
/* Iterate all clusters of the root directory to calculate its size.
It can't be contiguous because there is no flag to indicate this. */
do
{
if (clusters == clusters_max) /* infinite loop detected */
{
exfat_error("root directory cannot occupy all %d clusters",
clusters);
return 0;
}
if (CLUSTER_INVALID(*ef->sb, rootdir_cluster))
{
exfat_error("bad cluster %#x while reading root directory",
rootdir_cluster);
return 0;
}
rootdir_cluster = exfat_next_cluster(ef, ef->root, rootdir_cluster);
clusters++;
}
while (rootdir_cluster != EXFAT_CLUSTER_END);
return (uint64_t) clusters * CLUSTER_SIZE(*ef->sb);
}
static const char* get_option(const char* options, const char* option_name)
{
const char* p;
size_t length = strlen(option_name);
for (p = strstr(options, option_name); p; p = strstr(p + 1, option_name))
if ((p == options || p[-1] == ',') && p[length] == '=')
return p + length + 1;
return NULL;
}
static int get_int_option(const char* options, const char* option_name,
int base, int default_value)
{
const char* p = get_option(options, option_name);
if (p == NULL)
return default_value;
return strtol(p, NULL, base);
}
static bool match_option(const char* options, const char* option_name)
{
const char* p;
size_t length = strlen(option_name);
for (p = strstr(options, option_name); p; p = strstr(p + 1, option_name))
if ((p == options || p[-1] == ',') &&
(p[length] == ',' || p[length] == '\0'))
return true;
return false;
}
static void parse_options(struct exfat* ef, const char* options)
{
int opt_umask;
opt_umask = get_int_option(options, "umask", 8, 0);
ef->dmask = get_int_option(options, "dmask", 8, opt_umask);
ef->fmask = get_int_option(options, "fmask", 8, opt_umask);
ef->uid = get_int_option(options, "uid", 10, geteuid());
ef->gid = get_int_option(options, "gid", 10, getegid());
ef->noatime = match_option(options, "noatime");
switch (get_int_option(options, "repair", 10, 0))
{
case 1:
ef->repair = EXFAT_REPAIR_ASK;
break;
case 2:
ef->repair = EXFAT_REPAIR_YES;
break;
default:
ef->repair = EXFAT_REPAIR_NO;
break;
}
}
static bool verify_vbr_checksum(const struct exfat* ef, void* sector)
{
off_t sector_size = SECTOR_SIZE(*ef->sb);
uint32_t vbr_checksum;
int i;
if (exfat_pread(ef->dev, sector, sector_size, 0) < 0)
{
exfat_error("failed to read boot sector");
return false;
}
vbr_checksum = exfat_vbr_start_checksum(sector, sector_size);
for (i = 1; i < 11; i++)
{
if (exfat_pread(ef->dev, sector, sector_size, i * sector_size) < 0)
{
exfat_error("failed to read VBR sector");
return false;
}
vbr_checksum = exfat_vbr_add_checksum(sector, sector_size,
vbr_checksum);
}
if (exfat_pread(ef->dev, sector, sector_size, i * sector_size) < 0)
{
exfat_error("failed to read VBR checksum sector");
return false;
}
for (i = 0; i < sector_size / sizeof(vbr_checksum); i++)
if (le32_to_cpu(((const le32_t*) sector)[i]) != vbr_checksum)
{
exfat_error("invalid VBR checksum 0x%x (expected 0x%x)",
le32_to_cpu(((const le32_t*) sector)[i]), vbr_checksum);
if (!EXFAT_REPAIR(invalid_vbr_checksum, ef, sector, vbr_checksum))
return false;
}
return true;
}
static int commit_super_block(const struct exfat* ef)
{
if (exfat_pwrite(ef->dev, ef->sb, sizeof(struct exfat_super_block), 0) < 0)
{
exfat_error("failed to write super block");
return 1;
}
return exfat_fsync(ef->dev);
}
static int prepare_super_block(const struct exfat* ef)
{
if (le16_to_cpu(ef->sb->volume_state) & EXFAT_STATE_MOUNTED)
exfat_warn("volume was not unmounted cleanly");
if (ef->ro)
return 0;
ef->sb->volume_state = cpu_to_le16(
le16_to_cpu(ef->sb->volume_state) | EXFAT_STATE_MOUNTED);
return commit_super_block(ef);
}
static void exfat_free(struct exfat* ef)
{
exfat_close(ef->dev); /* first of all, close the descriptor */
ef->dev = NULL; /* struct exfat_dev is freed by exfat_close() */
free(ef->root);
ef->root = NULL;
free(ef->zero_cluster);
ef->zero_cluster = NULL;
free(ef->cmap.chunk);
ef->cmap.chunk = NULL;
free(ef->upcase);
ef->upcase = NULL;
free(ef->sb);
ef->sb = NULL;
}
int exfat_mount(struct exfat* ef, const char* spec, const char* options)
{
int rc;
enum exfat_mode mode;
exfat_tzset();
memset(ef, 0, sizeof(struct exfat));
parse_options(ef, options);
if (match_option(options, "ro"))
mode = EXFAT_MODE_RO;
else if (match_option(options, "ro_fallback"))
mode = EXFAT_MODE_ANY;
else
mode = EXFAT_MODE_RW;
ef->dev = exfat_open(spec, mode);
if (ef->dev == NULL)
return -EIO;
if (exfat_get_mode(ef->dev) == EXFAT_MODE_RO)
{
if (mode == EXFAT_MODE_ANY)
ef->ro = -1;
else
ef->ro = 1;
}
ef->sb = malloc(sizeof(struct exfat_super_block));
if (ef->sb == NULL)
{
exfat_error("failed to allocate memory for the super block");
exfat_free(ef);
return -ENOMEM;
}
memset(ef->sb, 0, sizeof(struct exfat_super_block));
if (exfat_pread(ef->dev, ef->sb, sizeof(struct exfat_super_block), 0) < 0)
{
exfat_error("failed to read boot sector");
exfat_free(ef);
return -EIO;
}
if (memcmp(ef->sb->oem_name, "EXFAT ", 8) != 0)
{
exfat_error("exFAT file system is not found");
exfat_free(ef);
return -EIO;
}
/* sector cannot be smaller than 512 bytes */
if (ef->sb->sector_bits < 9)
{
exfat_error("too small sector size: 2^%hhd", ef->sb->sector_bits);
exfat_free(ef);
return -EIO;
}
/* officially exFAT supports cluster size up to 32 MB */
if ((int) ef->sb->sector_bits + (int) ef->sb->spc_bits > 25)
{
exfat_error("too big cluster size: 2^(%hhd+%hhd)",
ef->sb->sector_bits, ef->sb->spc_bits);
exfat_free(ef);
return -EIO;
}
ef->zero_cluster = malloc(CLUSTER_SIZE(*ef->sb));
if (ef->zero_cluster == NULL)
{
exfat_error("failed to allocate zero sector");
exfat_free(ef);
return -ENOMEM;
}
/* use zero_cluster as a temporary buffer for VBR checksum verification */
if (!verify_vbr_checksum(ef, ef->zero_cluster))
{
exfat_free(ef);
return -EIO;
}
memset(ef->zero_cluster, 0, CLUSTER_SIZE(*ef->sb));
if (ef->sb->version.major != 1 || ef->sb->version.minor != 0)
{
exfat_error("unsupported exFAT version: %hhu.%hhu",
ef->sb->version.major, ef->sb->version.minor);
exfat_free(ef);
return -EIO;
}
if (ef->sb->fat_count != 1)
{
exfat_error("unsupported FAT count: %hhu", ef->sb->fat_count);
exfat_free(ef);
return -EIO;
}
if (le64_to_cpu(ef->sb->sector_count) * SECTOR_SIZE(*ef->sb) >
exfat_get_size(ef->dev))
{
/* this can cause I/O errors later but we don't fail mounting to let
user rescue data */
exfat_warn("file system in sectors is larger than device: "
"%"PRIu64" * %d > %"PRIu64,
le64_to_cpu(ef->sb->sector_count), SECTOR_SIZE(*ef->sb),
exfat_get_size(ef->dev));
}
if ((off_t) le32_to_cpu(ef->sb->cluster_count) * CLUSTER_SIZE(*ef->sb) >
exfat_get_size(ef->dev))
{
exfat_error("file system in clusters is larger than device: "
"%u * %d > %"PRIu64,
le32_to_cpu(ef->sb->cluster_count), CLUSTER_SIZE(*ef->sb),
exfat_get_size(ef->dev));
exfat_free(ef);
return -EIO;
}
ef->root = malloc(sizeof(struct exfat_node));
if (ef->root == NULL)
{
exfat_error("failed to allocate root node");
exfat_free(ef);
return -ENOMEM;
}
memset(ef->root, 0, sizeof(struct exfat_node));
ef->root->attrib = EXFAT_ATTRIB_DIR;
ef->root->start_cluster = le32_to_cpu(ef->sb->rootdir_cluster);
ef->root->fptr_cluster = ef->root->start_cluster;
ef->root->name[0] = cpu_to_le16('\0');
ef->root->size = rootdir_size(ef);
if (ef->root->size == 0)
{
exfat_free(ef);
return -EIO;
}
/* exFAT does not have time attributes for the root directory */
ef->root->mtime = 0;
ef->root->atime = 0;
/* always keep at least 1 reference to the root node */
exfat_get_node(ef->root);
rc = exfat_cache_directory(ef, ef->root);
if (rc != 0)
goto error;
if (ef->upcase == NULL)
{
exfat_error("upcase table is not found");
goto error;
}
if (ef->cmap.chunk == NULL)
{
exfat_error("clusters bitmap is not found");
goto error;
}
if (prepare_super_block(ef) != 0)
goto error;
return 0;
error:
exfat_put_node(ef, ef->root);
exfat_reset_cache(ef);
exfat_free(ef);
return -EIO;
}
static void finalize_super_block(struct exfat* ef)
{
if (ef->ro)
return;
ef->sb->volume_state = cpu_to_le16(
le16_to_cpu(ef->sb->volume_state) & ~EXFAT_STATE_MOUNTED);
/* Some implementations set the percentage of allocated space to 0xff
on FS creation and never update it. In this case leave it as is. */
if (ef->sb->allocated_percent != 0xff)
{
uint32_t free, total;
free = exfat_count_free_clusters(ef);
total = le32_to_cpu(ef->sb->cluster_count);
ef->sb->allocated_percent = ((total - free) * 100 + total / 2) / total;
}
commit_super_block(ef); /* ignore return code */
}
void exfat_unmount(struct exfat* ef)
{
exfat_flush_nodes(ef); /* ignore return code */
exfat_flush(ef); /* ignore return code */
exfat_put_node(ef, ef->root);
exfat_reset_cache(ef);
finalize_super_block(ef);
exfat_free(ef); /* will close the descriptor */
}
/*
node.c (09.10.09)
exFAT file system implementation library.
Free exFAT implementation.
Copyright (C) 2010-2018 Andrew Nayenko
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "exfat.h"
#include <errno.h>
#include <string.h>
#include <inttypes.h>
#define EXFAT_ENTRY_NONE (-1)
struct exfat_node* exfat_get_node(struct exfat_node* node)
{
/* if we switch to multi-threaded mode we will need atomic
increment here and atomic decrement in exfat_put_node() */
node->references++;
return node;
}
void exfat_put_node(struct exfat* ef, struct exfat_node* node)
{
char buffer[EXFAT_UTF8_NAME_BUFFER_MAX];
--node->references;
if (node->references < 0)
{
exfat_get_name(node, buffer);
exfat_bug("reference counter of '%s' is below zero", buffer);
}
else if (node->references == 0 && node != ef->root)
{
if (node->is_dirty)
{
exfat_get_name(node, buffer);
exfat_warn("dirty node '%s' with zero references", buffer);
}
}
}
/**
* This function must be called on rmdir and unlink (after the last
* exfat_put_node()) to free clusters.
*/
int exfat_cleanup_node(struct exfat* ef, struct exfat_node* node)
{
int rc = 0;
if (node->references != 0)
exfat_bug("unable to cleanup a node with %d references",
node->references);
if (node->is_unlinked)
{
/* free all clusters and node structure itself */
rc = exfat_truncate(ef, node, 0, true);
/* free the node even in case of error or its memory will be lost */
free(node);
}
return rc;
}
static int read_entries(struct exfat* ef, struct exfat_node* dir,
struct exfat_entry* entries, int n, off_t offset)
{
ssize_t size;
if (!(dir->attrib & EXFAT_ATTRIB_DIR))
exfat_bug("attempted to read entries from a file");
size = exfat_generic_pread(ef, dir, entries,
sizeof(struct exfat_entry[n]), offset);
if (size == sizeof(struct exfat_entry[n]))
return 0; /* success */
if (size == 0)
return -ENOENT;
if (size < 0)
return -EIO;
exfat_error("read %zd bytes instead of %zu bytes", size,
sizeof(struct exfat_entry[n]));
return -EIO;
}
static int write_entries(struct exfat* ef, struct exfat_node* dir,
const struct exfat_entry* entries, int n, off_t offset)
{
ssize_t size;
if (!(dir->attrib & EXFAT_ATTRIB_DIR))
exfat_bug("attempted to write entries into a file");
size = exfat_generic_pwrite(ef, dir, entries,
sizeof(struct exfat_entry[n]), offset);
if (size == sizeof(struct exfat_entry[n]))
return 0; /* success */
if (size < 0)
return -EIO;
exfat_error("wrote %zd bytes instead of %zu bytes", size,
sizeof(struct exfat_entry[n]));
return -EIO;
}
static struct exfat_node* allocate_node(void)
{
struct exfat_node* node = malloc(sizeof(struct exfat_node));
if (node == NULL)
{
exfat_error("failed to allocate node");
return NULL;
}
memset(node, 0, sizeof(struct exfat_node));
return node;
}
static void init_node_meta1(struct exfat_node* node,
const struct exfat_entry_meta1* meta1)
{
node->attrib = le16_to_cpu(meta1->attrib);
node->continuations = meta1->continuations;
node->mtime = exfat_exfat2unix(meta1->mdate, meta1->mtime,
meta1->mtime_cs);
/* there is no centiseconds field for atime */
node->atime = exfat_exfat2unix(meta1->adate, meta1->atime, 0);
}
static void init_node_meta2(struct exfat_node* node,
const struct exfat_entry_meta2* meta2)
{
node->size = le64_to_cpu(meta2->size);
node->start_cluster = le32_to_cpu(meta2->start_cluster);
node->fptr_cluster = node->start_cluster;
node->is_contiguous = ((meta2->flags & EXFAT_FLAG_CONTIGUOUS) != 0);
}
static void init_node_name(struct exfat_node* node,
const struct exfat_entry* entries, int n)
{
int i;
for (i = 0; i < n; i++)
memcpy(node->name + i * EXFAT_ENAME_MAX,
((const struct exfat_entry_name*) &entries[i])->name,
EXFAT_ENAME_MAX * sizeof(le16_t));
}
static bool check_entries(const struct exfat_entry* entry, int n)
{
int previous = EXFAT_ENTRY_NONE;
int current;
int i;
/* check transitions between entries types */
for (i = 0; i < n + 1; previous = current, i++)
{
bool valid = false;
current = (i < n) ? entry[i].type : EXFAT_ENTRY_NONE;
switch (previous)
{
case EXFAT_ENTRY_NONE:
valid = (current == EXFAT_ENTRY_FILE);
break;
case EXFAT_ENTRY_FILE:
valid = (current == EXFAT_ENTRY_FILE_INFO);
break;
case EXFAT_ENTRY_FILE_INFO:
valid = (current == EXFAT_ENTRY_FILE_NAME);
break;
case EXFAT_ENTRY_FILE_NAME:
valid = (current == EXFAT_ENTRY_FILE_NAME ||
current == EXFAT_ENTRY_NONE ||
current >= EXFAT_ENTRY_FILE_TAIL);
break;
case EXFAT_ENTRY_FILE_TAIL ... 0xff:
valid = (current >= EXFAT_ENTRY_FILE_TAIL ||
current == EXFAT_ENTRY_NONE);
break;
}
if (!valid)
{
exfat_error("unexpected entry type %#x after %#x at %d/%d",
current, previous, i, n);
return false;
}
}
return true;
}
static bool check_node(const struct exfat* ef, struct exfat_node* node,
le16_t actual_checksum, const struct exfat_entry_meta1* meta1,
const struct exfat_entry_meta2* meta2)
{
int cluster_size = CLUSTER_SIZE(*ef->sb);
uint64_t clusters_heap_size =
(uint64_t) le32_to_cpu(ef->sb->cluster_count) * cluster_size;
char buffer[EXFAT_UTF8_NAME_BUFFER_MAX];
bool ret = true;
/*
Validate checksum first. If it's invalid all other fields probably
contain just garbage.
*/
if (le16_to_cpu(actual_checksum) != le16_to_cpu(meta1->checksum))
{
exfat_get_name(node, buffer);
exfat_error("'%s' has invalid checksum (%#hx != %#hx)", buffer,
le16_to_cpu(actual_checksum), le16_to_cpu(meta1->checksum));
if (!EXFAT_REPAIR(invalid_node_checksum, ef, node))
ret = false;
}
/*
exFAT does not support sparse files but allows files with uninitialized
clusters. For such files valid_size means initialized data size and
cannot be greater than file size. See SetFileValidData() function
description in MSDN.
*/
if (le64_to_cpu(meta2->valid_size) > node->size)
{
exfat_get_name(node, buffer);
exfat_error("'%s' has valid size (%"PRIu64") greater than size "
"(%"PRIu64")", buffer, le64_to_cpu(meta2->valid_size),
node->size);
ret = false;
}
/*
Empty file must have zero start cluster. Non-empty file must start
with a valid cluster. Directories cannot be empty (i.e. must always
have a valid start cluster), but we will check this later while
reading that directory to give user a chance to read this directory.
*/
if (node->size == 0 && node->start_cluster != EXFAT_CLUSTER_FREE)
{
exfat_get_name(node, buffer);
exfat_error("'%s' is empty but start cluster is %#x", buffer,
node->start_cluster);
ret = false;
}
if (node->size > 0 && CLUSTER_INVALID(*ef->sb, node->start_cluster))
{
exfat_get_name(node, buffer);
exfat_error("'%s' points to invalid cluster %#x", buffer,
node->start_cluster);
ret = false;
}
/* File or directory cannot be larger than clusters heap. */
if (node->size > clusters_heap_size)
{
exfat_get_name(node, buffer);
exfat_error("'%s' is larger than clusters heap: %"PRIu64" > %"PRIu64,
buffer, node->size, clusters_heap_size);
ret = false;
}
/* Empty file or directory must be marked as non-contiguous. */
if (node->size == 0 && node->is_contiguous)
{
exfat_get_name(node, buffer);
exfat_error("'%s' is empty but marked as contiguous (%#hx)", buffer,
node->attrib);
ret = false;
}
/* Directory size must be aligned on at cluster boundary. */
if ((node->attrib & EXFAT_ATTRIB_DIR) && node->size % cluster_size != 0)
{
exfat_get_name(node, buffer);
exfat_error("'%s' directory size %"PRIu64" is not divisible by %d", buffer,
node->size, cluster_size);
ret = false;
}
return ret;
}
static int parse_file_entries(struct exfat* ef, struct exfat_node* node,
const struct exfat_entry* entries, int n)
{
const struct exfat_entry_meta1* meta1;
const struct exfat_entry_meta2* meta2;
int mandatory_entries;
if (!check_entries(entries, n))
return -EIO;
meta1 = (const struct exfat_entry_meta1*) &entries[0];
if (meta1->continuations < 2)
{
exfat_error("too few continuations (%hhu)", meta1->continuations);
return -EIO;
}
meta2 = (const struct exfat_entry_meta2*) &entries[1];
if (meta2->flags & ~(EXFAT_FLAG_ALWAYS1 | EXFAT_FLAG_CONTIGUOUS))
{
exfat_error("unknown flags in meta2 (%#hhx)", meta2->flags);
return -EIO;
}
mandatory_entries = 2 + DIV_ROUND_UP(meta2->name_length, EXFAT_ENAME_MAX);
if (meta1->continuations < mandatory_entries - 1)
{
exfat_error("too few continuations (%hhu < %d)",
meta1->continuations, mandatory_entries - 1);
return -EIO;
}
init_node_meta1(node, meta1);
init_node_meta2(node, meta2);
init_node_name(node, entries + 2, mandatory_entries - 2);
if (!check_node(ef, node, exfat_calc_checksum(entries, n), meta1, meta2))
return -EIO;
return 0;
}
static int parse_file_entry(struct exfat* ef, struct exfat_node* parent,
struct exfat_node** node, off_t* offset, int n)
{
struct exfat_entry entries[n];
int rc;
rc = read_entries(ef, parent, entries, n, *offset);
if (rc != 0)
return rc;
/* a new node has zero references */
*node = allocate_node();
if (*node == NULL)
return -ENOMEM;
(*node)->entry_offset = *offset;
rc = parse_file_entries(ef, *node, entries, n);
if (rc != 0)
{
free(*node);
return rc;
}
*offset += sizeof(struct exfat_entry[n]);
return 0;
}
static void decompress_upcase(uint16_t* output, const le16_t* source,
size_t size)
{
size_t si;
size_t oi;
for (oi = 0; oi < EXFAT_UPCASE_CHARS; oi++)
output[oi] = oi;
for (si = 0, oi = 0; si < size && oi < EXFAT_UPCASE_CHARS; si++)
{
uint16_t ch = le16_to_cpu(source[si]);
if (ch == 0xffff && si + 1 < size) /* indicates a run */
oi += le16_to_cpu(source[++si]);
else
output[oi++] = ch;
}
}
/*
* Read one entry in a directory at offset position and build a new node
* structure.
*/
static int readdir(struct exfat* ef, struct exfat_node* parent,
struct exfat_node** node, off_t* offset)
{
int rc;
struct exfat_entry entry;
const struct exfat_entry_meta1* meta1;
const struct exfat_entry_upcase* upcase;
const struct exfat_entry_bitmap* bitmap;
const struct exfat_entry_label* label;
uint64_t upcase_size = 0;
le16_t* upcase_comp = NULL;
for (;;)
{
rc = read_entries(ef, parent, &entry, 1, *offset);
if (rc != 0)
return rc;
switch (entry.type)
{
case EXFAT_ENTRY_FILE:
meta1 = (const struct exfat_entry_meta1*) &entry;
return parse_file_entry(ef, parent, node, offset,
1 + meta1->continuations);
case EXFAT_ENTRY_UPCASE:
if (ef->upcase != NULL)
break;
upcase = (const struct exfat_entry_upcase*) &entry;
if (CLUSTER_INVALID(*ef->sb, le32_to_cpu(upcase->start_cluster)))
{
exfat_error("invalid cluster 0x%x in upcase table",
le32_to_cpu(upcase->start_cluster));
return -EIO;
}
upcase_size = le64_to_cpu(upcase->size);
if (upcase_size == 0 ||
upcase_size > EXFAT_UPCASE_CHARS * sizeof(uint16_t) ||
upcase_size % sizeof(uint16_t) != 0)
{
exfat_error("bad upcase table size (%"PRIu64" bytes)",
upcase_size);
return -EIO;
}
upcase_comp = malloc(upcase_size);
if (upcase_comp == NULL)
{
exfat_error("failed to allocate upcase table (%"PRIu64" bytes)",
upcase_size);
return -ENOMEM;
}
/* read compressed upcase table */
if (exfat_pread(ef->dev, upcase_comp, upcase_size,
exfat_c2o(ef, le32_to_cpu(upcase->start_cluster))) < 0)
{
free(upcase_comp);
exfat_error("failed to read upper case table "
"(%"PRIu64" bytes starting at cluster %#x)",
upcase_size,
le32_to_cpu(upcase->start_cluster));
return -EIO;
}
/* decompress upcase table */
ef->upcase = calloc(EXFAT_UPCASE_CHARS, sizeof(uint16_t));
if (ef->upcase == NULL)
{
free(upcase_comp);
exfat_error("failed to allocate decompressed upcase table");
return -ENOMEM;
}
decompress_upcase(ef->upcase, upcase_comp,
upcase_size / sizeof(uint16_t));
free(upcase_comp);
break;
case EXFAT_ENTRY_BITMAP:
bitmap = (const struct exfat_entry_bitmap*) &entry;
ef->cmap.start_cluster = le32_to_cpu(bitmap->start_cluster);
if (CLUSTER_INVALID(*ef->sb, ef->cmap.start_cluster))
{
exfat_error("invalid cluster 0x%x in clusters bitmap",
ef->cmap.start_cluster);
return -EIO;
}
ef->cmap.size = le32_to_cpu(ef->sb->cluster_count);
if (le64_to_cpu(bitmap->size) < DIV_ROUND_UP(ef->cmap.size, 8))
{
exfat_error("invalid clusters bitmap size: %"PRIu64
" (expected at least %u)",
le64_to_cpu(bitmap->size),
DIV_ROUND_UP(ef->cmap.size, 8));
return -EIO;
}
/* FIXME bitmap can be rather big, up to 512 MB */
ef->cmap.chunk_size = ef->cmap.size;
ef->cmap.chunk = malloc(BMAP_SIZE(ef->cmap.chunk_size));
if (ef->cmap.chunk == NULL)
{
exfat_error("failed to allocate clusters bitmap chunk "
"(%"PRIu64" bytes)", le64_to_cpu(bitmap->size));
return -ENOMEM;
}
if (exfat_pread(ef->dev, ef->cmap.chunk,
BMAP_SIZE(ef->cmap.chunk_size),
exfat_c2o(ef, ef->cmap.start_cluster)) < 0)
{
exfat_error("failed to read clusters bitmap "
"(%"PRIu64" bytes starting at cluster %#x)",
le64_to_cpu(bitmap->size), ef->cmap.start_cluster);
return -EIO;
}
break;
case EXFAT_ENTRY_LABEL:
label = (const struct exfat_entry_label*) &entry;
if (label->length > EXFAT_ENAME_MAX)
{
exfat_error("too long label (%hhu chars)", label->length);
return -EIO;
}
if (utf16_to_utf8(ef->label, label->name,
sizeof(ef->label), EXFAT_ENAME_MAX) != 0)
return -EIO;
break;
default:
if (!(entry.type & EXFAT_ENTRY_VALID))
break; /* deleted entry, ignore it */
exfat_error("unknown entry type %#hhx", entry.type);
if (!EXFAT_REPAIR(unknown_entry, ef, parent, &entry, *offset))
return -EIO;
}
*offset += sizeof(entry);
}
/* we never reach here */
}
int exfat_cache_directory(struct exfat* ef, struct exfat_node* dir)
{
off_t offset = 0;
int rc;
struct exfat_node* node;
struct exfat_node* current = NULL;
if (dir->is_cached)
return 0; /* already cached */
while ((rc = readdir(ef, dir, &node, &offset)) == 0)
{
node->parent = dir;
if (current != NULL)
{
current->next = node;
node->prev = current;
}
else
dir->child = node;
current = node;
}
if (rc != -ENOENT)
{
/* rollback */
for (current = dir->child; current; current = node)
{
node = current->next;
free(current);
}
dir->child = NULL;
return rc;
}
dir->is_cached = true;
return 0;
}
static void tree_attach(struct exfat_node* dir, struct exfat_node* node)
{
node->parent = dir;
if (dir->child)
{
dir->child->prev = node;
node->next = dir->child;
}
dir->child = node;
}
static void tree_detach(struct exfat_node* node)
{
if (node->prev)
node->prev->next = node->next;
else /* this is the first node in the list */
node->parent->child = node->next;
if (node->next)
node->next->prev = node->prev;
node->parent = NULL;
node->prev = NULL;
node->next = NULL;
}
static void reset_cache(struct exfat* ef, struct exfat_node* node)
{
char buffer[EXFAT_UTF8_NAME_BUFFER_MAX];
while (node->child)
{
struct exfat_node* p = node->child;
reset_cache(ef, p);
tree_detach(p);
free(p);
}
node->is_cached = false;
if (node->references != 0)
{
exfat_get_name(node, buffer);
exfat_warn("non-zero reference counter (%d) for '%s'",
node->references, buffer);
}
if (node != ef->root && node->is_dirty)
{
exfat_get_name(node, buffer);
exfat_bug("node '%s' is dirty", buffer);
}
while (node->references)
exfat_put_node(ef, node);
}
void exfat_reset_cache(struct exfat* ef)
{
reset_cache(ef, ef->root);
}
int exfat_flush_node(struct exfat* ef, struct exfat_node* node)
{
struct exfat_entry entries[1 + node->continuations];
struct exfat_entry_meta1* meta1 = (struct exfat_entry_meta1*) &entries[0];
struct exfat_entry_meta2* meta2 = (struct exfat_entry_meta2*) &entries[1];
int rc;
if (!node->is_dirty)
return 0; /* no need to flush */
if (ef->ro)
exfat_bug("unable to flush node to read-only FS");
if (node->parent == NULL)
return 0; /* do not flush unlinked node */
rc = read_entries(ef, node->parent, entries, 1 + node->continuations,
node->entry_offset);
if (rc != 0)
return rc;
if (!check_entries(entries, 1 + node->continuations))
return -EIO;
meta1->attrib = cpu_to_le16(node->attrib);
exfat_unix2exfat(node->mtime, &meta1->mdate, &meta1->mtime,
&meta1->mtime_cs);
exfat_unix2exfat(node->atime, &meta1->adate, &meta1->atime, NULL);
meta2->size = meta2->valid_size = cpu_to_le64(node->size);
meta2->start_cluster = cpu_to_le32(node->start_cluster);
meta2->flags = EXFAT_FLAG_ALWAYS1;
/* empty files must not be marked as contiguous */
if (node->size != 0 && node->is_contiguous)
meta2->flags |= EXFAT_FLAG_CONTIGUOUS;
/* name hash remains unchanged, no need to recalculate it */
meta1->checksum = exfat_calc_checksum(entries, 1 + node->continuations);
rc = write_entries(ef, node->parent, entries, 1 + node->continuations,
node->entry_offset);
if (rc != 0)
return rc;
node->is_dirty = false;
return exfat_flush(ef);
}
static int erase_entries(struct exfat* ef, struct exfat_node* dir, int n,
off_t offset)
{
struct exfat_entry entries[n];
int rc;
int i;
rc = read_entries(ef, dir, entries, n, offset);
if (rc != 0)
return rc;
for (i = 0; i < n; i++)
entries[i].type &= ~EXFAT_ENTRY_VALID;
return write_entries(ef, dir, entries, n, offset);
}
static int erase_node(struct exfat* ef, struct exfat_node* node)
{
int rc;
exfat_get_node(node->parent);
rc = erase_entries(ef, node->parent, 1 + node->continuations,
node->entry_offset);
if (rc != 0)
{
exfat_put_node(ef, node->parent);
return rc;
}
rc = exfat_flush_node(ef, node->parent);
exfat_put_node(ef, node->parent);
return rc;
}
static int shrink_directory(struct exfat* ef, struct exfat_node* dir,
off_t deleted_offset)
{
const struct exfat_node* node;
const struct exfat_node* last_node;
uint64_t entries = 0;
uint64_t new_size;
if (!(dir->attrib & EXFAT_ATTRIB_DIR))
exfat_bug("attempted to shrink a file");
if (!dir->is_cached)
exfat_bug("attempted to shrink uncached directory");
for (last_node = node = dir->child; node; node = node->next)
{
if (deleted_offset < node->entry_offset)
{
/* there are other entries after the removed one, no way to shrink
this directory */
return 0;
}
if (last_node->entry_offset < node->entry_offset)
last_node = node;
}
if (last_node)
{
/* offset of the last entry */
entries += last_node->entry_offset / sizeof(struct exfat_entry);
/* two subentries with meta info */
entries += 2;
/* subentries with file name */
entries += DIV_ROUND_UP(utf16_length(last_node->name),
EXFAT_ENAME_MAX);
}
new_size = DIV_ROUND_UP(entries * sizeof(struct exfat_entry),
CLUSTER_SIZE(*ef->sb)) * CLUSTER_SIZE(*ef->sb);
if (new_size == 0) /* directory always has at least 1 cluster */
new_size = CLUSTER_SIZE(*ef->sb);
if (new_size == dir->size)
return 0;
return exfat_truncate(ef, dir, new_size, true);
}
static int delete(struct exfat* ef, struct exfat_node* node)
{
struct exfat_node* parent = node->parent;
off_t deleted_offset = node->entry_offset;
int rc;
exfat_get_node(parent);
rc = erase_node(ef, node);
if (rc != 0)
{
exfat_put_node(ef, parent);
return rc;
}
tree_detach(node);
rc = shrink_directory(ef, parent, deleted_offset);
node->is_unlinked = true;
if (rc != 0)
{
exfat_flush_node(ef, parent);
exfat_put_node(ef, parent);
return rc;
}
exfat_update_mtime(parent);
rc = exfat_flush_node(ef, parent);
exfat_put_node(ef, parent);
return rc;
}
int exfat_unlink(struct exfat* ef, struct exfat_node* node)
{
if (node->attrib & EXFAT_ATTRIB_DIR)
return -EISDIR;
return delete(ef, node);
}
int exfat_rmdir(struct exfat* ef, struct exfat_node* node)
{
int rc;
if (!(node->attrib & EXFAT_ATTRIB_DIR))
return -ENOTDIR;
/* check that directory is empty */
rc = exfat_cache_directory(ef, node);
if (rc != 0)
return rc;
if (node->child)
return -ENOTEMPTY;
return delete(ef, node);
}
static int check_slot(struct exfat* ef, struct exfat_node* dir, off_t offset,
int n)
{
struct exfat_entry entries[n];
int rc;
size_t i;
/* Root directory contains entries, that don't have any nodes associated
with them (clusters bitmap, upper case table, label). We need to be
careful not to overwrite them. */
if (dir != ef->root)
return 0;
rc = read_entries(ef, dir, entries, n, offset);
if (rc != 0)
return rc;
for (i = 0; i < n; i++)
if (entries[i].type & EXFAT_ENTRY_VALID)
return -EINVAL;
return 0;
}
static int find_slot(struct exfat* ef, struct exfat_node* dir,
off_t* offset, int n)
{
bitmap_t* dmap;
struct exfat_node* p;
size_t i;
int contiguous = 0;
if (!dir->is_cached)
exfat_bug("directory is not cached");
/* build a bitmap of valid entries in the directory */
dmap = calloc(BMAP_SIZE(dir->size / sizeof(struct exfat_entry)),
sizeof(bitmap_t));
if (dmap == NULL)
{
exfat_error("failed to allocate directory bitmap (%"PRIu64")",
dir->size / sizeof(struct exfat_entry));
return -ENOMEM;
}
for (p = dir->child; p != NULL; p = p->next)
for (i = 0; i < 1 + p->continuations; i++)
BMAP_SET(dmap, p->entry_offset / sizeof(struct exfat_entry) + i);
/* find a slot in the directory entries bitmap */
for (i = 0; i < dir->size / sizeof(struct exfat_entry); i++)
{
if (BMAP_GET(dmap, i) == 0)
{
if (contiguous++ == 0)
*offset = (off_t) i * sizeof(struct exfat_entry);
if (contiguous == n)
/* suitable slot is found, check that it's not occupied */
switch (check_slot(ef, dir, *offset, n))
{
case 0:
free(dmap);
return 0;
case -EIO:
free(dmap);
return -EIO;
case -EINVAL:
/* slot at (i-n) is occupied, go back and check (i-n+1) */
i -= contiguous - 1;
contiguous = 0;
break;
}
}
else
contiguous = 0;
}
free(dmap);
/* no suitable slots found, extend the directory */
if (contiguous == 0)
*offset = dir->size;
return exfat_truncate(ef, dir,
ROUND_UP(dir->size + sizeof(struct exfat_entry[n - contiguous]),
CLUSTER_SIZE(*ef->sb)),
true);
}
static int commit_entry(struct exfat* ef, struct exfat_node* dir,
const le16_t* name, off_t offset, uint16_t attrib)
{
struct exfat_node* node;
const size_t name_length = utf16_length(name);
const int name_entries = DIV_ROUND_UP(name_length, EXFAT_ENAME_MAX);
struct exfat_entry entries[2 + name_entries];
struct exfat_entry_meta1* meta1 = (struct exfat_entry_meta1*) &entries[0];
struct exfat_entry_meta2* meta2 = (struct exfat_entry_meta2*) &entries[1];
int i;
int rc;
memset(entries, 0, sizeof(struct exfat_entry[2]));
meta1->type = EXFAT_ENTRY_FILE;
meta1->continuations = 1 + name_entries;
meta1->attrib = cpu_to_le16(attrib);
exfat_unix2exfat(time(NULL), &meta1->crdate, &meta1->crtime,
&meta1->crtime_cs);
meta1->adate = meta1->mdate = meta1->crdate;
meta1->atime = meta1->mtime = meta1->crtime;
meta1->mtime_cs = meta1->crtime_cs; /* there is no atime_cs */
meta2->type = EXFAT_ENTRY_FILE_INFO;
meta2->flags = EXFAT_FLAG_ALWAYS1;
meta2->name_length = name_length;
meta2->name_hash = exfat_calc_name_hash(ef, name, name_length);
meta2->start_cluster = cpu_to_le32(EXFAT_CLUSTER_FREE);
for (i = 0; i < name_entries; i++)
{
struct exfat_entry_name* name_entry;
name_entry = (struct exfat_entry_name*) &entries[2 + i];
name_entry->type = EXFAT_ENTRY_FILE_NAME;
name_entry->__unknown = 0;
memcpy(name_entry->name, name + i * EXFAT_ENAME_MAX,
EXFAT_ENAME_MAX * sizeof(le16_t));
}
meta1->checksum = exfat_calc_checksum(entries, 2 + name_entries);
rc = write_entries(ef, dir, entries, 2 + name_entries, offset);
if (rc != 0)
return rc;
node = allocate_node();
if (node == NULL)
return -ENOMEM;
node->entry_offset = offset;
memcpy(node->name, name, name_length * sizeof(le16_t));
init_node_meta1(node, meta1);
init_node_meta2(node, meta2);
tree_attach(dir, node);
return 0;
}
static int create(struct exfat* ef, const char* path, uint16_t attrib)
{
struct exfat_node* dir;
struct exfat_node* existing;
off_t offset = -1;
le16_t name[EXFAT_NAME_MAX + 1];
int rc;
rc = exfat_split(ef, &dir, &existing, name, path);
if (rc != 0)
return rc;
if (existing != NULL)
{
exfat_put_node(ef, existing);
exfat_put_node(ef, dir);
return -EEXIST;
}
rc = find_slot(ef, dir, &offset,
2 + DIV_ROUND_UP(utf16_length(name), EXFAT_ENAME_MAX));
if (rc != 0)
{
exfat_put_node(ef, dir);
return rc;
}
rc = commit_entry(ef, dir, name, offset, attrib);
if (rc != 0)
{
exfat_put_node(ef, dir);
return rc;
}
exfat_update_mtime(dir);
rc = exfat_flush_node(ef, dir);
exfat_put_node(ef, dir);
return rc;
}
int exfat_mknod(struct exfat* ef, const char* path)
{
return create(ef, path, EXFAT_ATTRIB_ARCH);
}
int exfat_mkdir(struct exfat* ef, const char* path)
{
int rc;
struct exfat_node* node;
rc = create(ef, path, EXFAT_ATTRIB_DIR);
if (rc != 0)
return rc;
rc = exfat_lookup(ef, &node, path);
if (rc != 0)
return 0;
/* directories always have at least one cluster */
rc = exfat_truncate(ef, node, CLUSTER_SIZE(*ef->sb), true);
if (rc != 0)
{
delete(ef, node);
exfat_put_node(ef, node);
return rc;
}
rc = exfat_flush_node(ef, node);
if (rc != 0)
{
delete(ef, node);
exfat_put_node(ef, node);
return rc;
}
exfat_put_node(ef, node);
return 0;
}
static int rename_entry(struct exfat* ef, struct exfat_node* dir,
struct exfat_node* node, const le16_t* name, off_t new_offset)
{
const size_t name_length = utf16_length(name);
const int name_entries = DIV_ROUND_UP(name_length, EXFAT_ENAME_MAX);
struct exfat_entry entries[2 + name_entries];
struct exfat_entry_meta1* meta1 = (struct exfat_entry_meta1*) &entries[0];
struct exfat_entry_meta2* meta2 = (struct exfat_entry_meta2*) &entries[1];
int rc;
int i;
rc = read_entries(ef, node->parent, entries, 2, node->entry_offset);
if (rc != 0)
return rc;
meta1->continuations = 1 + name_entries;
meta2->name_length = name_length;
meta2->name_hash = exfat_calc_name_hash(ef, name, name_length);
rc = erase_node(ef, node);
if (rc != 0)
return rc;
node->entry_offset = new_offset;
node->continuations = 1 + name_entries;
for (i = 0; i < name_entries; i++)
{
struct exfat_entry_name* name_entry;
name_entry = (struct exfat_entry_name*) &entries[2 + i];
name_entry->type = EXFAT_ENTRY_FILE_NAME;
name_entry->__unknown = 0;
memcpy(name_entry->name, name + i * EXFAT_ENAME_MAX,
EXFAT_ENAME_MAX * sizeof(le16_t));
}
meta1->checksum = exfat_calc_checksum(entries, 2 + name_entries);
rc = write_entries(ef, dir, entries, 2 + name_entries, new_offset);
if (rc != 0)
return rc;
memcpy(node->name, name, (EXFAT_NAME_MAX + 1) * sizeof(le16_t));
tree_detach(node);
tree_attach(dir, node);
return 0;
}
int exfat_rename(struct exfat* ef, const char* old_path, const char* new_path)
{
struct exfat_node* node;
struct exfat_node* existing;
struct exfat_node* dir;
off_t offset = -1;
le16_t name[EXFAT_NAME_MAX + 1];
int rc;
rc = exfat_lookup(ef, &node, old_path);
if (rc != 0)
return rc;
rc = exfat_split(ef, &dir, &existing, name, new_path);
if (rc != 0)
{
exfat_put_node(ef, node);
return rc;
}
/* check that target is not a subdirectory of the source */
if (node->attrib & EXFAT_ATTRIB_DIR)
{
struct exfat_node* p;
for (p = dir; p; p = p->parent)
if (node == p)
{
if (existing != NULL)
exfat_put_node(ef, existing);
exfat_put_node(ef, dir);
exfat_put_node(ef, node);
return -EINVAL;
}
}
if (existing != NULL)
{
/* remove target if it's not the same node as source */
if (existing != node)
{
if (existing->attrib & EXFAT_ATTRIB_DIR)
{
if (node->attrib & EXFAT_ATTRIB_DIR)
rc = exfat_rmdir(ef, existing);
else
rc = -ENOTDIR;
}
else
{
if (!(node->attrib & EXFAT_ATTRIB_DIR))
rc = exfat_unlink(ef, existing);
else
rc = -EISDIR;
}
exfat_put_node(ef, existing);
if (rc != 0)
{
/* free clusters even if something went wrong; overwise they
will be just lost */
exfat_cleanup_node(ef, existing);
exfat_put_node(ef, dir);
exfat_put_node(ef, node);
return rc;
}
rc = exfat_cleanup_node(ef, existing);
if (rc != 0)
{
exfat_put_node(ef, dir);
exfat_put_node(ef, node);
return rc;
}
}
else
exfat_put_node(ef, existing);
}
rc = find_slot(ef, dir, &offset,
2 + DIV_ROUND_UP(utf16_length(name), EXFAT_ENAME_MAX));
if (rc != 0)
{
exfat_put_node(ef, dir);
exfat_put_node(ef, node);
return rc;
}
rc = rename_entry(ef, dir, node, name, offset);
if (rc != 0)
{
exfat_put_node(ef, dir);
exfat_put_node(ef, node);
return rc;
}
rc = exfat_flush_node(ef, dir);
exfat_put_node(ef, dir);
exfat_put_node(ef, node);
/* node itself is not marked as dirty, no need to flush it */
return rc;
}
void exfat_utimes(struct exfat_node* node, const struct timespec tv[2])
{
node->atime = tv[0].tv_sec;
node->mtime = tv[1].tv_sec;
node->is_dirty = true;
}
void exfat_update_atime(struct exfat_node* node)
{
node->atime = time(NULL);
node->is_dirty = true;
}
void exfat_update_mtime(struct exfat_node* node)
{
node->mtime = time(NULL);
node->is_dirty = true;
}
const char* exfat_get_label(struct exfat* ef)
{
return ef->label;
}
static int find_label(struct exfat* ef, off_t* offset)
{
struct exfat_entry entry;
int rc;
for (*offset = 0; ; *offset += sizeof(entry))
{
rc = read_entries(ef, ef->root, &entry, 1, *offset);
if (rc != 0)
return rc;
if (entry.type == EXFAT_ENTRY_LABEL)
return 0;
}
}
int exfat_set_label(struct exfat* ef, const char* label)
{
le16_t label_utf16[EXFAT_ENAME_MAX + 1];
int rc;
off_t offset;
struct exfat_entry_label entry;
memset(label_utf16, 0, sizeof(label_utf16));
rc = utf8_to_utf16(label_utf16, label, EXFAT_ENAME_MAX + 1, strlen(label));
if (rc != 0)
return rc;
rc = find_label(ef, &offset);
if (rc == -ENOENT)
rc = find_slot(ef, ef->root, &offset, 1);
if (rc != 0)
return rc;
entry.type = EXFAT_ENTRY_LABEL;
entry.length = utf16_length(label_utf16);
memcpy(entry.name, label_utf16, sizeof(entry.name));
if (entry.length == 0)
entry.type ^= EXFAT_ENTRY_VALID;
rc = write_entries(ef, ef->root, (struct exfat_entry*) &entry, 1, offset);
if (rc != 0)
return rc;
strcpy(ef->label, label);
return 0;
}
/*
platform.h (14.05.13)
OS-specific code (libc-specific in fact). Note that systems with the
same kernel can use different libc implementations.
Free exFAT implementation.
Copyright (C) 2010-2018 Andrew Nayenko
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#ifndef PLATFORM_H_INCLUDED
#define PLATFORM_H_INCLUDED
#if defined(__linux__) || defined(__GLIBC__) || defined(__GNU__)
#include <endian.h>
#include <byteswap.h>
#define exfat_bswap16(x) bswap_16(x)
#define exfat_bswap32(x) bswap_32(x)
#define exfat_bswap64(x) bswap_64(x)
#define EXFAT_BYTE_ORDER __BYTE_ORDER
#define EXFAT_LITTLE_ENDIAN __LITTLE_ENDIAN
#define EXFAT_BIG_ENDIAN __BIG_ENDIAN
#elif defined(__APPLE__)
#include <machine/endian.h>
#include <libkern/OSByteOrder.h>
#define exfat_bswap16(x) OSSwapInt16(x)
#define exfat_bswap32(x) OSSwapInt32(x)
#define exfat_bswap64(x) OSSwapInt64(x)
#define EXFAT_BYTE_ORDER BYTE_ORDER
#define EXFAT_LITTLE_ENDIAN LITTLE_ENDIAN
#define EXFAT_BIG_ENDIAN BIG_ENDIAN
#elif defined(__FreeBSD__) || defined(__DragonFly__) || defined(__NetBSD__) || defined(__OpenBSD__)
#include <sys/endian.h>
#define exfat_bswap16(x) bswap16(x)
#define exfat_bswap32(x) bswap32(x)
#define exfat_bswap64(x) bswap64(x)
#define EXFAT_BYTE_ORDER _BYTE_ORDER
#define EXFAT_LITTLE_ENDIAN _LITTLE_ENDIAN
#define EXFAT_BIG_ENDIAN _BIG_ENDIAN
#else
#error Unknown platform
#endif
#endif /* ifndef PLATFORM_H_INCLUDED */
/*
repair.c (09.03.17)
exFAT file system implementation library.
Free exFAT implementation.
Copyright (C) 2010-2018 Andrew Nayenko
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "exfat.h"
#include <strings.h>
int exfat_errors_fixed;
bool exfat_ask_to_fix(const struct exfat* ef)
{
const char* question = "Fix (Y/N)?";
char answer[8];
bool yeah, nope;
switch (ef->repair)
{
case EXFAT_REPAIR_NO:
return false;
case EXFAT_REPAIR_YES:
printf("%s %s", question, "Y\n");
return true;
case EXFAT_REPAIR_ASK:
do
{
printf("%s ", question);
fflush(stdout);
if (fgets(answer, sizeof(answer), stdin))
{
yeah = strcasecmp(answer, "Y\n") == 0;
nope = strcasecmp(answer, "N\n") == 0;
}
else
{
yeah = false;
nope = true;
}
}
while (!yeah && !nope);
return yeah;
}
exfat_bug("invalid repair option value: %d", ef->repair);
return false;
}
bool exfat_fix_invalid_vbr_checksum(const struct exfat* ef, void* sector,
uint32_t vbr_checksum)
{
size_t i;
off_t sector_size = SECTOR_SIZE(*ef->sb);
for (i = 0; i < sector_size / sizeof(vbr_checksum); i++)
((le32_t*) sector)[i] = cpu_to_le32(vbr_checksum);
if (exfat_pwrite(ef->dev, sector, sector_size, 11 * sector_size) < 0)
{
exfat_error("failed to write correct VBR checksum");
return false;
}
exfat_errors_fixed++;
return true;
}
bool exfat_fix_invalid_node_checksum(const struct exfat* ef,
struct exfat_node* node)
{
/* checksum will be rewritten by exfat_flush_node() */
node->is_dirty = true;
exfat_errors_fixed++;
return true;
}
bool exfat_fix_unknown_entry(struct exfat* ef, struct exfat_node* dir,
const struct exfat_entry* entry, off_t offset)
{
struct exfat_entry deleted = *entry;
deleted.type &= ~EXFAT_ENTRY_VALID;
if (exfat_generic_pwrite(ef, dir, &deleted, sizeof(struct exfat_entry),
offset) != sizeof(struct exfat_entry))
return false;
exfat_errors_fixed++;
return true;
}
/*
time.c (03.02.12)
exFAT file system implementation library.
Free exFAT implementation.
Copyright (C) 2010-2018 Andrew Nayenko
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "exfat.h"
/* timezone offset from UTC in seconds; positive for western timezones,
negative for eastern ones */
static long exfat_timezone;
#define SEC_IN_MIN 60ll
#define SEC_IN_HOUR (60 * SEC_IN_MIN)
#define SEC_IN_DAY (24 * SEC_IN_HOUR)
#define SEC_IN_YEAR (365 * SEC_IN_DAY) /* not leap year */
/* Unix epoch started at 0:00:00 UTC 1 January 1970 */
#define UNIX_EPOCH_YEAR 1970
/* exFAT epoch started at 0:00:00 UTC 1 January 1980 */
#define EXFAT_EPOCH_YEAR 1980
/* number of years from Unix epoch to exFAT epoch */
#define EPOCH_DIFF_YEAR (EXFAT_EPOCH_YEAR - UNIX_EPOCH_YEAR)
/* number of days from Unix epoch to exFAT epoch (considering leap days) */
#define EPOCH_DIFF_DAYS (EPOCH_DIFF_YEAR * 365 + EPOCH_DIFF_YEAR / 4)
/* number of seconds from Unix epoch to exFAT epoch (considering leap days) */
#define EPOCH_DIFF_SEC (EPOCH_DIFF_DAYS * SEC_IN_DAY)
/* number of leap years passed from exFAT epoch to the specified year
(excluding the specified year itself) */
#define LEAP_YEARS(year) ((EXFAT_EPOCH_YEAR + (year) - 1) / 4 \
- (EXFAT_EPOCH_YEAR - 1) / 4)
/* checks whether the specified year is leap */
#define IS_LEAP_YEAR(year) ((EXFAT_EPOCH_YEAR + (year)) % 4 == 0)
static const time_t days_in_year[] =
{
/* Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec */
0, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334
};
time_t exfat_exfat2unix(le16_t date, le16_t time, uint8_t centisec)
{
time_t unix_time = EPOCH_DIFF_SEC;
uint16_t ndate = le16_to_cpu(date);
uint16_t ntime = le16_to_cpu(time);
uint16_t day = ndate & 0x1f; /* 5 bits, 1-31 */
uint16_t month = ndate >> 5 & 0xf; /* 4 bits, 1-12 */
uint16_t year = ndate >> 9; /* 7 bits, 1-127 (+1980) */
uint16_t twosec = ntime & 0x1f; /* 5 bits, 0-29 (2 sec granularity) */
uint16_t min = ntime >> 5 & 0x3f; /* 6 bits, 0-59 */
uint16_t hour = ntime >> 11; /* 5 bits, 0-23 */
if (day == 0 || month == 0 || month > 12)
{
exfat_error("bad date %u-%02hu-%02hu",
year + EXFAT_EPOCH_YEAR, month, day);
return 0;
}
if (hour > 23 || min > 59 || twosec > 29)
{
exfat_error("bad time %hu:%02hu:%02u",
hour, min, twosec * 2);
return 0;
}
if (centisec > 199)
{
exfat_error("bad centiseconds count %hhu", centisec);
return 0;
}
/* every 4th year between 1904 and 2096 is leap */
unix_time += year * SEC_IN_YEAR + LEAP_YEARS(year) * SEC_IN_DAY;
unix_time += days_in_year[month] * SEC_IN_DAY;
/* if it's leap year and February has passed we should add 1 day */
if ((EXFAT_EPOCH_YEAR + year) % 4 == 0 && month > 2)
unix_time += SEC_IN_DAY;
unix_time += (day - 1) * SEC_IN_DAY;
unix_time += hour * SEC_IN_HOUR;
unix_time += min * SEC_IN_MIN;
/* exFAT represents time with 2 sec granularity */
unix_time += twosec * 2;
unix_time += centisec / 100;
/* exFAT stores timestamps in local time, so we correct it to UTC */
unix_time += exfat_timezone;
return unix_time;
}
void exfat_unix2exfat(time_t unix_time, le16_t* date, le16_t* time,
uint8_t* centisec)
{
time_t shift = EPOCH_DIFF_SEC + exfat_timezone;
uint16_t day, month, year;
uint16_t twosec, min, hour;
int days;
int i;
/* time before exFAT epoch cannot be represented */
if (unix_time < shift)
unix_time = shift;
unix_time -= shift;
days = unix_time / SEC_IN_DAY;
year = (4 * days) / (4 * 365 + 1);
days -= year * 365 + LEAP_YEARS(year);
month = 0;
for (i = 1; i <= 12; i++)
{
int leap_day = (IS_LEAP_YEAR(year) && i == 2);
int leap_sub = (IS_LEAP_YEAR(year) && i >= 3);
if (i == 12 || days - leap_sub < days_in_year[i + 1] + leap_day)
{
month = i;
days -= days_in_year[i] + leap_sub;
break;
}
}
day = days + 1;
hour = (unix_time % SEC_IN_DAY) / SEC_IN_HOUR;
min = (unix_time % SEC_IN_HOUR) / SEC_IN_MIN;
twosec = (unix_time % SEC_IN_MIN) / 2;
*date = cpu_to_le16(day | (month << 5) | (year << 9));
*time = cpu_to_le16(twosec | (min << 5) | (hour << 11));
if (centisec)
*centisec = (unix_time % 2) * 100;
}
void exfat_tzset(void)
{
time_t now;
struct tm* utc;
tzset();
now = time(NULL);
utc = gmtime(&now);
/* gmtime() always sets tm_isdst to 0 because daylight savings never
affect UTC. Setting tm_isdst to -1 makes mktime() to determine whether
summer time is in effect. */
utc->tm_isdst = -1;
exfat_timezone = mktime(utc) - now;
}
/*
utf.c (13.09.09)
exFAT file system implementation library.
Free exFAT implementation.
Copyright (C) 2010-2018 Andrew Nayenko
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "exfat.h"
#include <errno.h>
static char* wchar_to_utf8(char* output, wchar_t wc, size_t outsize)
{
if (wc <= 0x7f)
{
if (outsize < 1)
return NULL;
*output++ = (char) wc;
}
else if (wc <= 0x7ff)
{
if (outsize < 2)
return NULL;
*output++ = 0xc0 | (wc >> 6);
*output++ = 0x80 | (wc & 0x3f);
}
else if (wc <= 0xffff)
{
if (outsize < 3)
return NULL;
*output++ = 0xe0 | (wc >> 12);
*output++ = 0x80 | ((wc >> 6) & 0x3f);
*output++ = 0x80 | (wc & 0x3f);
}
else if (wc <= 0x1fffff)
{
if (outsize < 4)
return NULL;
*output++ = 0xf0 | (wc >> 18);
*output++ = 0x80 | ((wc >> 12) & 0x3f);
*output++ = 0x80 | ((wc >> 6) & 0x3f);
*output++ = 0x80 | (wc & 0x3f);
}
else if (wc <= 0x3ffffff)
{
if (outsize < 5)
return NULL;
*output++ = 0xf8 | (wc >> 24);
*output++ = 0x80 | ((wc >> 18) & 0x3f);
*output++ = 0x80 | ((wc >> 12) & 0x3f);
*output++ = 0x80 | ((wc >> 6) & 0x3f);
*output++ = 0x80 | (wc & 0x3f);
}
else if (wc <= 0x7fffffff)
{
if (outsize < 6)
return NULL;
*output++ = 0xfc | (wc >> 30);
*output++ = 0x80 | ((wc >> 24) & 0x3f);
*output++ = 0x80 | ((wc >> 18) & 0x3f);
*output++ = 0x80 | ((wc >> 12) & 0x3f);
*output++ = 0x80 | ((wc >> 6) & 0x3f);
*output++ = 0x80 | (wc & 0x3f);
}
else
return NULL;
return output;
}
static const le16_t* utf16_to_wchar(const le16_t* input, wchar_t* wc,
size_t insize)
{
if ((le16_to_cpu(input[0]) & 0xfc00) == 0xd800)
{
if (insize < 2 || (le16_to_cpu(input[1]) & 0xfc00) != 0xdc00)
return NULL;
*wc = ((wchar_t) (le16_to_cpu(input[0]) & 0x3ff) << 10);
*wc |= (le16_to_cpu(input[1]) & 0x3ff);
*wc += 0x10000;
return input + 2;
}
else
{
*wc = le16_to_cpu(*input);
return input + 1;
}
}
int utf16_to_utf8(char* output, const le16_t* input, size_t outsize,
size_t insize)
{
const le16_t* inp = input;
char* outp = output;
wchar_t wc;
while (inp - input < insize)
{
inp = utf16_to_wchar(inp, &wc, insize - (inp - input));
if (inp == NULL)
{
exfat_error("illegal UTF-16 sequence");
return -EILSEQ;
}
outp = wchar_to_utf8(outp, wc, outsize - (outp - output));
if (outp == NULL)
{
exfat_error("name is too long");
return -ENAMETOOLONG;
}
if (wc == 0)
return 0;
}
if (outp - output >= outsize)
{
exfat_error("name is too long");
return -ENAMETOOLONG;
}
*outp = '\0';
return 0;
}
static const char* utf8_to_wchar(const char* input, wchar_t* wc,
size_t insize)
{
if ((input[0] & 0x80) == 0 && insize >= 1)
{
*wc = (wchar_t) input[0];
return input + 1;
}
if ((input[0] & 0xe0) == 0xc0 && insize >= 2)
{
*wc = (((wchar_t) input[0] & 0x1f) << 6) |
((wchar_t) input[1] & 0x3f);
return input + 2;
}
if ((input[0] & 0xf0) == 0xe0 && insize >= 3)
{
*wc = (((wchar_t) input[0] & 0x0f) << 12) |
(((wchar_t) input[1] & 0x3f) << 6) |
((wchar_t) input[2] & 0x3f);
return input + 3;
}
if ((input[0] & 0xf8) == 0xf0 && insize >= 4)
{
*wc = (((wchar_t) input[0] & 0x07) << 18) |
(((wchar_t) input[1] & 0x3f) << 12) |
(((wchar_t) input[2] & 0x3f) << 6) |
((wchar_t) input[3] & 0x3f);
return input + 4;
}
if ((input[0] & 0xfc) == 0xf8 && insize >= 5)
{
*wc = (((wchar_t) input[0] & 0x03) << 24) |
(((wchar_t) input[1] & 0x3f) << 18) |
(((wchar_t) input[2] & 0x3f) << 12) |
(((wchar_t) input[3] & 0x3f) << 6) |
((wchar_t) input[4] & 0x3f);
return input + 5;
}
if ((input[0] & 0xfe) == 0xfc && insize >= 6)
{
*wc = (((wchar_t) input[0] & 0x01) << 30) |
(((wchar_t) input[1] & 0x3f) << 24) |
(((wchar_t) input[2] & 0x3f) << 18) |
(((wchar_t) input[3] & 0x3f) << 12) |
(((wchar_t) input[4] & 0x3f) << 6) |
((wchar_t) input[5] & 0x3f);
return input + 6;
}
return NULL;
}
static le16_t* wchar_to_utf16(le16_t* output, wchar_t wc, size_t outsize)
{
if (wc <= 0xffff) /* if character is from BMP */
{
if (outsize == 0)
return NULL;
output[0] = cpu_to_le16(wc);
return output + 1;
}
if (outsize < 2)
return NULL;
wc -= 0x10000;
output[0] = cpu_to_le16(0xd800 | ((wc >> 10) & 0x3ff));
output[1] = cpu_to_le16(0xdc00 | (wc & 0x3ff));
return output + 2;
}
int utf8_to_utf16(le16_t* output, const char* input, size_t outsize,
size_t insize)
{
const char* inp = input;
le16_t* outp = output;
wchar_t wc;
while (inp - input < insize)
{
inp = utf8_to_wchar(inp, &wc, insize - (inp - input));
if (inp == NULL)
{
exfat_error("illegal UTF-8 sequence");
return -EILSEQ;
}
outp = wchar_to_utf16(outp, wc, outsize - (outp - output));
if (outp == NULL)
{
exfat_error("name is too long");
return -ENAMETOOLONG;
}
if (wc == 0)
break;
}
if (outp - output >= outsize)
{
exfat_error("name is too long");
return -ENAMETOOLONG;
}
*outp = cpu_to_le16(0);
return 0;
}
size_t utf16_length(const le16_t* str)
{
size_t i = 0;
while (le16_to_cpu(str[i]))
i++;
return i;
}
/*
utils.c (04.09.09)
exFAT file system implementation library.
Free exFAT implementation.
Copyright (C) 2010-2018 Andrew Nayenko
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "exfat.h"
#include <string.h>
#include <stdio.h>
#include <inttypes.h>
void exfat_stat(const struct exfat* ef, const struct exfat_node* node,
struct stat* stbuf)
{
memset(stbuf, 0, sizeof(struct stat));
if (node->attrib & EXFAT_ATTRIB_DIR)
stbuf->st_mode = S_IFDIR | (0777 & ~ef->dmask);
else
stbuf->st_mode = S_IFREG | (0777 & ~ef->fmask);
stbuf->st_nlink = 1;
stbuf->st_uid = ef->uid;
stbuf->st_gid = ef->gid;
stbuf->st_size = node->size;
stbuf->st_blocks = ROUND_UP(node->size, CLUSTER_SIZE(*ef->sb)) / 512;
stbuf->st_mtime = node->mtime;
stbuf->st_atime = node->atime;
/* set ctime to mtime to ensure we don't break programs that rely on ctime
(e.g. rsync) */
stbuf->st_ctime = node->mtime;
}
void exfat_get_name(const struct exfat_node* node,
char buffer[EXFAT_UTF8_NAME_BUFFER_MAX])
{
if (utf16_to_utf8(buffer, node->name, EXFAT_UTF8_NAME_BUFFER_MAX,
EXFAT_NAME_MAX) != 0)
exfat_bug("failed to convert name to UTF-8");
}
static uint16_t add_checksum_byte(uint16_t sum, uint8_t byte)
{
return ((sum << 15) | (sum >> 1)) + byte;
}
static uint16_t add_checksum_bytes(uint16_t sum, const void* buffer, size_t n)
{
int i;
for (i = 0; i < n; i++)
sum = add_checksum_byte(sum, ((const uint8_t*) buffer)[i]);
return sum;
}
uint16_t exfat_start_checksum(const struct exfat_entry_meta1* entry)
{
uint16_t sum = 0;
int i;
for (i = 0; i < sizeof(struct exfat_entry); i++)
if (i != 2 && i != 3) /* skip checksum field itself */
sum = add_checksum_byte(sum, ((const uint8_t*) entry)[i]);
return sum;
}
uint16_t exfat_add_checksum(const void* entry, uint16_t sum)
{
return add_checksum_bytes(sum, entry, sizeof(struct exfat_entry));
}
le16_t exfat_calc_checksum(const struct exfat_entry* entries, int n)
{
uint16_t checksum;
int i;
checksum = exfat_start_checksum((const struct exfat_entry_meta1*) entries);
for (i = 1; i < n; i++)
checksum = exfat_add_checksum(entries + i, checksum);
return cpu_to_le16(checksum);
}
uint32_t exfat_vbr_start_checksum(const void* sector, size_t size)
{
size_t i;
uint32_t sum = 0;
for (i = 0; i < size; i++)
/* skip volume_state and allocated_percent fields */
if (i != 0x6a && i != 0x6b && i != 0x70)
sum = ((sum << 31) | (sum >> 1)) + ((const uint8_t*) sector)[i];
return sum;
}
uint32_t exfat_vbr_add_checksum(const void* sector, size_t size, uint32_t sum)
{
size_t i;
for (i = 0; i < size; i++)
sum = ((sum << 31) | (sum >> 1)) + ((const uint8_t*) sector)[i];
return sum;
}
le16_t exfat_calc_name_hash(const struct exfat* ef, const le16_t* name,
size_t length)
{
size_t i;
uint16_t hash = 0;
for (i = 0; i < length; i++)
{
uint16_t c = le16_to_cpu(name[i]);
/* convert to upper case */
c = ef->upcase[c];
hash = ((hash << 15) | (hash >> 1)) + (c & 0xff);
hash = ((hash << 15) | (hash >> 1)) + (c >> 8);
}
return cpu_to_le16(hash);
}
void exfat_humanize_bytes(uint64_t value, struct exfat_human_bytes* hb)
{
size_t i;
/* 16 EB (minus 1 byte) is the largest size that can be represented by
uint64_t */
const char* units[] = {"bytes", "KB", "MB", "GB", "TB", "PB", "EB"};
uint64_t divisor = 1;
uint64_t temp = 0;
for (i = 0; ; i++, divisor *= 1024)
{
temp = (value + divisor / 2) / divisor;
if (temp == 0)
break;
if (temp / 1024 * 1024 == temp)
continue;
if (temp < 10240)
break;
}
hb->value = temp;
hb->unit = units[i];
}
void exfat_print_info(const struct exfat_super_block* sb,
uint32_t free_clusters)
{
struct exfat_human_bytes hb;
off_t total_space = le64_to_cpu(sb->sector_count) * SECTOR_SIZE(*sb);
off_t avail_space = (off_t) free_clusters * CLUSTER_SIZE(*sb);
printf("File system version %hhu.%hhu\n",
sb->version.major, sb->version.minor);
exfat_humanize_bytes(SECTOR_SIZE(*sb), &hb);
printf("Sector size %10"PRIu64" %s\n", hb.value, hb.unit);
exfat_humanize_bytes(CLUSTER_SIZE(*sb), &hb);
printf("Cluster size %10"PRIu64" %s\n", hb.value, hb.unit);
exfat_humanize_bytes(total_space, &hb);
printf("Volume size %10"PRIu64" %s\n", hb.value, hb.unit);
exfat_humanize_bytes(total_space - avail_space, &hb);
printf("Used space %10"PRIu64" %s\n", hb.value, hb.unit);
exfat_humanize_bytes(avail_space, &hb);
printf("Available space %10"PRIu64" %s\n", hb.value, hb.unit);
}
/*
cbm.c (09.11.10)
Clusters Bitmap creation code.
Free exFAT implementation.
Copyright (C) 2011-2018 Andrew Nayenko
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "cbm.h"
#include "fat.h"
#include "uct.h"
#include "rootdir.h"
#include <limits.h>
#include <string.h>
static off_t cbm_alignment(void)
{
return get_cluster_size();
}
static off_t cbm_size(void)
{
return DIV_ROUND_UP(
(get_volume_size() - get_position(&cbm)) / get_cluster_size(),
CHAR_BIT);
}
static int cbm_write(struct exfat_dev* dev)
{
uint32_t allocated_clusters =
DIV_ROUND_UP(cbm.get_size(), get_cluster_size()) +
DIV_ROUND_UP(uct.get_size(), get_cluster_size()) +
DIV_ROUND_UP(rootdir.get_size(), get_cluster_size());
size_t bitmap_size = ROUND_UP(allocated_clusters, CHAR_BIT);
bitmap_t* bitmap = malloc(BMAP_SIZE(bitmap_size));
size_t i;
if (bitmap == NULL)
{
exfat_error("failed to allocate bitmap of %zu bytes",
BMAP_SIZE(bitmap_size));
return 1;
}
memset(bitmap, 0, BMAP_SIZE(bitmap_size));
for (i = 0; i < bitmap_size; i++)
if (i < allocated_clusters)
BMAP_SET(bitmap, i);
if (exfat_write(dev, bitmap, bitmap_size / CHAR_BIT) < 0)
{
free(bitmap);
exfat_error("failed to write bitmap of %zu bytes",
bitmap_size / CHAR_BIT);
return 1;
}
free(bitmap);
return 0;
}
const struct fs_object cbm =
{
.get_alignment = cbm_alignment,
.get_size = cbm_size,
.write = cbm_write,
};
/*
cbm.h (09.11.10)
Clusters Bitmap creation code.
Free exFAT implementation.
Copyright (C) 2011-2018 Andrew Nayenko
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#ifndef MKFS_CBM_H_INCLUDED
#define MKFS_CBM_H_INCLUDED
#include "mkexfat.h"
extern const struct fs_object cbm;
#endif /* ifndef MKFS_CBM_H_INCLUDED */
/*
fat.c (09.11.10)
File Allocation Table creation code.
Free exFAT implementation.
Copyright (C) 2011-2018 Andrew Nayenko
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "fat.h"
#include "cbm.h"
#include "uct.h"
#include "rootdir.h"
#include <unistd.h>
static off_t fat_alignment(void)
{
return (off_t) 128 * get_sector_size();
}
static off_t fat_size(void)
{
return get_volume_size() / get_cluster_size() * sizeof(cluster_t);
}
static cluster_t fat_write_entry(struct exfat_dev* dev, cluster_t cluster,
cluster_t value)
{
le32_t fat_entry = cpu_to_le32(value);
if (exfat_write(dev, &fat_entry, sizeof(fat_entry)) < 0)
{
exfat_error("failed to write FAT entry 0x%x", value);
return 0;
}
return cluster + 1;
}
static cluster_t fat_write_entries(struct exfat_dev* dev, cluster_t cluster,
uint64_t length)
{
cluster_t end = cluster + DIV_ROUND_UP(length, get_cluster_size());
while (cluster < end - 1)
{
cluster = fat_write_entry(dev, cluster, cluster + 1);
if (cluster == 0)
return 0;
}
return fat_write_entry(dev, cluster, EXFAT_CLUSTER_END);
}
static int fat_write(struct exfat_dev* dev)
{
cluster_t c = 0;
if (!(c = fat_write_entry(dev, c, 0xfffffff8))) /* media type */
return 1;
if (!(c = fat_write_entry(dev, c, 0xffffffff))) /* some weird constant */
return 1;
if (!(c = fat_write_entries(dev, c, cbm.get_size())))
return 1;
if (!(c = fat_write_entries(dev, c, uct.get_size())))
return 1;
if (!(c = fat_write_entries(dev, c, rootdir.get_size())))
return 1;
return 0;
}
const struct fs_object fat =
{
.get_alignment = fat_alignment,
.get_size = fat_size,
.write = fat_write,
};
/*
fat.h (09.11.10)
File Allocation Table creation code.
Free exFAT implementation.
Copyright (C) 2011-2018 Andrew Nayenko
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#ifndef MKFS_FAT_H_INCLUDED
#define MKFS_FAT_H_INCLUDED
#include "mkexfat.h"
extern const struct fs_object fat;
#endif /* ifndef MKFS_FAT_H_INCLUDED */
/*
mkexfat.c (22.04.12)
FS creation engine.
Free exFAT implementation.
Copyright (C) 2011-2018 Andrew Nayenko
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "mkexfat.h"
#include <sys/types.h>
#include <unistd.h>
#include <inttypes.h>
#include <stdio.h>
#include <string.h>
static int check_size(off_t volume_size)
{
const struct fs_object** pp;
off_t position = 0;
for (pp = objects; *pp; pp++)
{
position = ROUND_UP(position, (*pp)->get_alignment());
position += (*pp)->get_size();
}
if (position > volume_size)
{
struct exfat_human_bytes vhb;
exfat_humanize_bytes(volume_size, &vhb);
exfat_error("too small device (%"PRIu64" %s)", vhb.value, vhb.unit);
return 1;
}
return 0;
}
static int erase_object(struct exfat_dev* dev, const void* block,
size_t block_size, off_t start, off_t size)
{
const off_t block_count = DIV_ROUND_UP(size, block_size);
off_t i;
if (exfat_seek(dev, start, SEEK_SET) == (off_t) -1)
{
exfat_error("seek to 0x%"PRIx64" failed", start);
return 1;
}
for (i = 0; i < size; i += block_size)
{
if (exfat_write(dev, block, MIN(size - i, block_size)) < 0)
{
exfat_error("failed to erase block %"PRIu64"/%"PRIu64
" at 0x%"PRIx64, i + 1, block_count, start);
return 1;
}
}
return 0;
}
static int erase(struct exfat_dev* dev)
{
const struct fs_object** pp;
off_t position = 0;
const size_t block_size = 1024 * 1024;
void* block = malloc(block_size);
if (block == NULL)
{
exfat_error("failed to allocate erase block of %zu bytes", block_size);
return 1;
}
memset(block, 0, block_size);
for (pp = objects; *pp; pp++)
{
position = ROUND_UP(position, (*pp)->get_alignment());
if (erase_object(dev, block, block_size, position,
(*pp)->get_size()) != 0)
{
free(block);
return 1;
}
position += (*pp)->get_size();
}
free(block);
return 0;
}
static int create(struct exfat_dev* dev)
{
const struct fs_object** pp;
off_t position = 0;
for (pp = objects; *pp; pp++)
{
position = ROUND_UP(position, (*pp)->get_alignment());
if (exfat_seek(dev, position, SEEK_SET) == (off_t) -1)
{
exfat_error("seek to 0x%"PRIx64" failed", position);
return 1;
}
if ((*pp)->write(dev) != 0)
return 1;
position += (*pp)->get_size();
}
return 0;
}
int mkfs(struct exfat_dev* dev, off_t volume_size)
{
if (check_size(volume_size) != 0)
return 1;
exfat_debug("Creating... ");
//fputs("Creating... ", stdout);
//fflush(stdout);
if (erase(dev) != 0)
return 1;
if (create(dev) != 0)
return 1;
//puts("done.");
//fputs("Flushing... ", stdout);
//fflush(stdout);
exfat_debug("Flushing... ");
if (exfat_fsync(dev) != 0)
return 1;
//puts("done.");
return 0;
}
off_t get_position(const struct fs_object* object)
{
const struct fs_object** pp;
off_t position = 0;
for (pp = objects; *pp; pp++)
{
position = ROUND_UP(position, (*pp)->get_alignment());
if (*pp == object)
return position;
position += (*pp)->get_size();
}
exfat_bug("unknown object");
return 0;
}
/*
mkexfat.h (09.11.10)
FS creation engine.
Free exFAT implementation.
Copyright (C) 2011-2018 Andrew Nayenko
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#ifndef MKFS_MKEXFAT_H_INCLUDED
#define MKFS_MKEXFAT_H_INCLUDED
#include "exfat.h"
struct fs_object
{
off_t (*get_alignment)(void);
off_t (*get_size)(void);
int (*write)(struct exfat_dev* dev);
};
extern const struct fs_object* objects[];
int get_sector_bits(void);
int get_spc_bits(void);
off_t get_volume_size(void);
const le16_t* get_volume_label(void);
uint32_t get_volume_serial(void);
uint64_t get_first_sector(void);
int get_sector_size(void);
int get_cluster_size(void);
int mkfs(struct exfat_dev* dev, off_t volume_size);
off_t get_position(const struct fs_object* object);
#endif /* ifndef MKFS_MKEXFAT_H_INCLUDED */
/*
main.c (15.08.10)
Creates exFAT file system.
Free exFAT implementation.
Copyright (C) 2011-2018 Andrew Nayenko
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "mkexfat.h"
#include "vbr.h"
#include "fat.h"
#include "cbm.h"
#include "uct.h"
#include "rootdir.h"
#include "exfat.h"
#include <sys/types.h>
#include <sys/time.h>
#include <unistd.h>
#include <inttypes.h>
#include <stdio.h>
#include <string.h>
#include <limits.h>
const struct fs_object* objects[] =
{
&vbr,
&vbr,
&fat,
/* clusters heap */
&cbm,
&uct,
&rootdir,
NULL,
};
static struct
{
int sector_bits;
int spc_bits;
off_t volume_size;
le16_t volume_label[EXFAT_ENAME_MAX + 1];
uint32_t volume_serial;
uint64_t first_sector;
}
param;
extern int g_vtoy_exfat_disk_fd;
extern uint64_t g_vtoy_exfat_part_size;
int get_sector_bits(void)
{
return param.sector_bits;
}
int get_spc_bits(void)
{
return param.spc_bits;
}
off_t get_volume_size(void)
{
return param.volume_size;
}
const le16_t* get_volume_label(void)
{
return param.volume_label;
}
uint32_t get_volume_serial(void)
{
return param.volume_serial;
}
uint64_t get_first_sector(void)
{
return param.first_sector;
}
int get_sector_size(void)
{
return 1 << get_sector_bits();
}
int get_cluster_size(void)
{
return get_sector_size() << get_spc_bits();
}
static int setup_spc_bits(int sector_bits, int user_defined, off_t volume_size)
{
int i;
if (user_defined != -1)
{
off_t cluster_size = 1 << sector_bits << user_defined;
if (volume_size / cluster_size > EXFAT_LAST_DATA_CLUSTER)
{
struct exfat_human_bytes chb, vhb;
exfat_humanize_bytes(cluster_size, &chb);
exfat_humanize_bytes(volume_size, &vhb);
exfat_error("cluster size %"PRIu64" %s is too small for "
"%"PRIu64" %s volume, try -s %d",
chb.value, chb.unit,
vhb.value, vhb.unit,
1 << setup_spc_bits(sector_bits, -1, volume_size));
return -1;
}
return user_defined;
}
if (volume_size < 256ull * 1024 * 1024)
return MAX(0, 12 - sector_bits); /* 4 KB */
if (volume_size < 32ull * 1024 * 1024 * 1024)
return MAX(0, 15 - sector_bits); /* 32 KB */
for (i = 17; ; i++) /* 128 KB or more */
if (DIV_ROUND_UP(volume_size, 1 << i) <= EXFAT_LAST_DATA_CLUSTER)
return MAX(0, i - sector_bits);
}
static int setup_volume_label(le16_t label[EXFAT_ENAME_MAX + 1], const char* s)
{
memset(label, 0, (EXFAT_ENAME_MAX + 1) * sizeof(le16_t));
if (s == NULL)
return 0;
return utf8_to_utf16(label, s, EXFAT_ENAME_MAX + 1, strlen(s));
}
static uint32_t setup_volume_serial(uint32_t user_defined)
{
struct timeval now;
if (user_defined != 0)
return user_defined;
if (gettimeofday(&now, NULL) != 0)
{
exfat_error("failed to form volume id");
return 0;
}
return (now.tv_sec << 20) | now.tv_usec;
}
static int setup(struct exfat_dev* dev, int sector_bits, int spc_bits,
const char* volume_label, uint32_t volume_serial,
uint64_t first_sector)
{
param.sector_bits = sector_bits;
param.first_sector = first_sector;
param.volume_size = exfat_get_size(dev);
param.spc_bits = setup_spc_bits(sector_bits, spc_bits, param.volume_size);
if (param.spc_bits == -1)
return 1;
if (setup_volume_label(param.volume_label, volume_label) != 0)
return 1;
param.volume_serial = setup_volume_serial(volume_serial);
if (param.volume_serial == 0)
return 1;
return mkfs(dev, param.volume_size);
}
static int logarithm2(int n)
{
int i;
for (i = 0; i < sizeof(int) * CHAR_BIT - 1; i++)
if ((1 << i) == n)
return i;
return -1;
}
static void usage(const char* prog)
{
fprintf(stderr, "Usage: %s [-i volume-id] [-n label] "
"[-p partition-first-sector] "
"[-s sectors-per-cluster] [-V] <device>\n", prog);
exit(1);
}
int mkexfat_main(const char *devpath, int fd, uint64_t part_sector_count)
{
int spc_bits = -1;
uint32_t volume_serial = 0;
uint64_t first_sector = 0;
struct exfat_dev* dev;
#if 0
while ((opt = getopt(argc, argv, "i:n:p:s:V")) != -1)
{
switch (opt)
{
case 'i':
volume_serial = strtol(optarg, NULL, 16);
break;
case 'n':
volume_label = optarg;
break;
case 'p':
first_sector = strtoll(optarg, NULL, 10);
break;
case 's':
spc_bits = logarithm2(atoi(optarg));
if (spc_bits < 0)
{
exfat_error("invalid option value: '%s'", optarg);
return 1;
}
break;
case 'V':
puts("Copyright (C) 2011-2018 Andrew Nayenko");
return 0;
default:
usage(argv[0]);
break;
}
}
#endif /* #if 0 */
/*
* DiskSize > 32GB Cluster Size use 128KB
* DiskSize < 32GB Cluster Size use 32KB
*/
if ((part_sector_count / 2097152) > 32)
{
spc_bits = logarithm2(256);
}
else
{
spc_bits = logarithm2(64);
}
g_vtoy_exfat_disk_fd = fd;
g_vtoy_exfat_part_size = part_sector_count * 512;
dev = exfat_open(devpath, EXFAT_MODE_RW);
if (dev == NULL)
return 1;
if (setup(dev, 9, spc_bits, "Ventoy", volume_serial, first_sector) != 0)
{
exfat_close(dev);
return 1;
}
if (exfat_close(dev) != 0)
return 1;
return 0;
}
/*
rootdir.c (09.11.10)
Root directory creation code.
Free exFAT implementation.
Copyright (C) 2011-2018 Andrew Nayenko
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "rootdir.h"
#include "uct.h"
#include "cbm.h"
#include "uctc.h"
#include <string.h>
static off_t rootdir_alignment(void)
{
return get_cluster_size();
}
static off_t rootdir_size(void)
{
return get_cluster_size();
}
static void init_label_entry(struct exfat_entry_label* label_entry)
{
memset(label_entry, 0, sizeof(struct exfat_entry_label));
label_entry->type = EXFAT_ENTRY_LABEL ^ EXFAT_ENTRY_VALID;
if (utf16_length(get_volume_label()) == 0)
return;
memcpy(label_entry->name, get_volume_label(),
EXFAT_ENAME_MAX * sizeof(le16_t));
label_entry->length = utf16_length(get_volume_label());
label_entry->type |= EXFAT_ENTRY_VALID;
}
static void init_bitmap_entry(struct exfat_entry_bitmap* bitmap_entry)
{
memset(bitmap_entry, 0, sizeof(struct exfat_entry_bitmap));
bitmap_entry->type = EXFAT_ENTRY_BITMAP;
bitmap_entry->start_cluster = cpu_to_le32(EXFAT_FIRST_DATA_CLUSTER);
bitmap_entry->size = cpu_to_le64(cbm.get_size());
}
static void init_upcase_entry(struct exfat_entry_upcase* upcase_entry)
{
size_t i;
uint32_t sum = 0;
for (i = 0; i < sizeof(upcase_table); i++)
sum = ((sum << 31) | (sum >> 1)) + upcase_table[i];
memset(upcase_entry, 0, sizeof(struct exfat_entry_upcase));
upcase_entry->type = EXFAT_ENTRY_UPCASE;
upcase_entry->checksum = cpu_to_le32(sum);
upcase_entry->start_cluster = cpu_to_le32(
(get_position(&uct) - get_position(&cbm)) / get_cluster_size() +
EXFAT_FIRST_DATA_CLUSTER);
upcase_entry->size = cpu_to_le64(sizeof(upcase_table));
}
static int rootdir_write(struct exfat_dev* dev)
{
struct exfat_entry_label label_entry;
struct exfat_entry_bitmap bitmap_entry;
struct exfat_entry_upcase upcase_entry;
init_label_entry(&label_entry);
init_bitmap_entry(&bitmap_entry);
init_upcase_entry(&upcase_entry);
if (exfat_write(dev, &label_entry, sizeof(struct exfat_entry)) < 0)
return 1;
if (exfat_write(dev, &bitmap_entry, sizeof(struct exfat_entry)) < 0)
return 1;
if (exfat_write(dev, &upcase_entry, sizeof(struct exfat_entry)) < 0)
return 1;
return 0;
}
const struct fs_object rootdir =
{
.get_alignment = rootdir_alignment,
.get_size = rootdir_size,
.write = rootdir_write,
};
/*
rootdir.h (09.11.10)
Root directory creation code.
Free exFAT implementation.
Copyright (C) 2011-2018 Andrew Nayenko
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#ifndef MKFS_ROOTDIR_H_INCLUDED
#define MKFS_ROOTDIR_H_INCLUDED
#include "mkexfat.h"
extern const struct fs_object rootdir;
#endif /* ifndef MKFS_ROOTDIR_H_INCLUDED */
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment