Commit 05a1b863 authored by longpanda's avatar longpanda
Browse files

initial commit

parent 2090c6fa
#ifndef _IPXE_SANBOOT_H
#define _IPXE_SANBOOT_H
/** @file
*
* iPXE sanboot API
*
* The sanboot API provides methods for hooking, unhooking,
* describing, and booting from SAN devices.
*/
FILE_LICENCE ( GPL2_OR_LATER_OR_UBDL );
#include <ipxe/api.h>
#include <ipxe/refcnt.h>
#include <ipxe/list.h>
#include <ipxe/uri.h>
#include <ipxe/retry.h>
#include <ipxe/process.h>
#include <ipxe/blockdev.h>
#include <ipxe/acpi.h>
#include <config/sanboot.h>
/** A SAN path */
struct san_path {
/** Containing SAN device */
struct san_device *sandev;
/** Path index */
unsigned int index;
/** SAN device URI */
struct uri *uri;
/** List of open/closed paths */
struct list_head list;
/** Underlying block device interface */
struct interface block;
/** Process */
struct process process;
/** Path status */
int path_rc;
/** ACPI descriptor (if applicable) */
struct acpi_descriptor *desc;
};
/** A SAN device */
struct san_device {
/** Reference count */
struct refcnt refcnt;
/** List of SAN devices */
struct list_head list;
/** Drive number */
unsigned int drive;
/** Flags */
unsigned int flags;
/** Command interface */
struct interface command;
/** Command timeout timer */
struct retry_timer timer;
/** Command status */
int command_rc;
/** Raw block device capacity */
struct block_device_capacity capacity;
/** Block size shift
*
* To allow for emulation of CD-ROM access, this represents
* the left-shift required to translate from exposed logical
* I/O blocks to underlying blocks.
*/
unsigned int blksize_shift;
/** Drive is a CD-ROM */
int is_cdrom;
/** Driver private data */
void *priv;
/** Number of paths */
unsigned int paths;
/** Current active path */
struct san_path *active;
/** List of opened SAN paths */
struct list_head opened;
/** List of closed SAN paths */
struct list_head closed;
/** SAN paths */
struct san_path path[0];
unsigned int exdrive;
int int13_command;
void *x86_regptr;
uint8_t boot_catalog_sector[2048];
};
/** SAN device flags */
enum san_device_flags {
/** Device should not be included in description tables */
SAN_NO_DESCRIBE = 0x0001,
};
/**
* Calculate static inline sanboot API function name
*
* @v _prefix Subsystem prefix
* @v _api_func API function
* @ret _subsys_func Subsystem API function
*/
#define SANBOOT_INLINE( _subsys, _api_func ) \
SINGLE_API_INLINE ( SANBOOT_PREFIX_ ## _subsys, _api_func )
/**
* Provide a sanboot API implementation
*
* @v _prefix Subsystem prefix
* @v _api_func API function
* @v _func Implementing function
*/
#define PROVIDE_SANBOOT( _subsys, _api_func, _func ) \
PROVIDE_SINGLE_API ( SANBOOT_PREFIX_ ## _subsys, _api_func, _func )
/**
* Provide a static inline sanboot API implementation
*
* @v _prefix Subsystem prefix
* @v _api_func API function
*/
#define PROVIDE_SANBOOT_INLINE( _subsys, _api_func ) \
PROVIDE_SINGLE_API_INLINE ( SANBOOT_PREFIX_ ## _subsys, _api_func )
/* Include all architecture-independent sanboot API headers */
#include <ipxe/null_sanboot.h>
#include <ipxe/dummy_sanboot.h>
#include <ipxe/efi/efi_block.h>
/* Include all architecture-dependent sanboot API headers */
#include <bits/sanboot.h>
/**
* Hook SAN device
*
* @v drive Drive number
* @v uris List of URIs
* @v count Number of URIs
* @v flags Flags
* @ret drive Drive number, or negative error
*/
int san_hook ( unsigned int drive, struct uri **uris, unsigned int count,
unsigned int flags );
/**
* Unhook SAN device
*
* @v drive Drive number
*/
void san_unhook ( unsigned int drive );
/**
* Attempt to boot from a SAN device
*
* @v drive Drive number
* @v filename Filename (or NULL to use default)
* @ret rc Return status code
*/
int san_boot ( unsigned int drive, const char *filename );
/**
* Describe SAN devices for SAN-booted operating system
*
* @ret rc Return status code
*/
int san_describe ( void );
extern struct list_head san_devices;
/** Iterate over all SAN devices */
#define for_each_sandev( sandev ) \
list_for_each_entry ( (sandev), &san_devices, list )
/** There exist some SAN devices
*
* @ret existence Existence of SAN devices
*/
static inline int have_sandevs ( void ) {
return ( ! list_empty ( &san_devices ) );
}
/**
* Get reference to SAN device
*
* @v sandev SAN device
* @ret sandev SAN device
*/
static inline __attribute__ (( always_inline )) struct san_device *
sandev_get ( struct san_device *sandev ) {
ref_get ( &sandev->refcnt );
return sandev;
}
/**
* Drop reference to SAN device
*
* @v sandev SAN device
*/
static inline __attribute__ (( always_inline )) void
sandev_put ( struct san_device *sandev ) {
ref_put ( &sandev->refcnt );
}
/**
* Calculate SAN device block size
*
* @v sandev SAN device
* @ret blksize Sector size
*/
static inline size_t sandev_blksize ( struct san_device *sandev ) {
return ( sandev->capacity.blksize << sandev->blksize_shift );
}
/**
* Calculate SAN device capacity
*
* @v sandev SAN device
* @ret blocks Number of blocks
*/
static inline uint64_t sandev_capacity ( struct san_device *sandev ) {
return ( sandev->capacity.blocks >> sandev->blksize_shift );
}
/**
* Check if SAN device needs to be reopened
*
* @v sandev SAN device
* @ret needs_reopen SAN device needs to be reopened
*/
static inline int sandev_needs_reopen ( struct san_device *sandev ) {
return ( sandev->active == NULL );
}
extern struct san_device * sandev_find ( unsigned int drive );
extern int sandev_reopen ( struct san_device *sandev );
extern int sandev_reset ( struct san_device *sandev );
extern int sandev_read ( struct san_device *sandev, uint64_t lba,
unsigned int count, userptr_t buffer );
extern int sandev_write ( struct san_device *sandev, uint64_t lba,
unsigned int count, userptr_t buffer );
extern struct san_device * alloc_sandev ( struct uri **uris, unsigned int count,
size_t priv_size );
extern int register_sandev ( struct san_device *sandev, unsigned int drive,
unsigned int flags );
extern void unregister_sandev ( struct san_device *sandev );
extern unsigned int san_default_drive ( void );
#endif /* _IPXE_SANBOOT_H */
#ifndef __VENTOY_VDISK_H__
#define __VENTOY_VDISK_H__
FILE_LICENCE ( GPL2_OR_LATER_OR_UBDL );
#define grub_uint64_t uint64_t
#define grub_uint32_t uint32_t
#define grub_uint16_t uint16_t
#define grub_uint8_t uint8_t
#define COMPILE_ASSERT(expr) extern char __compile_assert[(expr) ? 1 : -1]
#define VENTOY_GUID { 0x77772020, 0x2e77, 0x6576, { 0x6e, 0x74, 0x6f, 0x79, 0x2e, 0x6e, 0x65, 0x74 }}
#pragma pack(1)
typedef struct ventoy_guid
{
grub_uint32_t data1;
grub_uint16_t data2;
grub_uint16_t data3;
grub_uint8_t data4[8];
}ventoy_guid;
typedef struct ventoy_image_disk_region
{
grub_uint32_t image_sector_count; /* image sectors contained in this region */
grub_uint32_t image_start_sector; /* image sector start */
grub_uint64_t disk_start_sector; /* disk sector start */
}ventoy_image_disk_region;
typedef struct ventoy_image_location
{
ventoy_guid guid;
/* image sector size, currently this value is always 2048 */
grub_uint32_t image_sector_size;
/* disk sector size, normally the value is 512 */
grub_uint32_t disk_sector_size;
grub_uint32_t region_count;
/*
* disk region data
* If the image file has more than one fragments in disk,
* there will be more than one region data here.
*
*/
ventoy_image_disk_region regions[1];
/* ventoy_image_disk_region regions[2~region_count-1] */
}ventoy_image_location;
typedef struct ventoy_os_param
{
ventoy_guid guid; // VENTOY_GUID
grub_uint8_t chksum; // checksum
grub_uint8_t vtoy_disk_guid[16];
grub_uint64_t vtoy_disk_size; // disk size in bytes
grub_uint16_t vtoy_disk_part_id; // begin with 1
grub_uint16_t vtoy_disk_part_type; // 0:exfat 1:ntfs other: reserved
char vtoy_img_path[384]; // It seems to be enough, utf-8 format
grub_uint64_t vtoy_img_size; // image file size in bytes
/*
* Ventoy will write a copy of ventoy_image_location data into runtime memory
* this is the physically address and length of that memory.
* Address 0 means no such data exist.
* Address will be aligned by 4KB.
*
*/
grub_uint64_t vtoy_img_location_addr;
grub_uint32_t vtoy_img_location_len;
grub_uint64_t vtoy_reserved[4]; // Internal use by ventoy
grub_uint8_t reserved[31];
}ventoy_os_param;
#pragma pack()
// compile assert to check that size of ventoy_os_param must be 512
COMPILE_ASSERT(sizeof(ventoy_os_param) == 512);
#pragma pack(4)
typedef struct ventoy_chain_head
{
ventoy_os_param os_param;
grub_uint32_t disk_drive;
grub_uint32_t drive_map;
grub_uint32_t disk_sector_size;
grub_uint64_t real_img_size_in_bytes;
grub_uint64_t virt_img_size_in_bytes;
grub_uint32_t boot_catalog;
grub_uint8_t boot_catalog_sector[2048];
grub_uint32_t img_chunk_offset;
grub_uint32_t img_chunk_num;
grub_uint32_t override_chunk_offset;
grub_uint32_t override_chunk_num;
grub_uint32_t virt_chunk_offset;
grub_uint32_t virt_chunk_num;
}ventoy_chain_head;
typedef struct ventoy_img_chunk
{
grub_uint32_t img_start_sector; //2KB
grub_uint32_t img_end_sector;
grub_uint64_t disk_start_sector; // in disk_sector_size
grub_uint64_t disk_end_sector;
}ventoy_img_chunk;
typedef struct ventoy_override_chunk
{
grub_uint64_t img_offset;
grub_uint32_t override_size;
grub_uint8_t override_data[512];
}ventoy_override_chunk;
typedef struct ventoy_virt_chunk
{
grub_uint32_t mem_sector_start;
grub_uint32_t mem_sector_end;
grub_uint32_t mem_sector_offset;
grub_uint32_t remap_sector_start;
grub_uint32_t remap_sector_end;
grub_uint32_t org_sector_start;
}ventoy_virt_chunk;
#pragma pack()
#define ventoy_debug_pause() \
{\
printf("\nPress Ctrl+C to continue......");\
sleep(3600);\
printf("\n");\
}
typedef struct ventoy_sector_flag
{
uint8_t flag; // 0:init 1:mem 2:remap
uint64_t remap_lba;
}ventoy_sector_flag;
#define VENTOY_BIOS_FAKE_DRIVE 0xFE
extern char *g_cmdline_copy;
extern void *g_initrd_addr;
extern size_t g_initrd_len;
extern uint32_t g_disk_sector_size;
unsigned int ventoy_int13_hook (ventoy_chain_head *chain);
int ventoy_int13_boot ( unsigned int drive, void *imginfo, const char *cmdline);
void * ventoy_get_runtime_addr(void);
int ventoy_boot_vdisk(void *data);
uint32_t CalculateCrc32
(
const void *Buffer,
uint32_t Length,
uint32_t InitValue
);
struct smbios3_entry {
uint8_t signature[5];
/** Checksum */
uint8_t checksum;
/** Length */
uint8_t len;
/** Major version */
uint8_t major;
/** Minor version */
uint8_t minor;
uint8_t docrev;
uint8_t revision;
uint8_t reserved;
uint32_t maxsize;
uint64_t address;
} __attribute__ (( packed ));
//#undef DBGLVL
//#define DBGLVL 7
#endif /* __VENTOY_VDISK_H__ */
/*
* Copyright (C) 2008 Michael Brown <mbrown@fensystems.co.uk>.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA.
*
* You can also choose to distribute this program under the terms of
* the Unmodified Binary Distribution Licence (as given in the file
* COPYING.UBDL), provided that you have satisfied its requirements.
*/
FILE_LICENCE ( GPL2_OR_LATER_OR_UBDL );
#if 0
#include <stdlib.h>
#include <errno.h>
#include <ipxe/pci.h>
#include <ipxe/efi/efi.h>
#include <ipxe/efi/efi_pci.h>
#include <ipxe/efi/efi_driver.h>
#include <ipxe/efi/Protocol/PciIo.h>
#include <ipxe/efi/Protocol/PciRootBridgeIo.h>
/** @file
*
* iPXE PCI I/O API for EFI
*
*/
/* Disambiguate the various error causes */
#define EINFO_EEFI_PCI \
__einfo_uniqify ( EINFO_EPLATFORM, 0x01, \
"Could not open PCI I/O protocol" )
#define EINFO_EEFI_PCI_NOT_PCI \
__einfo_platformify ( EINFO_EEFI_PCI, EFI_UNSUPPORTED, \
"Not a PCI device" )
#define EEFI_PCI_NOT_PCI __einfo_error ( EINFO_EEFI_PCI_NOT_PCI )
#define EINFO_EEFI_PCI_IN_USE \
__einfo_platformify ( EINFO_EEFI_PCI, EFI_ACCESS_DENIED, \
"PCI device already has a driver" )
#define EEFI_PCI_IN_USE __einfo_error ( EINFO_EEFI_PCI_IN_USE )
#define EEFI_PCI( efirc ) \
EPLATFORM ( EINFO_EEFI_PCI, efirc, \
EEFI_PCI_NOT_PCI, EEFI_PCI_IN_USE )
/******************************************************************************
*
* iPXE PCI API
*
******************************************************************************
*/
/**
* Locate EFI PCI root bridge I/O protocol
*
* @v pci PCI device
* @ret handle EFI PCI root bridge handle
* @ret root EFI PCI root bridge I/O protocol, or NULL if not found
* @ret rc Return status code
*/
static int efipci_root ( struct pci_device *pci, EFI_HANDLE *handle,
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL **root ) {
EFI_BOOT_SERVICES *bs = efi_systab->BootServices;
EFI_HANDLE *handles;
UINTN num_handles;
union {
void *interface;
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *root;
} u;
EFI_STATUS efirc;
UINTN i;
int rc;
/* Enumerate all handles */
if ( ( efirc = bs->LocateHandleBuffer ( ByProtocol,
&efi_pci_root_bridge_io_protocol_guid,
NULL, &num_handles, &handles ) ) != 0 ) {
rc = -EEFI ( efirc );
DBGC ( pci, "EFIPCI " PCI_FMT " cannot locate root bridges: "
"%s\n", PCI_ARGS ( pci ), strerror ( rc ) );
goto err_locate;
}
/* Look for matching root bridge I/O protocol */
for ( i = 0 ; i < num_handles ; i++ ) {
*handle = handles[i];
if ( ( efirc = bs->OpenProtocol ( *handle,
&efi_pci_root_bridge_io_protocol_guid,
&u.interface, efi_image_handle, *handle,
EFI_OPEN_PROTOCOL_GET_PROTOCOL ) ) != 0 ) {
rc = -EEFI ( efirc );
DBGC ( pci, "EFIPCI " PCI_FMT " cannot open %s: %s\n",
PCI_ARGS ( pci ), efi_handle_name ( *handle ),
strerror ( rc ) );
continue;
}
if ( u.root->SegmentNumber == PCI_SEG ( pci->busdevfn ) ) {
*root = u.root;
bs->FreePool ( handles );
return 0;
}
bs->CloseProtocol ( *handle,
&efi_pci_root_bridge_io_protocol_guid,
efi_image_handle, *handle );
}
DBGC ( pci, "EFIPCI " PCI_FMT " found no root bridge\n",
PCI_ARGS ( pci ) );
rc = -ENOENT;
bs->FreePool ( handles );
err_locate:
return rc;
}
/**
* Calculate EFI PCI configuration space address
*
* @v pci PCI device
* @v location Encoded offset and width
* @ret address EFI PCI address
*/
static unsigned long efipci_address ( struct pci_device *pci,
unsigned long location ) {
return EFI_PCI_ADDRESS ( PCI_BUS ( pci->busdevfn ),
PCI_SLOT ( pci->busdevfn ),
PCI_FUNC ( pci->busdevfn ),
EFIPCI_OFFSET ( location ) );
}
/**
* Read from PCI configuration space
*
* @v pci PCI device
* @v location Encoded offset and width
* @ret value Value
* @ret rc Return status code
*/
int efipci_read ( struct pci_device *pci, unsigned long location,
void *value ) {
EFI_BOOT_SERVICES *bs = efi_systab->BootServices;
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *root;
EFI_HANDLE handle;
EFI_STATUS efirc;
int rc;
/* Identify root bridge */
if ( ( rc = efipci_root ( pci, &handle, &root ) ) != 0 )
goto err_root;
/* Read from configuration space */
if ( ( efirc = root->Pci.Read ( root, EFIPCI_WIDTH ( location ),
efipci_address ( pci, location ), 1,
value ) ) != 0 ) {
rc = -EEFI ( efirc );
DBGC ( pci, "EFIPCI " PCI_FMT " config read from offset %02lx "
"failed: %s\n", PCI_ARGS ( pci ),
EFIPCI_OFFSET ( location ), strerror ( rc ) );
goto err_read;
}
err_read:
bs->CloseProtocol ( handle, &efi_pci_root_bridge_io_protocol_guid,
efi_image_handle, handle );
err_root:
return rc;
}
/**
* Write to PCI configuration space
*
* @v pci PCI device
* @v location Encoded offset and width
* @v value Value
* @ret rc Return status code
*/
int efipci_write ( struct pci_device *pci, unsigned long location,
unsigned long value ) {
EFI_BOOT_SERVICES *bs = efi_systab->BootServices;
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *root;
EFI_HANDLE handle;
EFI_STATUS efirc;
int rc;
/* Identify root bridge */
if ( ( rc = efipci_root ( pci, &handle, &root ) ) != 0 )
goto err_root;
/* Read from configuration space */
if ( ( efirc = root->Pci.Write ( root, EFIPCI_WIDTH ( location ),
efipci_address ( pci, location ), 1,
&value ) ) != 0 ) {
rc = -EEFI ( efirc );
DBGC ( pci, "EFIPCI " PCI_FMT " config write to offset %02lx "
"failed: %s\n", PCI_ARGS ( pci ),
EFIPCI_OFFSET ( location ), strerror ( rc ) );
goto err_write;
}
err_write:
bs->CloseProtocol ( handle, &efi_pci_root_bridge_io_protocol_guid,
efi_image_handle, handle );
err_root:
return rc;
}
PROVIDE_PCIAPI_INLINE ( efi, pci_num_bus );
PROVIDE_PCIAPI_INLINE ( efi, pci_read_config_byte );
PROVIDE_PCIAPI_INLINE ( efi, pci_read_config_word );
PROVIDE_PCIAPI_INLINE ( efi, pci_read_config_dword );
PROVIDE_PCIAPI_INLINE ( efi, pci_write_config_byte );
PROVIDE_PCIAPI_INLINE ( efi, pci_write_config_word );
PROVIDE_PCIAPI_INLINE ( efi, pci_write_config_dword );
/******************************************************************************
*
* EFI PCI device instantiation
*
******************************************************************************
*/
/**
* Open EFI PCI device
*
* @v device EFI device handle
* @v attributes Protocol opening attributes
* @v pci PCI device to fill in
* @ret rc Return status code
*/
int efipci_open ( EFI_HANDLE device, UINT32 attributes,
struct pci_device *pci ) {
EFI_BOOT_SERVICES *bs = efi_systab->BootServices;
union {
EFI_PCI_IO_PROTOCOL *pci_io;
void *interface;
} pci_io;
UINTN pci_segment, pci_bus, pci_dev, pci_fn;
unsigned int busdevfn;
EFI_STATUS efirc;
int rc;
/* See if device is a PCI device */
if ( ( efirc = bs->OpenProtocol ( device, &efi_pci_io_protocol_guid,
&pci_io.interface, efi_image_handle,
device, attributes ) ) != 0 ) {
rc = -EEFI_PCI ( efirc );
DBGCP ( device, "EFIPCI %s cannot open PCI protocols: %s\n",
efi_handle_name ( device ), strerror ( rc ) );
goto err_open_protocol;
}
/* Get PCI bus:dev.fn address */
if ( ( efirc = pci_io.pci_io->GetLocation ( pci_io.pci_io, &pci_segment,
&pci_bus, &pci_dev,
&pci_fn ) ) != 0 ) {
rc = -EEFI ( efirc );
DBGC ( device, "EFIPCI %s could not get PCI location: %s\n",
efi_handle_name ( device ), strerror ( rc ) );
goto err_get_location;
}
busdevfn = PCI_BUSDEVFN ( pci_segment, pci_bus, pci_dev, pci_fn );
pci_init ( pci, busdevfn );
DBGCP ( device, "EFIPCI " PCI_FMT " is %s\n",
PCI_ARGS ( pci ), efi_handle_name ( device ) );
/* Try to enable I/O cycles, memory cycles, and bus mastering.
* Some platforms will 'helpfully' report errors if these bits
* can't be enabled (for example, if the card doesn't actually
* support I/O cycles). Work around any such platforms by
* enabling bits individually and simply ignoring any errors.
*/
pci_io.pci_io->Attributes ( pci_io.pci_io,
EfiPciIoAttributeOperationEnable,
EFI_PCI_IO_ATTRIBUTE_IO, NULL );
pci_io.pci_io->Attributes ( pci_io.pci_io,
EfiPciIoAttributeOperationEnable,
EFI_PCI_IO_ATTRIBUTE_MEMORY, NULL );
pci_io.pci_io->Attributes ( pci_io.pci_io,
EfiPciIoAttributeOperationEnable,
EFI_PCI_IO_ATTRIBUTE_BUS_MASTER, NULL );
/* Populate PCI device */
if ( ( rc = pci_read_config ( pci ) ) != 0 ) {
DBGC ( device, "EFIPCI " PCI_FMT " cannot read PCI "
"configuration: %s\n",
PCI_ARGS ( pci ), strerror ( rc ) );
goto err_pci_read_config;
}
return 0;
err_pci_read_config:
err_get_location:
bs->CloseProtocol ( device, &efi_pci_io_protocol_guid,
efi_image_handle, device );
err_open_protocol:
return rc;
}
/**
* Close EFI PCI device
*
* @v device EFI device handle
*/
void efipci_close ( EFI_HANDLE device ) {
EFI_BOOT_SERVICES *bs = efi_systab->BootServices;
bs->CloseProtocol ( device, &efi_pci_io_protocol_guid,
efi_image_handle, device );
}
/**
* Get EFI PCI device information
*
* @v device EFI device handle
* @v pci PCI device to fill in
* @ret rc Return status code
*/
int efipci_info ( EFI_HANDLE device, struct pci_device *pci ) {
int rc;
/* Open PCI device, if possible */
if ( ( rc = efipci_open ( device, EFI_OPEN_PROTOCOL_GET_PROTOCOL,
pci ) ) != 0 )
return rc;
/* Close PCI device */
efipci_close ( device );
return 0;
}
/******************************************************************************
*
* EFI PCI driver
*
******************************************************************************
*/
/**
* Check to see if driver supports a device
*
* @v device EFI device handle
* @ret rc Return status code
*/
static int efipci_supported ( EFI_HANDLE device ) {
struct pci_device pci;
int rc;
/* Get PCI device information */
if ( ( rc = efipci_info ( device, &pci ) ) != 0 )
return rc;
/* Look for a driver */
if ( ( rc = pci_find_driver ( &pci ) ) != 0 ) {
DBGC ( device, "EFIPCI " PCI_FMT " (%04x:%04x class %06x) "
"has no driver\n", PCI_ARGS ( &pci ), pci.vendor,
pci.device, pci.class );
return rc;
}
DBGC ( device, "EFIPCI " PCI_FMT " (%04x:%04x class %06x) has driver "
"\"%s\"\n", PCI_ARGS ( &pci ), pci.vendor, pci.device,
pci.class, pci.id->name );
return 0;
}
/**
* Attach driver to device
*
* @v efidev EFI device
* @ret rc Return status code
*/
static int efipci_start ( struct efi_device *efidev ) {
EFI_HANDLE device = efidev->device;
struct pci_device *pci;
int rc;
/* Allocate PCI device */
pci = zalloc ( sizeof ( *pci ) );
if ( ! pci ) {
rc = -ENOMEM;
goto err_alloc;
}
/* Open PCI device */
if ( ( rc = efipci_open ( device, ( EFI_OPEN_PROTOCOL_BY_DRIVER |
EFI_OPEN_PROTOCOL_EXCLUSIVE ),
pci ) ) != 0 ) {
DBGC ( device, "EFIPCI %s could not open PCI device: %s\n",
efi_handle_name ( device ), strerror ( rc ) );
DBGC_EFI_OPENERS ( device, device, &efi_pci_io_protocol_guid );
goto err_open;
}
/* Find driver */
if ( ( rc = pci_find_driver ( pci ) ) != 0 ) {
DBGC ( device, "EFIPCI " PCI_FMT " has no driver\n",
PCI_ARGS ( pci ) );
goto err_find_driver;
}
/* Mark PCI device as a child of the EFI device */
pci->dev.parent = &efidev->dev;
list_add ( &pci->dev.siblings, &efidev->dev.children );
/* Probe driver */
if ( ( rc = pci_probe ( pci ) ) != 0 ) {
DBGC ( device, "EFIPCI " PCI_FMT " could not probe driver "
"\"%s\": %s\n", PCI_ARGS ( pci ), pci->id->name,
strerror ( rc ) );
goto err_probe;
}
DBGC ( device, "EFIPCI " PCI_FMT " using driver \"%s\"\n",
PCI_ARGS ( pci ), pci->id->name );
efidev_set_drvdata ( efidev, pci );
return 0;
pci_remove ( pci );
err_probe:
list_del ( &pci->dev.siblings );
err_find_driver:
efipci_close ( device );
err_open:
free ( pci );
err_alloc:
return rc;
}
/**
* Detach driver from device
*
* @v efidev EFI device
*/
static void efipci_stop ( struct efi_device *efidev ) {
struct pci_device *pci = efidev_get_drvdata ( efidev );
EFI_HANDLE device = efidev->device;
pci_remove ( pci );
list_del ( &pci->dev.siblings );
efipci_close ( device );
free ( pci );
}
/** EFI PCI driver */
struct efi_driver efipci_driver __efi_driver ( EFI_DRIVER_NORMAL ) = {
.name = "PCI",
.supported = efipci_supported,
.start = efipci_start,
.stop = efipci_stop,
};
#endif
/*
* Copyright (C) 2006 Michael Brown <mbrown@fensystems.co.uk>.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA.
*
* You can also choose to distribute this program under the terms of
* the Unmodified Binary Distribution Licence (as given in the file
* COPYING.UBDL), provided that you have satisfied its requirements.
*/
FILE_LICENCE ( GPL2_OR_LATER_OR_UBDL );
#include <stddef.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <ctype.h>
#include <errno.h>
#include <assert.h>
#include <byteswap.h>
#include <ipxe/vsprintf.h>
#include <ipxe/socket.h>
#include <ipxe/iobuf.h>
#include <ipxe/uri.h>
#include <ipxe/xfer.h>
#include <ipxe/open.h>
#include <ipxe/scsi.h>
#include <ipxe/process.h>
#include <ipxe/uaccess.h>
#include <ipxe/tcpip.h>
#include <ipxe/settings.h>
#include <ipxe/features.h>
#include <ipxe/base16.h>
#include <ipxe/base64.h>
#include <ipxe/ibft.h>
#include <ipxe/iscsi.h>
/** @file
*
* iSCSI protocol
*
*/
FEATURE ( FEATURE_PROTOCOL, "iSCSI", DHCP_EB_FEATURE_ISCSI, 1 );
/* Disambiguate the various error causes */
#define EACCES_INCORRECT_TARGET_USERNAME \
__einfo_error ( EINFO_EACCES_INCORRECT_TARGET_USERNAME )
#define EINFO_EACCES_INCORRECT_TARGET_USERNAME \
__einfo_uniqify ( EINFO_EACCES, 0x01, "Incorrect target username" )
#define EACCES_INCORRECT_TARGET_PASSWORD \
__einfo_error ( EINFO_EACCES_INCORRECT_TARGET_PASSWORD )
#define EINFO_EACCES_INCORRECT_TARGET_PASSWORD \
__einfo_uniqify ( EINFO_EACCES, 0x02, "Incorrect target password" )
#define EINVAL_ROOT_PATH_TOO_SHORT \
__einfo_error ( EINFO_EINVAL_ROOT_PATH_TOO_SHORT )
#define EINFO_EINVAL_ROOT_PATH_TOO_SHORT \
__einfo_uniqify ( EINFO_EINVAL, 0x01, "Root path too short" )
#define EINVAL_BAD_CREDENTIAL_MIX \
__einfo_error ( EINFO_EINVAL_BAD_CREDENTIAL_MIX )
#define EINFO_EINVAL_BAD_CREDENTIAL_MIX \
__einfo_uniqify ( EINFO_EINVAL, 0x02, "Bad credential mix" )
#define EINVAL_NO_ROOT_PATH \
__einfo_error ( EINFO_EINVAL_NO_ROOT_PATH )
#define EINFO_EINVAL_NO_ROOT_PATH \
__einfo_uniqify ( EINFO_EINVAL, 0x03, "No root path" )
#define EINVAL_NO_TARGET_IQN \
__einfo_error ( EINFO_EINVAL_NO_TARGET_IQN )
#define EINFO_EINVAL_NO_TARGET_IQN \
__einfo_uniqify ( EINFO_EINVAL, 0x04, "No target IQN" )
#define EINVAL_NO_INITIATOR_IQN \
__einfo_error ( EINFO_EINVAL_NO_INITIATOR_IQN )
#define EINFO_EINVAL_NO_INITIATOR_IQN \
__einfo_uniqify ( EINFO_EINVAL, 0x05, "No initiator IQN" )
#define EIO_TARGET_UNAVAILABLE \
__einfo_error ( EINFO_EIO_TARGET_UNAVAILABLE )
#define EINFO_EIO_TARGET_UNAVAILABLE \
__einfo_uniqify ( EINFO_EIO, 0x01, "Target not currently operational" )
#define EIO_TARGET_NO_RESOURCES \
__einfo_error ( EINFO_EIO_TARGET_NO_RESOURCES )
#define EINFO_EIO_TARGET_NO_RESOURCES \
__einfo_uniqify ( EINFO_EIO, 0x02, "Target out of resources" )
#define ENOTSUP_INITIATOR_STATUS \
__einfo_error ( EINFO_ENOTSUP_INITIATOR_STATUS )
#define EINFO_ENOTSUP_INITIATOR_STATUS \
__einfo_uniqify ( EINFO_ENOTSUP, 0x01, "Unsupported initiator status" )
#define ENOTSUP_OPCODE \
__einfo_error ( EINFO_ENOTSUP_OPCODE )
#define EINFO_ENOTSUP_OPCODE \
__einfo_uniqify ( EINFO_ENOTSUP, 0x02, "Unsupported opcode" )
#define ENOTSUP_DISCOVERY \
__einfo_error ( EINFO_ENOTSUP_DISCOVERY )
#define EINFO_ENOTSUP_DISCOVERY \
__einfo_uniqify ( EINFO_ENOTSUP, 0x03, "Discovery not supported" )
#define ENOTSUP_TARGET_STATUS \
__einfo_error ( EINFO_ENOTSUP_TARGET_STATUS )
#define EINFO_ENOTSUP_TARGET_STATUS \
__einfo_uniqify ( EINFO_ENOTSUP, 0x04, "Unsupported target status" )
#define EPERM_INITIATOR_AUTHENTICATION \
__einfo_error ( EINFO_EPERM_INITIATOR_AUTHENTICATION )
#define EINFO_EPERM_INITIATOR_AUTHENTICATION \
__einfo_uniqify ( EINFO_EPERM, 0x01, "Initiator authentication failed" )
#define EPERM_INITIATOR_AUTHORISATION \
__einfo_error ( EINFO_EPERM_INITIATOR_AUTHORISATION )
#define EINFO_EPERM_INITIATOR_AUTHORISATION \
__einfo_uniqify ( EINFO_EPERM, 0x02, "Initiator not authorised" )
#define EPROTO_INVALID_CHAP_ALGORITHM \
__einfo_error ( EINFO_EPROTO_INVALID_CHAP_ALGORITHM )
#define EINFO_EPROTO_INVALID_CHAP_ALGORITHM \
__einfo_uniqify ( EINFO_EPROTO, 0x01, "Invalid CHAP algorithm" )
#define EPROTO_INVALID_CHAP_IDENTIFIER \
__einfo_error ( EINFO_EPROTO_INVALID_CHAP_IDENTIFIER )
#define EINFO_EPROTO_INVALID_CHAP_IDENTIFIER \
__einfo_uniqify ( EINFO_EPROTO, 0x02, "Invalid CHAP identifier" )
#define EPROTO_INVALID_LARGE_BINARY \
__einfo_error ( EINFO_EPROTO_INVALID_LARGE_BINARY )
#define EINFO_EPROTO_INVALID_LARGE_BINARY \
__einfo_uniqify ( EINFO_EPROTO, 0x03, "Invalid large binary value" )
#define EPROTO_INVALID_CHAP_RESPONSE \
__einfo_error ( EINFO_EPROTO_INVALID_CHAP_RESPONSE )
#define EINFO_EPROTO_INVALID_CHAP_RESPONSE \
__einfo_uniqify ( EINFO_EPROTO, 0x04, "Invalid CHAP response" )
#define EPROTO_INVALID_KEY_VALUE_PAIR \
__einfo_error ( EINFO_EPROTO_INVALID_KEY_VALUE_PAIR )
#define EINFO_EPROTO_INVALID_KEY_VALUE_PAIR \
__einfo_uniqify ( EINFO_EPROTO, 0x05, "Invalid key/value pair" )
#define EPROTO_VALUE_REJECTED \
__einfo_error ( EINFO_EPROTO_VALUE_REJECTED )
#define EINFO_EPROTO_VALUE_REJECTED \
__einfo_uniqify ( EINFO_EPROTO, 0x06, "Parameter rejected" )
static void iscsi_start_tx ( struct iscsi_session *iscsi );
static void iscsi_start_login ( struct iscsi_session *iscsi );
static void iscsi_start_data_out ( struct iscsi_session *iscsi,
unsigned int datasn );
/**
* Finish receiving PDU data into buffer
*
* @v iscsi iSCSI session
*/
static void iscsi_rx_buffered_data_done ( struct iscsi_session *iscsi ) {
free ( iscsi->rx_buffer );
iscsi->rx_buffer = NULL;
}
/**
* Receive PDU data into buffer
*
* @v iscsi iSCSI session
* @v data Data to receive
* @v len Length of data
* @ret rc Return status code
*
* This can be used when the RX PDU type handler wishes to buffer up
* all received data and process the PDU as a single unit. The caller
* is repsonsible for calling iscsi_rx_buffered_data_done() after
* processing the data.
*/
static int iscsi_rx_buffered_data ( struct iscsi_session *iscsi,
const void *data, size_t len ) {
/* Allocate buffer on first call */
if ( ! iscsi->rx_buffer ) {
iscsi->rx_buffer = malloc ( iscsi->rx_len );
if ( ! iscsi->rx_buffer )
return -ENOMEM;
}
/* Copy data to buffer */
assert ( ( iscsi->rx_offset + len ) <= iscsi->rx_len );
memcpy ( ( iscsi->rx_buffer + iscsi->rx_offset ), data, len );
return 0;
}
/**
* Free iSCSI session
*
* @v refcnt Reference counter
*/
static void iscsi_free ( struct refcnt *refcnt ) {
struct iscsi_session *iscsi =
container_of ( refcnt, struct iscsi_session, refcnt );
free ( iscsi->initiator_iqn );
free ( iscsi->target_address );
free ( iscsi->target_iqn );
free ( iscsi->initiator_username );
free ( iscsi->initiator_password );
free ( iscsi->target_username );
free ( iscsi->target_password );
chap_finish ( &iscsi->chap );
iscsi_rx_buffered_data_done ( iscsi );
free ( iscsi->command );
free ( iscsi );
}
/**
* Shut down iSCSI interface
*
* @v iscsi iSCSI session
* @v rc Reason for close
*/
static void iscsi_close ( struct iscsi_session *iscsi, int rc ) {
/* A TCP graceful close is still an error from our point of view */
if ( rc == 0 )
rc = -ECONNRESET;
DBGC ( iscsi, "iSCSI %p closed: %s\n", iscsi, strerror ( rc ) );
/* Stop transmission process */
process_del ( &iscsi->process );
/* Shut down interfaces */
intfs_shutdown ( rc, &iscsi->socket, &iscsi->control, &iscsi->data,
NULL );
}
/**
* Assign new iSCSI initiator task tag
*
* @v iscsi iSCSI session
*/
static void iscsi_new_itt ( struct iscsi_session *iscsi ) {
static uint16_t itt_idx;
iscsi->itt = ( ISCSI_TAG_MAGIC | (++itt_idx) );
}
/**
* Open iSCSI transport-layer connection
*
* @v iscsi iSCSI session
* @ret rc Return status code
*/
static int iscsi_open_connection ( struct iscsi_session *iscsi ) {
struct sockaddr_tcpip target;
int rc;
assert ( iscsi->tx_state == ISCSI_TX_IDLE );
assert ( iscsi->rx_state == ISCSI_RX_BHS );
assert ( iscsi->rx_offset == 0 );
/* Open socket */
memset ( &target, 0, sizeof ( target ) );
target.st_port = htons ( iscsi->target_port );
if ( ( rc = xfer_open_named_socket ( &iscsi->socket, SOCK_STREAM,
( struct sockaddr * ) &target,
iscsi->target_address,
NULL ) ) != 0 ) {
DBGC ( iscsi, "iSCSI %p could not open socket: %s\n",
iscsi, strerror ( rc ) );
return rc;
}
/* Enter security negotiation phase */
iscsi->status = ( ISCSI_STATUS_SECURITY_NEGOTIATION_PHASE |
ISCSI_STATUS_STRINGS_SECURITY );
if ( iscsi->target_username )
iscsi->status |= ISCSI_STATUS_AUTH_REVERSE_REQUIRED;
/* Assign new ISID */
iscsi->isid_iana_qual = ( random() & 0xffff );
/* Assign fresh initiator task tag */
iscsi_new_itt ( iscsi );
/* Initiate login */
iscsi_start_login ( iscsi );
return 0;
}
/**
* Close iSCSI transport-layer connection
*
* @v iscsi iSCSI session
* @v rc Reason for close
*
* Closes the transport-layer connection and resets the session state
* ready to attempt a fresh login.
*/
static void iscsi_close_connection ( struct iscsi_session *iscsi, int rc ) {
/* Close all data transfer interfaces */
intf_restart ( &iscsi->socket, rc );
/* Clear connection status */
iscsi->status = 0;
/* Reset TX and RX state machines */
iscsi->tx_state = ISCSI_TX_IDLE;
iscsi->rx_state = ISCSI_RX_BHS;
iscsi->rx_offset = 0;
/* Free any temporary dynamically allocated memory */
chap_finish ( &iscsi->chap );
iscsi_rx_buffered_data_done ( iscsi );
}
/**
* Mark iSCSI SCSI operation as complete
*
* @v iscsi iSCSI session
* @v rc Return status code
* @v rsp SCSI response, if any
*
* Note that iscsi_scsi_done() will not close the connection, and must
* therefore be called only when the internal state machines are in an
* appropriate state, otherwise bad things may happen on the next call
* to iscsi_scsi_command(). The general rule is to call
* iscsi_scsi_done() only at the end of receiving a PDU; at this point
* the TX and RX engines should both be idle.
*/
static void iscsi_scsi_done ( struct iscsi_session *iscsi, int rc,
struct scsi_rsp *rsp ) {
uint32_t itt = iscsi->itt;
assert ( iscsi->tx_state == ISCSI_TX_IDLE );
/* Clear command */
free ( iscsi->command );
iscsi->command = NULL;
/* Send SCSI response, if any */
if ( rsp )
scsi_response ( &iscsi->data, rsp );
/* Close SCSI command, if this is still the same command. (It
* is possible that the command interface has already been
* closed as a result of the SCSI response we sent.)
*/
if ( iscsi->itt == itt )
intf_restart ( &iscsi->data, rc );
}
/****************************************************************************
*
* iSCSI SCSI command issuing
*
*/
/**
* Build iSCSI SCSI command BHS
*
* @v iscsi iSCSI session
*
* We don't currently support bidirectional commands (i.e. with both
* Data-In and Data-Out segments); these would require providing code
* to generate an AHS, and there doesn't seem to be any need for it at
* the moment.
*/
static void iscsi_start_command ( struct iscsi_session *iscsi ) {
struct iscsi_bhs_scsi_command *command = &iscsi->tx_bhs.scsi_command;
assert ( ! ( iscsi->command->data_in && iscsi->command->data_out ) );
/* Construct BHS and initiate transmission */
iscsi_start_tx ( iscsi );
command->opcode = ISCSI_OPCODE_SCSI_COMMAND;
command->flags = ( ISCSI_FLAG_FINAL |
ISCSI_COMMAND_ATTR_SIMPLE );
if ( iscsi->command->data_in )
command->flags |= ISCSI_COMMAND_FLAG_READ;
if ( iscsi->command->data_out )
command->flags |= ISCSI_COMMAND_FLAG_WRITE;
/* lengths left as zero */
memcpy ( &command->lun, &iscsi->command->lun,
sizeof ( command->lun ) );
command->itt = htonl ( iscsi->itt );
command->exp_len = htonl ( iscsi->command->data_in_len |
iscsi->command->data_out_len );
command->cmdsn = htonl ( iscsi->cmdsn );
command->expstatsn = htonl ( iscsi->statsn + 1 );
memcpy ( &command->cdb, &iscsi->command->cdb, sizeof ( command->cdb ));
DBGC2 ( iscsi, "iSCSI %p start " SCSI_CDB_FORMAT " %s %#zx\n",
iscsi, SCSI_CDB_DATA ( command->cdb ),
( iscsi->command->data_in ? "in" : "out" ),
( iscsi->command->data_in ?
iscsi->command->data_in_len :
iscsi->command->data_out_len ) );
}
/**
* Receive data segment of an iSCSI SCSI response PDU
*
* @v iscsi iSCSI session
* @v data Received data
* @v len Length of received data
* @v remaining Data remaining after this data
* @ret rc Return status code
*/
static int iscsi_rx_scsi_response ( struct iscsi_session *iscsi,
const void *data, size_t len,
size_t remaining ) {
struct iscsi_bhs_scsi_response *response
= &iscsi->rx_bhs.scsi_response;
struct scsi_rsp rsp;
uint32_t residual_count;
size_t data_len;
int rc;
/* Buffer up the PDU data */
if ( ( rc = iscsi_rx_buffered_data ( iscsi, data, len ) ) != 0 ) {
DBGC ( iscsi, "iSCSI %p could not buffer SCSI response: %s\n",
iscsi, strerror ( rc ) );
return rc;
}
if ( remaining )
return 0;
/* Parse SCSI response and discard buffer */
memset ( &rsp, 0, sizeof ( rsp ) );
rsp.status = response->status;
residual_count = ntohl ( response->residual_count );
if ( response->flags & ISCSI_DATA_FLAG_OVERFLOW ) {
rsp.overrun = residual_count;
} else if ( response->flags & ISCSI_DATA_FLAG_UNDERFLOW ) {
rsp.overrun = -(residual_count);
}
data_len = ISCSI_DATA_LEN ( response->lengths );
if ( data_len ) {
scsi_parse_sense ( ( iscsi->rx_buffer + 2 ), ( data_len - 2 ),
&rsp.sense );
}
iscsi_rx_buffered_data_done ( iscsi );
/* Check for errors */
if ( response->response != ISCSI_RESPONSE_COMMAND_COMPLETE )
return -EIO;
/* Mark as completed */
iscsi_scsi_done ( iscsi, 0, &rsp );
return 0;
}
/**
* Receive data segment of an iSCSI data-in PDU
*
* @v iscsi iSCSI session
* @v data Received data
* @v len Length of received data
* @v remaining Data remaining after this data
* @ret rc Return status code
*/
static int iscsi_rx_data_in ( struct iscsi_session *iscsi,
const void *data, size_t len,
size_t remaining ) {
struct iscsi_bhs_data_in *data_in = &iscsi->rx_bhs.data_in;
unsigned long offset;
/* Copy data to data-in buffer */
offset = ntohl ( data_in->offset ) + iscsi->rx_offset;
assert ( iscsi->command != NULL );
assert ( iscsi->command->data_in );
assert ( ( offset + len ) <= iscsi->command->data_in_len );
copy_to_user ( iscsi->command->data_in, offset, data, len );
/* Wait for whole SCSI response to arrive */
if ( remaining )
return 0;
/* Mark as completed if status is present */
if ( data_in->flags & ISCSI_DATA_FLAG_STATUS ) {
assert ( ( offset + len ) == iscsi->command->data_in_len );
assert ( data_in->flags & ISCSI_FLAG_FINAL );
/* iSCSI cannot return an error status via a data-in */
iscsi_scsi_done ( iscsi, 0, NULL );
}
return 0;
}
/**
* Receive data segment of an iSCSI R2T PDU
*
* @v iscsi iSCSI session
* @v data Received data
* @v len Length of received data
* @v remaining Data remaining after this data
* @ret rc Return status code
*/
static int iscsi_rx_r2t ( struct iscsi_session *iscsi,
const void *data __unused, size_t len __unused,
size_t remaining __unused ) {
struct iscsi_bhs_r2t *r2t = &iscsi->rx_bhs.r2t;
/* Record transfer parameters and trigger first data-out */
iscsi->ttt = ntohl ( r2t->ttt );
iscsi->transfer_offset = ntohl ( r2t->offset );
iscsi->transfer_len = ntohl ( r2t->len );
iscsi_start_data_out ( iscsi, 0 );
return 0;
}
/**
* Build iSCSI data-out BHS
*
* @v iscsi iSCSI session
* @v datasn Data sequence number within the transfer
*
*/
static void iscsi_start_data_out ( struct iscsi_session *iscsi,
unsigned int datasn ) {
struct iscsi_bhs_data_out *data_out = &iscsi->tx_bhs.data_out;
unsigned long offset;
unsigned long remaining;
unsigned long len;
/* We always send 512-byte Data-Out PDUs; this removes the
* need to worry about the target's MaxRecvDataSegmentLength.
*/
offset = datasn * 512;
remaining = iscsi->transfer_len - offset;
len = remaining;
if ( len > 512 )
len = 512;
/* Construct BHS and initiate transmission */
iscsi_start_tx ( iscsi );
data_out->opcode = ISCSI_OPCODE_DATA_OUT;
if ( len == remaining )
data_out->flags = ( ISCSI_FLAG_FINAL );
ISCSI_SET_LENGTHS ( data_out->lengths, 0, len );
data_out->lun = iscsi->command->lun;
data_out->itt = htonl ( iscsi->itt );
data_out->ttt = htonl ( iscsi->ttt );
data_out->expstatsn = htonl ( iscsi->statsn + 1 );
data_out->datasn = htonl ( datasn );
data_out->offset = htonl ( iscsi->transfer_offset + offset );
DBGC ( iscsi, "iSCSI %p start data out DataSN %#x len %#lx\n",
iscsi, datasn, len );
}
/**
* Complete iSCSI data-out PDU transmission
*
* @v iscsi iSCSI session
*
*/
static void iscsi_data_out_done ( struct iscsi_session *iscsi ) {
struct iscsi_bhs_data_out *data_out = &iscsi->tx_bhs.data_out;
/* If we haven't reached the end of the sequence, start
* sending the next data-out PDU.
*/
if ( ! ( data_out->flags & ISCSI_FLAG_FINAL ) )
iscsi_start_data_out ( iscsi, ntohl ( data_out->datasn ) + 1 );
}
/**
* Send iSCSI data-out data segment
*
* @v iscsi iSCSI session
* @ret rc Return status code
*/
static int iscsi_tx_data_out ( struct iscsi_session *iscsi ) {
struct iscsi_bhs_data_out *data_out = &iscsi->tx_bhs.data_out;
struct io_buffer *iobuf;
unsigned long offset;
size_t len;
size_t pad_len;
offset = ntohl ( data_out->offset );
len = ISCSI_DATA_LEN ( data_out->lengths );
pad_len = ISCSI_DATA_PAD_LEN ( data_out->lengths );
assert ( iscsi->command != NULL );
assert ( iscsi->command->data_out );
assert ( ( offset + len ) <= iscsi->command->data_out_len );
iobuf = xfer_alloc_iob ( &iscsi->socket, ( len + pad_len ) );
if ( ! iobuf )
return -ENOMEM;
copy_from_user ( iob_put ( iobuf, len ),
iscsi->command->data_out, offset, len );
memset ( iob_put ( iobuf, pad_len ), 0, pad_len );
return xfer_deliver_iob ( &iscsi->socket, iobuf );
}
/**
* Receive data segment of an iSCSI NOP-In
*
* @v iscsi iSCSI session
* @v data Received data
* @v len Length of received data
* @v remaining Data remaining after this data
* @ret rc Return status code
*/
static int iscsi_rx_nop_in ( struct iscsi_session *iscsi,
const void *data __unused, size_t len __unused,
size_t remaining __unused ) {
struct iscsi_nop_in *nop_in = &iscsi->rx_bhs.nop_in;
DBGC2 ( iscsi, "iSCSI %p received NOP-In\n", iscsi );
/* We don't currently have the ability to respond to NOP-Ins
* sent as ping requests, but we can happily accept NOP-Ins
* sent merely to update CmdSN.
*/
if ( nop_in->ttt == htonl ( ISCSI_TAG_RESERVED ) )
return 0;
/* Ignore any other NOP-Ins. The target may eventually
* disconnect us for failing to respond, but this minimises
* unnecessary connection closures.
*/
DBGC ( iscsi, "iSCSI %p received unsupported NOP-In with TTT %08x\n",
iscsi, ntohl ( nop_in->ttt ) );
return 0;
}
/****************************************************************************
*
* iSCSI login
*
*/
/**
* Build iSCSI login request strings
*
* @v iscsi iSCSI session
*
* These are the initial set of strings sent in the first login
* request PDU. We want the following settings:
*
* HeaderDigest=None
* DataDigest=None
* MaxConnections=1 (irrelevant; we make only one connection anyway) [4]
* InitialR2T=Yes [1]
* ImmediateData=No (irrelevant; we never send immediate data) [4]
* MaxRecvDataSegmentLength=8192 (default; we don't care) [3]
* MaxBurstLength=262144 (default; we don't care) [3]
* FirstBurstLength=65536 (irrelevant due to other settings) [5]
* DefaultTime2Wait=0 [2]
* DefaultTime2Retain=0 [2]
* MaxOutstandingR2T=1
* DataPDUInOrder=Yes
* DataSequenceInOrder=Yes
* ErrorRecoveryLevel=0
*
* [1] InitialR2T has an OR resolution function, so the target may
* force us to use it. We therefore simplify our logic by always
* using it.
*
* [2] These ensure that we can safely start a new task once we have
* reconnected after a failure, without having to manually tidy up
* after the old one.
*
* [3] We are quite happy to use the RFC-defined default values for
* these parameters, but some targets (notably OpenSolaris)
* incorrectly assume a default value of zero, so we explicitly
* specify the default values.
*
* [4] We are quite happy to use the RFC-defined default values for
* these parameters, but some targets (notably a QNAP TS-639Pro) fail
* unless they are supplied, so we explicitly specify the default
* values.
*
* [5] FirstBurstLength is defined to be irrelevant since we already
* force InitialR2T=Yes and ImmediateData=No, but some targets
* (notably LIO as of kernel 4.11) fail unless it is specified, so we
* explicitly specify the default value.
*/
static int iscsi_build_login_request_strings ( struct iscsi_session *iscsi,
void *data, size_t len ) {
unsigned int used = 0;
const char *auth_method;
if ( iscsi->status & ISCSI_STATUS_STRINGS_SECURITY ) {
/* Default to allowing no authentication */
auth_method = "None";
/* If we have a credential to supply, permit CHAP */
if ( iscsi->initiator_username )
auth_method = "CHAP,None";
/* If we have a credential to check, force CHAP */
if ( iscsi->target_username )
auth_method = "CHAP";
used += ssnprintf ( data + used, len - used,
"InitiatorName=%s%c"
"TargetName=%s%c"
"SessionType=Normal%c"
"AuthMethod=%s%c",
iscsi->initiator_iqn, 0,
iscsi->target_iqn, 0, 0,
auth_method, 0 );
}
if ( iscsi->status & ISCSI_STATUS_STRINGS_CHAP_ALGORITHM ) {
used += ssnprintf ( data + used, len - used, "CHAP_A=5%c", 0 );
}
if ( ( iscsi->status & ISCSI_STATUS_STRINGS_CHAP_RESPONSE ) ) {
char buf[ base16_encoded_len ( iscsi->chap.response_len ) + 1 ];
assert ( iscsi->initiator_username != NULL );
base16_encode ( iscsi->chap.response, iscsi->chap.response_len,
buf, sizeof ( buf ) );
used += ssnprintf ( data + used, len - used,
"CHAP_N=%s%cCHAP_R=0x%s%c",
iscsi->initiator_username, 0, buf, 0 );
}
if ( ( iscsi->status & ISCSI_STATUS_STRINGS_CHAP_CHALLENGE ) ) {
size_t challenge_len = ( sizeof ( iscsi->chap_challenge ) - 1 );
char buf[ base16_encoded_len ( challenge_len ) + 1 ];
base16_encode ( ( iscsi->chap_challenge + 1 ), challenge_len,
buf, sizeof ( buf ) );
used += ssnprintf ( data + used, len - used,
"CHAP_I=%d%cCHAP_C=0x%s%c",
iscsi->chap_challenge[0], 0, buf, 0 );
}
if ( iscsi->status & ISCSI_STATUS_STRINGS_OPERATIONAL ) {
used += ssnprintf ( data + used, len - used,
"HeaderDigest=None%c"
"DataDigest=None%c"
"MaxConnections=1%c"
"InitialR2T=Yes%c"
"ImmediateData=No%c"
"MaxRecvDataSegmentLength=8192%c"
"MaxBurstLength=262144%c"
"FirstBurstLength=65536%c"
"DefaultTime2Wait=0%c"
"DefaultTime2Retain=0%c"
"MaxOutstandingR2T=1%c"
"DataPDUInOrder=Yes%c"
"DataSequenceInOrder=Yes%c"
"ErrorRecoveryLevel=0%c",
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 );
}
return used;
}
/**
* Build iSCSI login request BHS
*
* @v iscsi iSCSI session
*/
static void iscsi_start_login ( struct iscsi_session *iscsi ) {
struct iscsi_bhs_login_request *request = &iscsi->tx_bhs.login_request;
int len;
switch ( iscsi->status & ISCSI_LOGIN_CSG_MASK ) {
case ISCSI_LOGIN_CSG_SECURITY_NEGOTIATION:
DBGC ( iscsi, "iSCSI %p entering security negotiation\n",
iscsi );
break;
case ISCSI_LOGIN_CSG_OPERATIONAL_NEGOTIATION:
DBGC ( iscsi, "iSCSI %p entering operational negotiation\n",
iscsi );
break;
default:
assert ( 0 );
}
/* Construct BHS and initiate transmission */
iscsi_start_tx ( iscsi );
request->opcode = ( ISCSI_OPCODE_LOGIN_REQUEST |
ISCSI_FLAG_IMMEDIATE );
request->flags = ( ( iscsi->status & ISCSI_STATUS_PHASE_MASK ) |
ISCSI_LOGIN_FLAG_TRANSITION );
/* version_max and version_min left as zero */
len = iscsi_build_login_request_strings ( iscsi, NULL, 0 );
ISCSI_SET_LENGTHS ( request->lengths, 0, len );
request->isid_iana_en = htonl ( ISCSI_ISID_IANA |
IANA_EN_FEN_SYSTEMS );
request->isid_iana_qual = htons ( iscsi->isid_iana_qual );
/* tsih left as zero */
request->itt = htonl ( iscsi->itt );
/* cid left as zero */
request->cmdsn = htonl ( iscsi->cmdsn );
request->expstatsn = htonl ( iscsi->statsn + 1 );
}
/**
* Complete iSCSI login request PDU transmission
*
* @v iscsi iSCSI session
*
*/
static void iscsi_login_request_done ( struct iscsi_session *iscsi ) {
/* Clear any "strings to send" flags */
iscsi->status &= ~ISCSI_STATUS_STRINGS_MASK;
/* Free any dynamically allocated storage used for login */
chap_finish ( &iscsi->chap );
}
/**
* Transmit data segment of an iSCSI login request PDU
*
* @v iscsi iSCSI session
* @ret rc Return status code
*
* For login requests, the data segment consists of the login strings.
*/
static int iscsi_tx_login_request ( struct iscsi_session *iscsi ) {
struct iscsi_bhs_login_request *request = &iscsi->tx_bhs.login_request;
struct io_buffer *iobuf;
size_t len;
size_t pad_len;
len = ISCSI_DATA_LEN ( request->lengths );
pad_len = ISCSI_DATA_PAD_LEN ( request->lengths );
iobuf = xfer_alloc_iob ( &iscsi->socket, ( len + pad_len ) );
if ( ! iobuf )
return -ENOMEM;
iob_put ( iobuf, len );
iscsi_build_login_request_strings ( iscsi, iobuf->data, len );
memset ( iob_put ( iobuf, pad_len ), 0, pad_len );
return xfer_deliver_iob ( &iscsi->socket, iobuf );
}
/**
* Decode large binary value
*
* @v encoded Encoded large binary value
* @v raw Raw data
* @v len Length of data buffer
* @ret len Length of raw data, or negative error
*/
static int iscsi_large_binary_decode ( const char *encoded, uint8_t *raw,
size_t len ) {
/* Check for initial '0x' or '0b' and decode as appropriate */
if ( *(encoded++) == '0' ) {
switch ( tolower ( *(encoded++) ) ) {
case 'x' :
return base16_decode ( encoded, raw, len );
case 'b' :
return base64_decode ( encoded, raw, len );
}
}
return -EPROTO_INVALID_LARGE_BINARY;
}
/**
* Handle iSCSI TargetAddress text value
*
* @v iscsi iSCSI session
* @v value TargetAddress value
* @ret rc Return status code
*/
static int iscsi_handle_targetaddress_value ( struct iscsi_session *iscsi,
const char *value ) {
char *separator;
DBGC ( iscsi, "iSCSI %p will redirect to %s\n", iscsi, value );
/* Replace target address */
free ( iscsi->target_address );
iscsi->target_address = strdup ( value );
if ( ! iscsi->target_address )
return -ENOMEM;
/* Replace target port */
iscsi->target_port = htons ( ISCSI_PORT );
separator = strchr ( iscsi->target_address, ':' );
if ( separator ) {
*separator = '\0';
iscsi->target_port = strtoul ( ( separator + 1 ), NULL, 0 );
}
return 0;
}
/**
* Handle iSCSI AuthMethod text value
*
* @v iscsi iSCSI session
* @v value AuthMethod value
* @ret rc Return status code
*/
static int iscsi_handle_authmethod_value ( struct iscsi_session *iscsi,
const char *value ) {
/* If server requests CHAP, send the CHAP_A string */
if ( strcmp ( value, "CHAP" ) == 0 ) {
DBGC ( iscsi, "iSCSI %p initiating CHAP authentication\n",
iscsi );
iscsi->status |= ( ISCSI_STATUS_STRINGS_CHAP_ALGORITHM |
ISCSI_STATUS_AUTH_FORWARD_REQUIRED );
}
return 0;
}
/**
* Handle iSCSI CHAP_A text value
*
* @v iscsi iSCSI session
* @v value CHAP_A value
* @ret rc Return status code
*/
static int iscsi_handle_chap_a_value ( struct iscsi_session *iscsi,
const char *value ) {
/* We only ever offer "5" (i.e. MD5) as an algorithm, so if
* the server responds with anything else it is a protocol
* violation.
*/
if ( strcmp ( value, "5" ) != 0 ) {
DBGC ( iscsi, "iSCSI %p got invalid CHAP algorithm \"%s\"\n",
iscsi, value );
return -EPROTO_INVALID_CHAP_ALGORITHM;
}
return 0;
}
/**
* Handle iSCSI CHAP_I text value
*
* @v iscsi iSCSI session
* @v value CHAP_I value
* @ret rc Return status code
*/
static int iscsi_handle_chap_i_value ( struct iscsi_session *iscsi,
const char *value ) {
unsigned int identifier;
char *endp;
int rc;
/* The CHAP identifier is an integer value */
identifier = strtoul ( value, &endp, 0 );
if ( *endp != '\0' ) {
DBGC ( iscsi, "iSCSI %p saw invalid CHAP identifier \"%s\"\n",
iscsi, value );
return -EPROTO_INVALID_CHAP_IDENTIFIER;
}
/* Prepare for CHAP with MD5 */
chap_finish ( &iscsi->chap );
if ( ( rc = chap_init ( &iscsi->chap, &md5_algorithm ) ) != 0 ) {
DBGC ( iscsi, "iSCSI %p could not initialise CHAP: %s\n",
iscsi, strerror ( rc ) );
return rc;
}
/* Identifier and secret are the first two components of the
* challenge.
*/
chap_set_identifier ( &iscsi->chap, identifier );
if ( iscsi->initiator_password ) {
chap_update ( &iscsi->chap, iscsi->initiator_password,
strlen ( iscsi->initiator_password ) );
}
return 0;
}
/**
* Handle iSCSI CHAP_C text value
*
* @v iscsi iSCSI session
* @v value CHAP_C value
* @ret rc Return status code
*/
static int iscsi_handle_chap_c_value ( struct iscsi_session *iscsi,
const char *value ) {
uint8_t buf[ strlen ( value ) ]; /* Decoding never expands data */
unsigned int i;
int len;
int rc;
/* Process challenge */
len = iscsi_large_binary_decode ( value, buf, sizeof ( buf ) );
if ( len < 0 ) {
rc = len;
DBGC ( iscsi, "iSCSI %p invalid CHAP challenge \"%s\": %s\n",
iscsi, value, strerror ( rc ) );
return rc;
}
chap_update ( &iscsi->chap, buf, len );
/* Build CHAP response */
DBGC ( iscsi, "iSCSI %p sending CHAP response\n", iscsi );
chap_respond ( &iscsi->chap );
iscsi->status |= ISCSI_STATUS_STRINGS_CHAP_RESPONSE;
/* Send CHAP challenge, if applicable */
if ( iscsi->target_username ) {
iscsi->status |= ISCSI_STATUS_STRINGS_CHAP_CHALLENGE;
/* Generate CHAP challenge data */
for ( i = 0 ; i < sizeof ( iscsi->chap_challenge ) ; i++ ) {
iscsi->chap_challenge[i] = random();
}
}
return 0;
}
/**
* Handle iSCSI CHAP_N text value
*
* @v iscsi iSCSI session
* @v value CHAP_N value
* @ret rc Return status code
*/
static int iscsi_handle_chap_n_value ( struct iscsi_session *iscsi,
const char *value ) {
/* The target username isn't actually involved at any point in
* the authentication process; it merely serves to identify
* which password the target is using to generate the CHAP
* response. We unnecessarily verify that the username is as
* expected, in order to provide mildly helpful diagnostics if
* the target is supplying the wrong username/password
* combination.
*/
if ( iscsi->target_username &&
( strcmp ( iscsi->target_username, value ) != 0 ) ) {
DBGC ( iscsi, "iSCSI %p target username \"%s\" incorrect "
"(wanted \"%s\")\n",
iscsi, value, iscsi->target_username );
return -EACCES_INCORRECT_TARGET_USERNAME;
}
return 0;
}
/**
* Handle iSCSI CHAP_R text value
*
* @v iscsi iSCSI session
* @v value CHAP_R value
* @ret rc Return status code
*/
static int iscsi_handle_chap_r_value ( struct iscsi_session *iscsi,
const char *value ) {
uint8_t buf[ strlen ( value ) ]; /* Decoding never expands data */
int len;
int rc;
/* Generate CHAP response for verification */
chap_finish ( &iscsi->chap );
if ( ( rc = chap_init ( &iscsi->chap, &md5_algorithm ) ) != 0 ) {
DBGC ( iscsi, "iSCSI %p could not initialise CHAP: %s\n",
iscsi, strerror ( rc ) );
return rc;
}
chap_set_identifier ( &iscsi->chap, iscsi->chap_challenge[0] );
if ( iscsi->target_password ) {
chap_update ( &iscsi->chap, iscsi->target_password,
strlen ( iscsi->target_password ) );
}
chap_update ( &iscsi->chap, &iscsi->chap_challenge[1],
( sizeof ( iscsi->chap_challenge ) - 1 ) );
chap_respond ( &iscsi->chap );
/* Process response */
len = iscsi_large_binary_decode ( value, buf, sizeof ( buf ) );
if ( len < 0 ) {
rc = len;
DBGC ( iscsi, "iSCSI %p invalid CHAP response \"%s\": %s\n",
iscsi, value, strerror ( rc ) );
return rc;
}
/* Check CHAP response */
if ( len != ( int ) iscsi->chap.response_len ) {
DBGC ( iscsi, "iSCSI %p invalid CHAP response length\n",
iscsi );
return -EPROTO_INVALID_CHAP_RESPONSE;
}
if ( memcmp ( buf, iscsi->chap.response, len ) != 0 ) {
DBGC ( iscsi, "iSCSI %p incorrect CHAP response \"%s\"\n",
iscsi, value );
return -EACCES_INCORRECT_TARGET_PASSWORD;
}
/* Mark session as authenticated */
iscsi->status |= ISCSI_STATUS_AUTH_REVERSE_OK;
return 0;
}
/** An iSCSI text string that we want to handle */
struct iscsi_string_type {
/** String key
*
* This is the portion preceding the "=" sign,
* e.g. "InitiatorName", "CHAP_A", etc.
*/
const char *key;
/** Handle iSCSI string value
*
* @v iscsi iSCSI session
* @v value iSCSI string value
* @ret rc Return status code
*/
int ( * handle ) ( struct iscsi_session *iscsi, const char *value );
};
/** iSCSI text strings that we want to handle */
static struct iscsi_string_type iscsi_string_types[] = {
{ "TargetAddress", iscsi_handle_targetaddress_value },
{ "AuthMethod", iscsi_handle_authmethod_value },
{ "CHAP_A", iscsi_handle_chap_a_value },
{ "CHAP_I", iscsi_handle_chap_i_value },
{ "CHAP_C", iscsi_handle_chap_c_value },
{ "CHAP_N", iscsi_handle_chap_n_value },
{ "CHAP_R", iscsi_handle_chap_r_value },
{ NULL, NULL }
};
/**
* Handle iSCSI string
*
* @v iscsi iSCSI session
* @v string iSCSI string (in "key=value" format)
* @ret rc Return status code
*/
static int iscsi_handle_string ( struct iscsi_session *iscsi,
const char *string ) {
struct iscsi_string_type *type;
const char *separator;
const char *value;
size_t key_len;
int rc;
/* Find separator */
separator = strchr ( string, '=' );
if ( ! separator ) {
DBGC ( iscsi, "iSCSI %p malformed string %s\n",
iscsi, string );
return -EPROTO_INVALID_KEY_VALUE_PAIR;
}
key_len = ( separator - string );
value = ( separator + 1 );
/* Check for rejections. Since we send only non-rejectable
* values, any rejection is a fatal protocol error.
*/
if ( strcmp ( value, "Reject" ) == 0 ) {
DBGC ( iscsi, "iSCSI %p rejection: %s\n", iscsi, string );
return -EPROTO_VALUE_REJECTED;
}
/* Handle key/value pair */
for ( type = iscsi_string_types ; type->key ; type++ ) {
if ( strncmp ( string, type->key, key_len ) != 0 )
continue;
DBGC ( iscsi, "iSCSI %p handling %s\n", iscsi, string );
if ( ( rc = type->handle ( iscsi, value ) ) != 0 ) {
DBGC ( iscsi, "iSCSI %p could not handle %s: %s\n",
iscsi, string, strerror ( rc ) );
return rc;
}
return 0;
}
DBGC ( iscsi, "iSCSI %p ignoring %s\n", iscsi, string );
return 0;
}
/**
* Handle iSCSI strings
*
* @v iscsi iSCSI session
* @v string iSCSI string buffer
* @v len Length of string buffer
* @ret rc Return status code
*/
static int iscsi_handle_strings ( struct iscsi_session *iscsi,
const char *strings, size_t len ) {
size_t string_len;
int rc;
/* Handle each string in turn, taking care not to overrun the
* data buffer in case of badly-terminated data.
*/
while ( 1 ) {
string_len = ( strnlen ( strings, len ) + 1 );
if ( string_len > len )
break;
if ( ( rc = iscsi_handle_string ( iscsi, strings ) ) != 0 )
return rc;
strings += string_len;
len -= string_len;
}
return 0;
}
/**
* Convert iSCSI response status to return status code
*
* @v status_class iSCSI status class
* @v status_detail iSCSI status detail
* @ret rc Return status code
*/
static int iscsi_status_to_rc ( unsigned int status_class,
unsigned int status_detail ) {
switch ( status_class ) {
case ISCSI_STATUS_INITIATOR_ERROR :
switch ( status_detail ) {
case ISCSI_STATUS_INITIATOR_ERROR_AUTHENTICATION :
return -EPERM_INITIATOR_AUTHENTICATION;
case ISCSI_STATUS_INITIATOR_ERROR_AUTHORISATION :
return -EPERM_INITIATOR_AUTHORISATION;
case ISCSI_STATUS_INITIATOR_ERROR_NOT_FOUND :
case ISCSI_STATUS_INITIATOR_ERROR_REMOVED :
return -ENODEV;
default :
return -ENOTSUP_INITIATOR_STATUS;
}
case ISCSI_STATUS_TARGET_ERROR :
switch ( status_detail ) {
case ISCSI_STATUS_TARGET_ERROR_UNAVAILABLE:
return -EIO_TARGET_UNAVAILABLE;
case ISCSI_STATUS_TARGET_ERROR_NO_RESOURCES:
return -EIO_TARGET_NO_RESOURCES;
default:
return -ENOTSUP_TARGET_STATUS;
}
default :
return -EINVAL;
}
}
/**
* Receive data segment of an iSCSI login response PDU
*
* @v iscsi iSCSI session
* @v data Received data
* @v len Length of received data
* @v remaining Data remaining after this data
* @ret rc Return status code
*/
static int iscsi_rx_login_response ( struct iscsi_session *iscsi,
const void *data, size_t len,
size_t remaining ) {
struct iscsi_bhs_login_response *response
= &iscsi->rx_bhs.login_response;
int rc;
/* Buffer up the PDU data */
if ( ( rc = iscsi_rx_buffered_data ( iscsi, data, len ) ) != 0 ) {
DBGC ( iscsi, "iSCSI %p could not buffer login response: %s\n",
iscsi, strerror ( rc ) );
return rc;
}
if ( remaining )
return 0;
/* Process string data and discard string buffer */
if ( ( rc = iscsi_handle_strings ( iscsi, iscsi->rx_buffer,
iscsi->rx_len ) ) != 0 )
return rc;
iscsi_rx_buffered_data_done ( iscsi );
/* Check for login redirection */
if ( response->status_class == ISCSI_STATUS_REDIRECT ) {
DBGC ( iscsi, "iSCSI %p redirecting to new server\n", iscsi );
iscsi_close_connection ( iscsi, 0 );
if ( ( rc = iscsi_open_connection ( iscsi ) ) != 0 ) {
DBGC ( iscsi, "iSCSI %p could not redirect: %s\n ",
iscsi, strerror ( rc ) );
return rc;
}
return 0;
}
/* Check for fatal errors */
if ( response->status_class != 0 ) {
DBGC ( iscsi, "iSCSI login failure: class %02x detail %02x\n",
response->status_class, response->status_detail );
rc = iscsi_status_to_rc ( response->status_class,
response->status_detail );
return rc;
}
/* Handle login transitions */
if ( response->flags & ISCSI_LOGIN_FLAG_TRANSITION ) {
iscsi->status &= ~( ISCSI_STATUS_PHASE_MASK |
ISCSI_STATUS_STRINGS_MASK );
switch ( response->flags & ISCSI_LOGIN_NSG_MASK ) {
case ISCSI_LOGIN_NSG_OPERATIONAL_NEGOTIATION:
iscsi->status |=
( ISCSI_STATUS_OPERATIONAL_NEGOTIATION_PHASE |
ISCSI_STATUS_STRINGS_OPERATIONAL );
break;
case ISCSI_LOGIN_NSG_FULL_FEATURE_PHASE:
iscsi->status |= ISCSI_STATUS_FULL_FEATURE_PHASE;
break;
default:
DBGC ( iscsi, "iSCSI %p got invalid response flags "
"%02x\n", iscsi, response->flags );
return -EIO;
}
}
/* Send next login request PDU if we haven't reached the full
* feature phase yet.
*/
if ( ( iscsi->status & ISCSI_STATUS_PHASE_MASK ) !=
ISCSI_STATUS_FULL_FEATURE_PHASE ) {
iscsi_start_login ( iscsi );
return 0;
}
/* Check that target authentication was successful (if required) */
if ( ( iscsi->status & ISCSI_STATUS_AUTH_REVERSE_REQUIRED ) &&
! ( iscsi->status & ISCSI_STATUS_AUTH_REVERSE_OK ) ) {
DBGC ( iscsi, "iSCSI %p nefarious target tried to bypass "
"authentication\n", iscsi );
return -EPROTO;
}
/* Notify SCSI layer of window change */
DBGC ( iscsi, "iSCSI %p entering full feature phase\n", iscsi );
xfer_window_changed ( &iscsi->control );
return 0;
}
/****************************************************************************
*
* iSCSI to socket interface
*
*/
/**
* Pause TX engine
*
* @v iscsi iSCSI session
*/
static void iscsi_tx_pause ( struct iscsi_session *iscsi ) {
process_del ( &iscsi->process );
}
/**
* Resume TX engine
*
* @v iscsi iSCSI session
*/
static void iscsi_tx_resume ( struct iscsi_session *iscsi ) {
process_add ( &iscsi->process );
}
/**
* Start up a new TX PDU
*
* @v iscsi iSCSI session
*
* This initiates the process of sending a new PDU. Only one PDU may
* be in transit at any one time.
*/
static void iscsi_start_tx ( struct iscsi_session *iscsi ) {
assert ( iscsi->tx_state == ISCSI_TX_IDLE );
/* Initialise TX BHS */
memset ( &iscsi->tx_bhs, 0, sizeof ( iscsi->tx_bhs ) );
/* Flag TX engine to start transmitting */
iscsi->tx_state = ISCSI_TX_BHS;
/* Start transmission process */
iscsi_tx_resume ( iscsi );
}
/**
* Transmit nothing
*
* @v iscsi iSCSI session
* @ret rc Return status code
*/
static int iscsi_tx_nothing ( struct iscsi_session *iscsi __unused ) {
return 0;
}
/**
* Transmit basic header segment of an iSCSI PDU
*
* @v iscsi iSCSI session
* @ret rc Return status code
*/
static int iscsi_tx_bhs ( struct iscsi_session *iscsi ) {
return xfer_deliver_raw ( &iscsi->socket, &iscsi->tx_bhs,
sizeof ( iscsi->tx_bhs ) );
}
/**
* Transmit data segment of an iSCSI PDU
*
* @v iscsi iSCSI session
* @ret rc Return status code
*
* Handle transmission of part of a PDU data segment. iscsi::tx_bhs
* will be valid when this is called.
*/
static int iscsi_tx_data ( struct iscsi_session *iscsi ) {
struct iscsi_bhs_common *common = &iscsi->tx_bhs.common;
switch ( common->opcode & ISCSI_OPCODE_MASK ) {
case ISCSI_OPCODE_DATA_OUT:
return iscsi_tx_data_out ( iscsi );
case ISCSI_OPCODE_LOGIN_REQUEST:
return iscsi_tx_login_request ( iscsi );
default:
/* Nothing to send in other states */
return 0;
}
}
/**
* Complete iSCSI PDU transmission
*
* @v iscsi iSCSI session
*
* Called when a PDU has been completely transmitted and the TX state
* machine is about to enter the idle state. iscsi::tx_bhs will be
* valid for the just-completed PDU when this is called.
*/
static void iscsi_tx_done ( struct iscsi_session *iscsi ) {
struct iscsi_bhs_common *common = &iscsi->tx_bhs.common;
/* Stop transmission process */
iscsi_tx_pause ( iscsi );
switch ( common->opcode & ISCSI_OPCODE_MASK ) {
case ISCSI_OPCODE_DATA_OUT:
iscsi_data_out_done ( iscsi );
break;
case ISCSI_OPCODE_LOGIN_REQUEST:
iscsi_login_request_done ( iscsi );
break;
default:
/* No action */
break;
}
}
/**
* Transmit iSCSI PDU
*
* @v iscsi iSCSI session
* @v buf Temporary data buffer
* @v len Length of temporary data buffer
*
* Constructs data to be sent for the current TX state
*/
static void iscsi_tx_step ( struct iscsi_session *iscsi ) {
struct iscsi_bhs_common *common = &iscsi->tx_bhs.common;
int ( * tx ) ( struct iscsi_session *iscsi );
enum iscsi_tx_state next_state;
size_t tx_len;
int rc;
/* Select fragment to transmit */
while ( 1 ) {
switch ( iscsi->tx_state ) {
case ISCSI_TX_BHS:
tx = iscsi_tx_bhs;
tx_len = sizeof ( iscsi->tx_bhs );
next_state = ISCSI_TX_AHS;
break;
case ISCSI_TX_AHS:
tx = iscsi_tx_nothing;
tx_len = 0;
next_state = ISCSI_TX_DATA;
break;
case ISCSI_TX_DATA:
tx = iscsi_tx_data;
tx_len = ISCSI_DATA_LEN ( common->lengths );
next_state = ISCSI_TX_IDLE;
break;
case ISCSI_TX_IDLE:
/* Nothing to do; pause processing */
iscsi_tx_pause ( iscsi );
return;
default:
assert ( 0 );
return;
}
/* Check for window availability, if needed */
if ( tx_len && ( xfer_window ( &iscsi->socket ) == 0 ) ) {
/* Cannot transmit at this point; pause
* processing and wait for window to reopen
*/
iscsi_tx_pause ( iscsi );
return;
}
/* Transmit data */
if ( ( rc = tx ( iscsi ) ) != 0 ) {
DBGC ( iscsi, "iSCSI %p could not transmit: %s\n",
iscsi, strerror ( rc ) );
/* Transmission errors are fatal */
iscsi_close ( iscsi, rc );
return;
}
/* Move to next state */
iscsi->tx_state = next_state;
/* If we have moved to the idle state, mark
* transmission as complete
*/
if ( iscsi->tx_state == ISCSI_TX_IDLE )
iscsi_tx_done ( iscsi );
}
}
/** iSCSI TX process descriptor */
static struct process_descriptor iscsi_process_desc =
PROC_DESC ( struct iscsi_session, process, iscsi_tx_step );
/**
* Receive basic header segment of an iSCSI PDU
*
* @v iscsi iSCSI session
* @v data Received data
* @v len Length of received data
* @v remaining Data remaining after this data
* @ret rc Return status code
*
* This fills in iscsi::rx_bhs with the data from the BHS portion of
* the received PDU.
*/
static int iscsi_rx_bhs ( struct iscsi_session *iscsi, const void *data,
size_t len, size_t remaining __unused ) {
memcpy ( &iscsi->rx_bhs.bytes[iscsi->rx_offset], data, len );
if ( ( iscsi->rx_offset + len ) >= sizeof ( iscsi->rx_bhs ) ) {
DBGC2 ( iscsi, "iSCSI %p received PDU opcode %#x len %#x\n",
iscsi, iscsi->rx_bhs.common.opcode,
ISCSI_DATA_LEN ( iscsi->rx_bhs.common.lengths ) );
}
return 0;
}
/**
* Discard portion of an iSCSI PDU.
*
* @v iscsi iSCSI session
* @v data Received data
* @v len Length of received data
* @v remaining Data remaining after this data
* @ret rc Return status code
*
* This discards data from a portion of a received PDU.
*/
static int iscsi_rx_discard ( struct iscsi_session *iscsi __unused,
const void *data __unused, size_t len __unused,
size_t remaining __unused ) {
/* Do nothing */
return 0;
}
/**
* Receive data segment of an iSCSI PDU
*
* @v iscsi iSCSI session
* @v data Received data
* @v len Length of received data
* @v remaining Data remaining after this data
* @ret rc Return status code
*
* Handle processing of part of a PDU data segment. iscsi::rx_bhs
* will be valid when this is called.
*/
static int iscsi_rx_data ( struct iscsi_session *iscsi, const void *data,
size_t len, size_t remaining ) {
struct iscsi_bhs_common_response *response
= &iscsi->rx_bhs.common_response;
/* Update cmdsn and statsn */
iscsi->cmdsn = ntohl ( response->expcmdsn );
iscsi->statsn = ntohl ( response->statsn );
switch ( response->opcode & ISCSI_OPCODE_MASK ) {
case ISCSI_OPCODE_LOGIN_RESPONSE:
return iscsi_rx_login_response ( iscsi, data, len, remaining );
case ISCSI_OPCODE_SCSI_RESPONSE:
return iscsi_rx_scsi_response ( iscsi, data, len, remaining );
case ISCSI_OPCODE_DATA_IN:
return iscsi_rx_data_in ( iscsi, data, len, remaining );
case ISCSI_OPCODE_R2T:
return iscsi_rx_r2t ( iscsi, data, len, remaining );
case ISCSI_OPCODE_NOP_IN:
return iscsi_rx_nop_in ( iscsi, data, len, remaining );
default:
if ( remaining )
return 0;
DBGC ( iscsi, "iSCSI %p unknown opcode %02x\n", iscsi,
response->opcode );
return -ENOTSUP_OPCODE;
}
}
/**
* Receive new data
*
* @v iscsi iSCSI session
* @v iobuf I/O buffer
* @v meta Data transfer metadata
* @ret rc Return status code
*
* This handles received PDUs. The receive strategy is to fill in
* iscsi::rx_bhs with the contents of the BHS portion of the PDU,
* throw away any AHS portion, and then process each part of the data
* portion as it arrives. The data processing routine therefore
* always has a full copy of the BHS available, even for portions of
* the data in different packets to the BHS.
*/
static int iscsi_socket_deliver ( struct iscsi_session *iscsi,
struct io_buffer *iobuf,
struct xfer_metadata *meta __unused ) {
struct iscsi_bhs_common *common = &iscsi->rx_bhs.common;
int ( * rx ) ( struct iscsi_session *iscsi, const void *data,
size_t len, size_t remaining );
enum iscsi_rx_state next_state;
size_t frag_len;
size_t remaining;
int rc;
while ( 1 ) {
switch ( iscsi->rx_state ) {
case ISCSI_RX_BHS:
rx = iscsi_rx_bhs;
iscsi->rx_len = sizeof ( iscsi->rx_bhs );
next_state = ISCSI_RX_AHS;
break;
case ISCSI_RX_AHS:
rx = iscsi_rx_discard;
iscsi->rx_len = 4 * ISCSI_AHS_LEN ( common->lengths );
next_state = ISCSI_RX_DATA;
break;
case ISCSI_RX_DATA:
rx = iscsi_rx_data;
iscsi->rx_len = ISCSI_DATA_LEN ( common->lengths );
next_state = ISCSI_RX_DATA_PADDING;
break;
case ISCSI_RX_DATA_PADDING:
rx = iscsi_rx_discard;
iscsi->rx_len = ISCSI_DATA_PAD_LEN ( common->lengths );
next_state = ISCSI_RX_BHS;
break;
default:
assert ( 0 );
rc = -EINVAL;
goto done;
}
frag_len = iscsi->rx_len - iscsi->rx_offset;
if ( frag_len > iob_len ( iobuf ) )
frag_len = iob_len ( iobuf );
remaining = iscsi->rx_len - iscsi->rx_offset - frag_len;
if ( ( rc = rx ( iscsi, iobuf->data, frag_len,
remaining ) ) != 0 ) {
DBGC ( iscsi, "iSCSI %p could not process received "
"data: %s\n", iscsi, strerror ( rc ) );
goto done;
}
iscsi->rx_offset += frag_len;
iob_pull ( iobuf, frag_len );
/* If all the data for this state has not yet been
* received, stay in this state for now.
*/
if ( iscsi->rx_offset != iscsi->rx_len ) {
rc = 0;
goto done;
}
iscsi->rx_state = next_state;
iscsi->rx_offset = 0;
}
done:
/* Free I/O buffer */
free_iob ( iobuf );
/* Destroy session on error */
if ( rc != 0 )
iscsi_close ( iscsi, rc );
return rc;
}
/**
* Handle redirection event
*
* @v iscsi iSCSI session
* @v type Location type
* @v args Remaining arguments depend upon location type
* @ret rc Return status code
*/
static int iscsi_vredirect ( struct iscsi_session *iscsi, int type,
va_list args ) {
va_list tmp;
struct sockaddr *peer;
int rc;
/* Intercept redirects to a LOCATION_SOCKET and record the IP
* address for the iBFT. This is a bit of a hack, but avoids
* inventing an ioctl()-style call to retrieve the socket
* address from a data-xfer interface.
*/
if ( type == LOCATION_SOCKET ) {
va_copy ( tmp, args );
( void ) va_arg ( tmp, int ); /* Discard "semantics" */
peer = va_arg ( tmp, struct sockaddr * );
memcpy ( &iscsi->target_sockaddr, peer,
sizeof ( iscsi->target_sockaddr ) );
va_end ( tmp );
}
/* Redirect to new location */
if ( ( rc = xfer_vreopen ( &iscsi->socket, type, args ) ) != 0 )
goto err;
return 0;
err:
iscsi_close ( iscsi, rc );
return rc;
}
/** iSCSI socket interface operations */
static struct interface_operation iscsi_socket_operations[] = {
INTF_OP ( xfer_deliver, struct iscsi_session *, iscsi_socket_deliver ),
INTF_OP ( xfer_window_changed, struct iscsi_session *,
iscsi_tx_resume ),
INTF_OP ( xfer_vredirect, struct iscsi_session *, iscsi_vredirect ),
INTF_OP ( intf_close, struct iscsi_session *, iscsi_close ),
};
/** iSCSI socket interface descriptor */
static struct interface_descriptor iscsi_socket_desc =
INTF_DESC ( struct iscsi_session, socket, iscsi_socket_operations );
/****************************************************************************
*
* iSCSI command issuing
*
*/
/**
* Check iSCSI flow-control window
*
* @v iscsi iSCSI session
* @ret len Length of window
*/
static size_t iscsi_scsi_window ( struct iscsi_session *iscsi ) {
if ( ( ( iscsi->status & ISCSI_STATUS_PHASE_MASK ) ==
ISCSI_STATUS_FULL_FEATURE_PHASE ) &&
( iscsi->command == NULL ) ) {
/* We cannot handle concurrent commands */
return 1;
} else {
return 0;
}
}
/**
* Issue iSCSI SCSI command
*
* @v iscsi iSCSI session
* @v parent Parent interface
* @v command SCSI command
* @ret tag Command tag, or negative error
*/
static int iscsi_scsi_command ( struct iscsi_session *iscsi,
struct interface *parent,
struct scsi_cmd *command ) {
/* This iSCSI implementation cannot handle multiple concurrent
* commands or commands arriving before login is complete.
*/
if ( iscsi_scsi_window ( iscsi ) == 0 ) {
DBGC ( iscsi, "iSCSI %p cannot handle concurrent commands\n",
iscsi );
return -EOPNOTSUPP;
}
/* Store command */
iscsi->command = malloc ( sizeof ( *command ) );
if ( ! iscsi->command )
return -ENOMEM;
memcpy ( iscsi->command, command, sizeof ( *command ) );
/* Assign new ITT */
iscsi_new_itt ( iscsi );
/* Start sending command */
iscsi_start_command ( iscsi );
/* Attach to parent interface and return */
intf_plug_plug ( &iscsi->data, parent );
return iscsi->itt;
}
/**
* Get iSCSI ACPI descriptor
*
* @v iscsi iSCSI session
* @ret desc ACPI descriptor
*/
static struct acpi_descriptor * iscsi_describe ( struct iscsi_session *iscsi ) {
return &iscsi->desc;
}
/** iSCSI SCSI command-issuing interface operations */
static struct interface_operation iscsi_control_op[] = {
INTF_OP ( scsi_command, struct iscsi_session *, iscsi_scsi_command ),
INTF_OP ( xfer_window, struct iscsi_session *, iscsi_scsi_window ),
INTF_OP ( intf_close, struct iscsi_session *, iscsi_close ),
INTF_OP ( acpi_describe, struct iscsi_session *, iscsi_describe ),
};
/** iSCSI SCSI command-issuing interface descriptor */
static struct interface_descriptor iscsi_control_desc =
INTF_DESC ( struct iscsi_session, control, iscsi_control_op );
/**
* Close iSCSI command
*
* @v iscsi iSCSI session
* @v rc Reason for close
*/
static void iscsi_command_close ( struct iscsi_session *iscsi, int rc ) {
/* Restart interface */
intf_restart ( &iscsi->data, rc );
/* Treat unsolicited command closures mid-command as fatal,
* because we have no code to handle partially-completed PDUs.
*/
if ( iscsi->command != NULL )
iscsi_close ( iscsi, ( ( rc == 0 ) ? -ECANCELED : rc ) );
}
/** iSCSI SCSI command interface operations */
static struct interface_operation iscsi_data_op[] = {
INTF_OP ( intf_close, struct iscsi_session *, iscsi_command_close ),
};
/** iSCSI SCSI command interface descriptor */
static struct interface_descriptor iscsi_data_desc =
INTF_DESC ( struct iscsi_session, data, iscsi_data_op );
/****************************************************************************
*
* Instantiator
*
*/
/** iSCSI root path components (as per RFC4173) */
enum iscsi_root_path_component {
RP_SERVERNAME = 0,
RP_PROTOCOL,
RP_PORT,
RP_LUN,
RP_TARGETNAME,
NUM_RP_COMPONENTS
};
/** iSCSI initiator IQN setting */
const struct setting initiator_iqn_setting __setting ( SETTING_SANBOOT_EXTRA,
initiator-iqn ) = {
.name = "initiator-iqn",
.description = "iSCSI initiator name",
.tag = DHCP_ISCSI_INITIATOR_IQN,
.type = &setting_type_string,
};
/** iSCSI reverse username setting */
const struct setting reverse_username_setting __setting ( SETTING_AUTH_EXTRA,
reverse-username ) = {
.name = "reverse-username",
.description = "Reverse user name",
.tag = DHCP_EB_REVERSE_USERNAME,
.type = &setting_type_string,
};
/** iSCSI reverse password setting */
const struct setting reverse_password_setting __setting ( SETTING_AUTH_EXTRA,
reverse-password ) = {
.name = "reverse-password",
.description = "Reverse password",
.tag = DHCP_EB_REVERSE_PASSWORD,
.type = &setting_type_string,
};
/**
* Parse iSCSI root path
*
* @v iscsi iSCSI session
* @v root_path iSCSI root path (as per RFC4173)
* @ret rc Return status code
*/
static int iscsi_parse_root_path ( struct iscsi_session *iscsi,
const char *root_path ) {
char rp_copy[ strlen ( root_path ) + 1 ];
char *rp_comp[NUM_RP_COMPONENTS];
char *rp = rp_copy;
int skip = 0;
int i = 0;
int rc;
/* Split root path into component parts */
strcpy ( rp_copy, root_path );
while ( 1 ) {
rp_comp[i++] = rp;
if ( i == NUM_RP_COMPONENTS )
break;
for ( ; ( ( *rp != ':' ) || skip ) ; rp++ ) {
if ( ! *rp ) {
DBGC ( iscsi, "iSCSI %p root path \"%s\" "
"too short\n", iscsi, root_path );
return -EINVAL_ROOT_PATH_TOO_SHORT;
} else if ( *rp == '[' ) {
skip = 1;
} else if ( *rp == ']' ) {
skip = 0;
}
}
*(rp++) = '\0';
}
/* Use root path components to configure iSCSI session */
iscsi->target_address = strdup ( rp_comp[RP_SERVERNAME] );
if ( ! iscsi->target_address )
return -ENOMEM;
iscsi->target_port = strtoul ( rp_comp[RP_PORT], NULL, 10 );
if ( ! iscsi->target_port )
iscsi->target_port = ISCSI_PORT;
if ( ( rc = scsi_parse_lun ( rp_comp[RP_LUN], &iscsi->lun ) ) != 0 ) {
DBGC ( iscsi, "iSCSI %p invalid LUN \"%s\"\n",
iscsi, rp_comp[RP_LUN] );
return rc;
}
iscsi->target_iqn = strdup ( rp_comp[RP_TARGETNAME] );
if ( ! iscsi->target_iqn )
return -ENOMEM;
return 0;
}
/**
* Fetch iSCSI settings
*
* @v iscsi iSCSI session
* @ret rc Return status code
*/
static int iscsi_fetch_settings ( struct iscsi_session *iscsi ) {
char *hostname;
union uuid uuid;
int len;
/* Fetch relevant settings. Don't worry about freeing on
* error, since iscsi_free() will take care of that anyway.
*/
fetch_string_setting_copy ( NULL, &username_setting,
&iscsi->initiator_username );
fetch_string_setting_copy ( NULL, &password_setting,
&iscsi->initiator_password );
fetch_string_setting_copy ( NULL, &reverse_username_setting,
&iscsi->target_username );
fetch_string_setting_copy ( NULL, &reverse_password_setting,
&iscsi->target_password );
/* Use explicit initiator IQN if provided */
fetch_string_setting_copy ( NULL, &initiator_iqn_setting,
&iscsi->initiator_iqn );
if ( iscsi->initiator_iqn )
return 0;
/* Otherwise, try to construct an initiator IQN from the hostname */
fetch_string_setting_copy ( NULL, &hostname_setting, &hostname );
if ( hostname ) {
len = asprintf ( &iscsi->initiator_iqn,
ISCSI_DEFAULT_IQN_PREFIX ":%s", hostname );
free ( hostname );
if ( len < 0 ) {
DBGC ( iscsi, "iSCSI %p could not allocate initiator "
"IQN\n", iscsi );
return -ENOMEM;
}
assert ( iscsi->initiator_iqn );
return 0;
}
/* Otherwise, try to construct an initiator IQN from the UUID */
if ( ( len = fetch_uuid_setting ( NULL, &uuid_setting, &uuid ) ) < 0 ) {
DBGC ( iscsi, "iSCSI %p has no suitable initiator IQN\n",
iscsi );
return -EINVAL_NO_INITIATOR_IQN;
}
if ( ( len = asprintf ( &iscsi->initiator_iqn,
ISCSI_DEFAULT_IQN_PREFIX ":%s",
uuid_ntoa ( &uuid ) ) ) < 0 ) {
DBGC ( iscsi, "iSCSI %p could not allocate initiator IQN\n",
iscsi );
return -ENOMEM;
}
assert ( iscsi->initiator_iqn );
return 0;
}
/**
* Check iSCSI authentication details
*
* @v iscsi iSCSI session
* @ret rc Return status code
*/
static int iscsi_check_auth ( struct iscsi_session *iscsi ) {
/* Check for invalid authentication combinations */
if ( ( /* Initiator username without password (or vice-versa) */
( !! iscsi->initiator_username ) ^
( !! iscsi->initiator_password ) ) ||
( /* Target username without password (or vice-versa) */
( !! iscsi->target_username ) ^
( !! iscsi->target_password ) ) ||
( /* Target (reverse) without initiator (forward) */
( iscsi->target_username &&
( ! iscsi->initiator_username ) ) ) ) {
DBGC ( iscsi, "iSCSI %p invalid credentials: initiator "
"%sname,%spw, target %sname,%spw\n", iscsi,
( iscsi->initiator_username ? "" : "no " ),
( iscsi->initiator_password ? "" : "no " ),
( iscsi->target_username ? "" : "no " ),
( iscsi->target_password ? "" : "no " ) );
return -EINVAL_BAD_CREDENTIAL_MIX;
}
return 0;
}
/**
* Open iSCSI URI
*
* @v parent Parent interface
* @v uri URI
* @ret rc Return status code
*/
static int iscsi_open ( struct interface *parent, struct uri *uri ) {
struct iscsi_session *iscsi;
int rc;
/* Sanity check */
if ( ! uri->opaque ) {
rc = -EINVAL_NO_ROOT_PATH;
goto err_sanity_uri;
}
/* Allocate and initialise structure */
iscsi = zalloc ( sizeof ( *iscsi ) );
if ( ! iscsi ) {
rc = -ENOMEM;
goto err_zalloc;
}
ref_init ( &iscsi->refcnt, iscsi_free );
intf_init ( &iscsi->control, &iscsi_control_desc, &iscsi->refcnt );
intf_init ( &iscsi->data, &iscsi_data_desc, &iscsi->refcnt );
intf_init ( &iscsi->socket, &iscsi_socket_desc, &iscsi->refcnt );
process_init_stopped ( &iscsi->process, &iscsi_process_desc,
&iscsi->refcnt );
// acpi_init ( &iscsi->desc, &ibft_model, &iscsi->refcnt );
/* Parse root path */
if ( ( rc = iscsi_parse_root_path ( iscsi, uri->opaque ) ) != 0 )
goto err_parse_root_path;
/* Set fields not specified by root path */
if ( ( rc = iscsi_fetch_settings ( iscsi ) ) != 0 )
goto err_fetch_settings;
/* Validate authentication */
if ( ( rc = iscsi_check_auth ( iscsi ) ) != 0 )
goto err_check_auth;
/* Sanity checks */
if ( ! iscsi->target_address ) {
DBGC ( iscsi, "iSCSI %p does not yet support discovery\n",
iscsi );
rc = -ENOTSUP_DISCOVERY;
goto err_sanity_address;
}
if ( ! iscsi->target_iqn ) {
DBGC ( iscsi, "iSCSI %p no target address supplied in %s\n",
iscsi, uri->opaque );
rc = -EINVAL_NO_TARGET_IQN;
goto err_sanity_iqn;
}
DBGC ( iscsi, "iSCSI %p initiator %s\n",iscsi, iscsi->initiator_iqn );
DBGC ( iscsi, "iSCSI %p target %s %s\n",
iscsi, iscsi->target_address, iscsi->target_iqn );
/* Open socket */
if ( ( rc = iscsi_open_connection ( iscsi ) ) != 0 )
goto err_open_connection;
/* Attach SCSI device to parent interface */
if ( ( rc = scsi_open ( parent, &iscsi->control,
&iscsi->lun ) ) != 0 ) {
DBGC ( iscsi, "iSCSI %p could not create SCSI device: %s\n",
iscsi, strerror ( rc ) );
goto err_scsi_open;
}
/* Mortalise self, and return */
ref_put ( &iscsi->refcnt );
return 0;
err_scsi_open:
err_open_connection:
err_sanity_iqn:
err_sanity_address:
err_check_auth:
err_fetch_settings:
err_parse_root_path:
iscsi_close ( iscsi, rc );
ref_put ( &iscsi->refcnt );
err_zalloc:
err_sanity_uri:
return rc;
}
/** iSCSI URI opener */
struct uri_opener iscsi_uri_opener __uri_opener = {
.scheme = "iscsi",
.open = iscsi_open,
};
Copyright (c) 2019, TianoCore and contributors. All rights reserved.
SPDX-License-Identifier: BSD-2-Clause-Patent
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
Subject to the terms and conditions of this license, each copyright holder
and contributor hereby grants to those receiving rights under this license
a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except for failure to satisfy the conditions of this license) patent
license to make, have made, use, offer to sell, sell, import, and otherwise
transfer this software, where such license applies only to those patent
claims, already acquired or hereafter acquired, licensable by such copyright
holder or contributor that are necessarily infringed by:
(a) their Contribution(s) (the licensed copyrights of copyright holders and
non-copyrightable additions of contributors, in source or binary form)
alone; or
(b) combination of their Contribution(s) with the work of authorship to
which such Contribution(s) was added by such copyright holder or
contributor, if, at the time the Contribution is added, such addition
causes such combination to be necessarily infringed. The patent license
shall not apply to any other combinations which include the
Contribution.
Except as expressly stated above, no rights or licenses from any copyright
holder or contributor is granted under this license, whether expressly, by
implication, estoppel or otherwise.
DISCLAIMER
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
\ No newline at end of file
BSD License
For Zstandard software
Copyright (c) 2016-present, Facebook, Inc. All rights reserved.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* Neither the name Facebook nor the names of its contributors may be used to
endorse or promote products derived from this software without specific
prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
\ No newline at end of file
The MIT License (MIT)
Copyright © 2020 <copyright holders>
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
\ No newline at end of file
GNU GENERAL PUBLIC LICENSE
Version 2, June 1991
Copyright (C) 1989, 1991 Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation's software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Lesser General Public License instead.) You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.
To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.
We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.
Also, for each author's protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors' reputations.
Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone's free use or not licensed at all.
The precise terms and conditions for copying, distribution and
modification follow.
GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program", below,
refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in
the term "modification".) Each licensee is addressed as "you".
Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.
1. You may copy and distribute verbatim copies of the Program's
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.
You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.
2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:
a) You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.
b) You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.
c) If the modified program normally reads commands interactively
when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide
a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this
License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on
the Program is not required to print an announcement.)
These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote it.
Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.
In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.
3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:
a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections
1 and 2 above on a medium customarily used for software interchange; or,
b) Accompany it with a written offer, valid for at least three
years, to give any third party, for a charge no more than your
cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,
c) Accompany it with the information you received as to the offer
to distribute corresponding source code. (This alternative is
allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such
an offer, in accord with Subsection b above.)
The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.
If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.
4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.
5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.
6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.
7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.
If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.
It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.
This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.
8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.
9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and "any
later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.
10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.
NO WARRANTY
11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.
12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this
when it starts in an interactive mode:
Gnomovision version 69, Copyright (C) year name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, the commands you use may
be called something other than `show w' and `show c'; they could even be
mouse-clicks or menu items--whatever suits your program.
You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the program, if
necessary. Here is a sample; alter the names:
Yoyodyne, Inc., hereby disclaims all copyright interest in the program
`Gnomovision' (which makes passes at compilers) written by James Hacker.
<signature of Ty Coon>, 1 April 1989
Ty Coon, President of Vice
This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License.
GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The GNU General Public License is a free, copyleft license for
software and other kinds of works.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.
Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.
For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.
Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.
Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU General Public License.
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
1. Source Code.
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.
The Corresponding Source for a work in source code form is that
same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".
c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:
a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.
If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:
<program> Copyright (C) <year> <name of author>
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".
You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<https://www.gnu.org/licenses/>.
The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<https://www.gnu.org/licenses/why-not-lgpl.html>.
BusyBox follows GPLv2 license (see gpl-2.0.txt)
Ventoy does not modify its source code, only its binary is used.
Device Mapper follows GPLv2 License (see gpl-2.0.txt)
Ventoy modify its source code, these code modified by Ventoy follows the same license as Device Mapper.
EDK2 follows BSD-2-Clause Plus Patent License (see BSD-2-Clause-Patent.txt)
Ventoy add an uefi application module in MdeModulePkg, the code is developed by ventoy and is under GPLv3+ License (see gpl-3.0.txt).
efifs follows GPLv3 (see gpl-3.0.txt) License.
Ventoy modify its source code, these code modified by Ventoy follows the same license as efifs.
exfat follows GPLv2 (see gpl-2.0.txt) License.
Ventoy modify its source code, these code modified by Ventoy follows the same license as exfat.
fat-filelib follows GPL license (see gpl-3.0.txt)
Ventoy does not modify its source code, only its library is used.
Therefore FatFs license is one of the BSD-style licenses but there is a significant feature. FatFs is mainly intended for embedded systems. In order to extend the usability for commercial products, the redistributions of FatFs in binary form, such as embedded code, binary library and any forms without source code, does not need to include about FatFs in the documentations. This is equivalent to the 1-clause BSD license. Of course FatFs is compatible with the most of open source software licenses including GNU GPL. When you redistribute the FatFs source code with any changes or create a fork, the license can also be changed to GNU GPL, BSD-style license or any open source software license that not conflict with FatFs license.
Ventoy modify its source code, these code modified by Ventoy follow the same license as FatFs.
GRUB2 follows GPLv3+ license (see gpl-3.0.txt)
Ventoy modify its source code, these code modified by Ventoy follow the same license as grub2.
imdisk follows GPL license (see gpl-3.0.txt)
Ventoy does not modify its source code, only its binary is used.
iPXE follows GPLv2 (see gpl-2.0.txt) or Unmodified Binary Distribution Licence (see ubdl.txt)
Ventoy modify its source code, these code modified by Ventoy follow the same license as iPXE.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment