/* * Copyright 2020 Max Planck Institute for Software Systems * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include #include #include #include #include #include #include #include "internal.h" #define D2H_ELEN (9024 + 64) #define D2H_ENUM 1024 #define H2D_ELEN (9024 + 64) #define H2D_ENUM 1024 #define D2N_ELEN (9024 + 64) #define D2N_ENUM 8192 #define N2D_ELEN (9024 + 64) #define N2D_ENUM 8192 static uint8_t *d2h_queue; static size_t d2h_pos; static size_t d2h_off; /* offset in shm region */ static uint8_t *h2d_queue; static size_t h2d_pos; static size_t h2d_off; /* offset in shm region */ static uint8_t *d2n_queue; static size_t d2n_pos; static size_t d2n_off; /* offset in shm region */ static uint8_t *n2d_queue; static size_t n2d_pos; static size_t n2d_off; /* offset in shm region */ static uint64_t pci_last_rx_time = 0; static uint64_t pci_last_tx_time = 0; static uint64_t eth_last_rx_time = 0; static uint64_t eth_last_tx_time = 0; static uint64_t current_epoch = 0; static int shm_fd = -1; static int pci_cfd = -1; static int eth_cfd = -1; static int accept_pci(struct cosim_pcie_proto_dev_intro *di, int pci_lfd, int *sync_pci) { if ((pci_cfd = accept(pci_lfd, NULL, NULL)) < 0) { return -1; } close(pci_lfd); printf("pci connection accepted\n"); di->d2h_offset = d2h_off; di->d2h_elen = D2H_ELEN; di->d2h_nentries = D2H_ENUM; di->h2d_offset = h2d_off; di->h2d_elen = H2D_ELEN; di->h2d_nentries = H2D_ENUM; if (*sync_pci) di->flags |= COSIM_PCIE_PROTO_FLAGS_DI_SYNC; else di->flags &= ~((uint64_t) COSIM_PCIE_PROTO_FLAGS_DI_SYNC); if (uxsocket_send(pci_cfd, di, sizeof(*di), shm_fd)) { return -1; } printf("pci intro sent\n"); return 0; } static int accept_eth(int eth_lfd, int *sync_eth) { struct cosim_eth_proto_dev_intro di; if ((eth_cfd = accept(eth_lfd, NULL, NULL)) < 0) { return -1; } close(eth_lfd); printf("eth connection accepted\n"); memset(&di, 0, sizeof(di)); di.flags = 0; if (*sync_eth) di.flags |= COSIM_ETH_PROTO_FLAGS_DI_SYNC; di.d2n_offset = d2n_off; di.d2n_elen = D2N_ELEN; di.d2n_nentries = D2N_ENUM; di.n2d_offset = n2d_off; di.n2d_elen = N2D_ELEN; di.n2d_nentries = N2D_ENUM; if (uxsocket_send(eth_cfd, &di, sizeof(di), shm_fd)) { return -1; } printf("eth intro sent\n"); return 0; } static int accept_conns(struct cosim_pcie_proto_dev_intro *di, int pci_lfd, int *sync_pci, int eth_lfd, int *sync_eth) { struct pollfd pfds[2]; int await_pci = pci_lfd != -1; int await_eth = eth_lfd != -1; int ret; while (await_pci || await_eth) { if (await_pci && await_eth) { /* we're waiting on both fds */ pfds[0].fd = pci_lfd; pfds[1].fd = eth_lfd; pfds[0].events = pfds[1].events = POLLIN; pfds[0].revents = pfds[1].revents = 0; ret = poll(pfds, 2, -1); if (ret < 0) { perror("poll failed"); return -1; } if (pfds[0].revents) { if (accept_pci(di, pci_lfd, sync_pci) != 0) return -1; await_pci = 0; } if (pfds[1].revents) { if (accept_eth(eth_lfd, sync_eth) != 0) return -1; await_eth = 0; } } else if (await_pci) { /* waiting just on pci */ if (accept_pci(di, pci_lfd, sync_pci) != 0) return -1; await_pci = 0; } else { /* waiting just on ethernet */ if (accept_eth(eth_lfd, sync_eth) != 0) return -1; await_eth = 0; } } return 0; } int nicsim_init(struct nicsim_params *params, struct cosim_pcie_proto_dev_intro *di) { int pci_lfd = -1, eth_lfd = -1; void *shmptr; size_t shm_size; /* ready in memory queues */ shm_size = (uint64_t) D2H_ELEN * D2H_ENUM + (uint64_t) H2D_ELEN * H2D_ENUM + (uint64_t) D2N_ELEN * D2N_ENUM + (uint64_t) N2D_ELEN * N2D_ENUM; if ((shm_fd = shm_create(params->shm_path, shm_size, &shmptr)) < 0) { return -1; } d2h_off = 0; h2d_off = d2h_off + (uint64_t) D2H_ELEN * D2H_ENUM; d2n_off = h2d_off + (uint64_t) H2D_ELEN * H2D_ENUM; n2d_off = d2n_off + (uint64_t) D2N_ELEN * D2N_ENUM; d2h_queue = (uint8_t *) shmptr + d2h_off; h2d_queue = (uint8_t *) shmptr + h2d_off; d2n_queue = (uint8_t *) shmptr + d2n_off; n2d_queue = (uint8_t *) shmptr + n2d_off; d2h_pos = h2d_pos = d2n_pos = n2d_pos = 0; /* get listening sockets ready */ if (params->pci_socket_path != NULL) { if ((pci_lfd = uxsocket_init(params->pci_socket_path)) < 0) { return -1; } } if (params->eth_socket_path != NULL) { if ((eth_lfd = uxsocket_init(params->eth_socket_path)) < 0) { return -1; } } /* accept connection fds */ if (accept_conns(di, pci_lfd, ¶ms->sync_pci, eth_lfd, ¶ms->sync_eth) != 0) { return -1; } /* receive introductions from other end */ if (params->pci_socket_path != NULL) { struct cosim_pcie_proto_host_intro hi; if (recv(pci_cfd, &hi, sizeof(hi), 0) != sizeof(hi)) { return -1; } if ((hi.flags & COSIM_PCIE_PROTO_FLAGS_HI_SYNC) == 0) params->sync_pci = 0; printf("pci host info received\n"); } if (params->eth_socket_path != NULL) { struct cosim_eth_proto_net_intro ni; if (recv(eth_cfd, &ni, sizeof(ni), 0) != sizeof(ni)) { return -1; } if ((ni.flags & COSIM_ETH_PROTO_FLAGS_NI_SYNC) == 0) params->sync_eth = 0; printf("eth net info received\n"); } return 0; } void nicsim_cleanup(void) { close(pci_cfd); close(eth_cfd); } /******************************************************************************/ /* Sync */ int nicsim_sync(struct nicsim_params *params, uint64_t timestamp) { int ret = 0; volatile union cosim_pcie_proto_d2h *d2h; volatile union cosim_eth_proto_d2n *d2n; /* sync PCI if necessary */ if (params->sync_pci) { int sync; switch (params->sync_mode) { case SYNC_MODES: sync = pci_last_tx_time == 0 || timestamp - pci_last_tx_time >= params->sync_delay; break; case SYNC_BARRIER: sync = current_epoch == 0 || timestamp - current_epoch >= params->sync_delay; break; default: fprintf(stderr, "unsupported sync mode=%u\n", params->sync_mode); return ret; } if (sync) { d2h = nicsim_d2h_alloc(params, timestamp); if (d2h == NULL) { ret = -1; } else { d2h->sync.own_type = COSIM_PCIE_PROTO_D2H_MSG_SYNC | COSIM_PCIE_PROTO_D2H_OWN_HOST; } } } /* sync Ethernet if necessary */ if (params->sync_eth) { int sync; switch (params->sync_mode) { case SYNC_MODES: sync = eth_last_tx_time == 0 || timestamp - eth_last_tx_time >= params->sync_delay; break; case SYNC_BARRIER: sync = current_epoch == 0 || timestamp - current_epoch >= params->sync_delay; break; default: fprintf(stderr, "unsupported sync mode=%u\n", params->sync_mode); return ret; } if (sync) { d2n = nicsim_d2n_alloc(params, timestamp); if (d2n == NULL) { ret = -1; } else { d2n->sync.own_type = COSIM_ETH_PROTO_D2N_MSG_SYNC | COSIM_ETH_PROTO_D2N_OWN_NET; } } } return ret; } void nicsim_advance_epoch(struct nicsim_params *params, uint64_t timestamp) { if (params->sync_mode == SYNC_BARRIER) { if ((params->sync_pci || params->sync_eth) && timestamp - current_epoch >= params->sync_delay) { current_epoch = timestamp; } } } uint64_t nicsim_advance_time(struct nicsim_params *params, uint64_t timestamp) { switch (params->sync_mode) { case SYNC_MODES: return timestamp; case SYNC_BARRIER: return timestamp < current_epoch + params->sync_delay ? timestamp : current_epoch + params->sync_delay; default: fprintf(stderr, "unsupported sync mode=%u\n", params->sync_mode); return timestamp; } } uint64_t nicsim_next_timestamp(struct nicsim_params *params) { if (params->sync_pci && params->sync_eth) { return (pci_last_rx_time <= eth_last_rx_time ? pci_last_rx_time : eth_last_rx_time); } else if (params->sync_pci) { return pci_last_rx_time; } else if (params->sync_eth) { return eth_last_rx_time; } else { return 0; } } /******************************************************************************/ /* PCI */ volatile union cosim_pcie_proto_h2d *nicif_h2d_poll( struct nicsim_params *params, uint64_t timestamp) { volatile union cosim_pcie_proto_h2d *msg = (volatile union cosim_pcie_proto_h2d *) (h2d_queue + h2d_pos * H2D_ELEN); /* message not ready */ if ((msg->dummy.own_type & COSIM_PCIE_PROTO_H2D_OWN_MASK) != COSIM_PCIE_PROTO_H2D_OWN_DEV) return NULL; /* if in sync mode, wait till message is ready */ pci_last_rx_time = msg->dummy.timestamp; if (params->sync_pci && pci_last_rx_time > timestamp) return NULL; return msg; } void nicif_h2d_done(volatile union cosim_pcie_proto_h2d *msg) { msg->dummy.own_type = (msg->dummy.own_type & COSIM_PCIE_PROTO_H2D_MSG_MASK) | COSIM_PCIE_PROTO_H2D_OWN_HOST; } void nicif_h2d_next(void) { h2d_pos = (h2d_pos + 1) % H2D_ENUM; } volatile union cosim_pcie_proto_d2h *nicsim_d2h_alloc( struct nicsim_params *params, uint64_t timestamp) { volatile union cosim_pcie_proto_d2h *msg = (volatile union cosim_pcie_proto_d2h *) (d2h_queue + d2h_pos * D2H_ELEN); if ((msg->dummy.own_type & COSIM_PCIE_PROTO_D2H_OWN_MASK) != COSIM_PCIE_PROTO_D2H_OWN_DEV) { return NULL; } msg->dummy.timestamp = timestamp + params->pci_latency; pci_last_tx_time = timestamp; d2h_pos = (d2h_pos + 1) % D2H_ENUM; return msg; } /******************************************************************************/ /* Ethernet */ volatile union cosim_eth_proto_n2d *nicif_n2d_poll( struct nicsim_params *params, uint64_t timestamp) { volatile union cosim_eth_proto_n2d *msg = (volatile union cosim_eth_proto_n2d *) (n2d_queue + n2d_pos * N2D_ELEN); /* message not ready */ if ((msg->dummy.own_type & COSIM_ETH_PROTO_N2D_OWN_MASK) != COSIM_ETH_PROTO_N2D_OWN_DEV) return NULL; /* if in sync mode, wait till message is ready */ eth_last_rx_time = msg->dummy.timestamp; if (params->sync_eth && eth_last_rx_time > timestamp) return NULL; return msg; } void nicif_n2d_done(volatile union cosim_eth_proto_n2d *msg) { msg->dummy.own_type = (msg->dummy.own_type & COSIM_ETH_PROTO_N2D_MSG_MASK) | COSIM_ETH_PROTO_N2D_OWN_NET; } void nicif_n2d_next(void) { n2d_pos = (n2d_pos + 1) % N2D_ENUM; } volatile union cosim_eth_proto_d2n *nicsim_d2n_alloc( struct nicsim_params *params, uint64_t timestamp) { volatile union cosim_eth_proto_d2n *msg = (volatile union cosim_eth_proto_d2n *) (d2n_queue + d2n_pos * D2N_ELEN); if ((msg->dummy.own_type & COSIM_ETH_PROTO_D2N_OWN_MASK) != COSIM_ETH_PROTO_D2N_OWN_DEV) { return NULL; } msg->dummy.timestamp = timestamp + params->eth_latency; eth_last_tx_time = timestamp; d2n_pos = (d2n_pos + 1) % D2N_ENUM; return msg; }