/* * Copyright 2021 Max Planck Institute for Software Systems, and * National University of Singapore * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "dist/net_rdma.h" #include #include #include #include #include #include #include #include #include #include #include #include #include "dist/utils.h" static const uint64_t kPollReportThreshold = 128; static const uint64_t kCleanReportThreshold = 128; static const uint64_t kPollMax = 8; const char *shm_path = NULL; size_t shm_size = 256 * 1024 * 1024ULL; // 256MB void *shm_base = NULL; static int shm_fd = -1; static size_t shm_alloc_off = 0; bool mode_listen = false; size_t peer_num = 0; struct Peer *peers = NULL; struct sockaddr_in addr; int epfd = -1; const char *ib_devname = NULL; bool ib_connect = false; uint8_t ib_port = 1; int ib_sgid_idx = -1; static int ShmAlloc(size_t size, uint64_t *off) { #ifdef DEBUG fprintf(stderr, "ShmAlloc(%zu)\n", size); #endif if (shm_alloc_off + size > shm_size) { fprintf(stderr, "ShmAlloc: alloc of %zu bytes failed\n", size); return 1; } *off = shm_alloc_off; shm_alloc_off += size; return 0; } static void PrintUsage() { fprintf(stderr, "Usage: net_rdma [OPTIONS] IP PORT\n" " -l: Listen instead of connecting\n" " -d DEV-SOCKET: network socket of a device simulator\n" " -n NET-SOCKET: network socket of a network simulator\n" " -s SHM-PATH: shared memory region path\n" " -S SHM-SIZE: shared memory region size in MB (default 256)\n"); } static bool AddPeer(const char *path, bool dev) { struct Peer *peer = realloc(peers, sizeof(*peers) * (peer_num + 1)); if (!peer) { perror("ParseArgs: realloc failed"); return false; } peers = peer; peer += peer_num; peer_num++; if (!(peer->sock_path = strdup(path))) { perror("ParseArgs: strdup failed"); return false; } peer->is_dev = dev; peer->sock_fd = -1; peer->shm_fd = -1; return true; } static int ParseArgs(int argc, char *argv[]) { const char *opts = "ld:n:s:S:D:ip:g:"; int c; while ((c = getopt(argc, argv, opts)) != -1) { switch (c) { case 'l': mode_listen = true; break; case 'd': if (!AddPeer(optarg, true)) return 1; break; case 'n': if (!AddPeer(optarg, false)) return 1; break; case 's': if (!(shm_path = strdup(optarg))) { perror("ParseArgs: strdup failed"); return 1; } break; case 'S': shm_size = strtoull(optarg, NULL, 10) * 1024 * 1024; break; case 'D': ib_devname = optarg; break; case 'i': ib_connect = true; break; case 'p': ib_port = strtoull(optarg, NULL, 10); break; case 'g': ib_sgid_idx = strtoull(optarg, NULL, 10); break; default: PrintUsage(); return 1; } } if (optind + 2 != argc) { PrintUsage(); return 1; } addr.sin_family = AF_INET; addr.sin_port = htons(strtoul(argv[optind + 1], NULL, 10)); if ((addr.sin_addr.s_addr = inet_addr(argv[optind])) == INADDR_NONE) { PrintUsage(); return 1; } return 0; } static int PeersInitNets() { #ifdef DEBUG fprintf(stderr, "Creating net listening sockets\n"); #endif for (size_t i = 0; i < peer_num; i++) { struct Peer *peer = &peers[i]; if (peer->is_dev) continue; #ifdef DEBUG fprintf(stderr, " Creating socket %s %zu\n", peer->sock_path, i); #endif if ((peer->listen_fd = UxsocketInit(peer->sock_path)) < 0) { perror("PeersInitNets: unix socket init failed"); return 1; } struct epoll_event epev; epev.events = EPOLLIN; epev.data.ptr = peer; if (epoll_ctl(epfd, EPOLL_CTL_ADD, peer->listen_fd, &epev)) { perror("PeersInitNets: epoll_ctl accept failed"); return 1; } } #ifdef DEBUG fprintf(stderr, "PeerInitNets done\n"); #endif return 0; } static int PeersInitDevs() { #ifdef DEBUG fprintf(stderr, "Connecting to device sockets\n"); #endif for (size_t i = 0; i < peer_num; i++) { struct Peer *peer = &peers[i]; if (!peer->is_dev) continue; #ifdef DEBUG fprintf(stderr, " Connecting to socket %s %zu\n", peer->sock_path, i); #endif if ((peer->sock_fd = UxsocketConnect(peer->sock_path)) < 0) return 1; struct epoll_event epev; epev.events = EPOLLIN; epev.data.ptr = peer; if (epoll_ctl(epfd, EPOLL_CTL_ADD, peer->sock_fd, &epev)) { perror("PeersInitNets: epoll_ctl failed"); return 1; } } return 0; } int PeerDevSendIntro(struct Peer *peer) { #ifdef DEBUG fprintf(stderr, "PeerDevSendIntro(%s)\n", peer->sock_path); #endif struct SimbricksProtoNetDevIntro *di = &peer->dev_intro; peer->local_base = (void *) ((uintptr_t) peer->shm_base + di->d2n_offset); peer->local_elen = di->d2n_elen; peer->local_enum = di->d2n_nentries; peer->cleanup_base = (void *) ((uintptr_t) peer->shm_base + di->n2d_offset); peer->cleanup_elen = di->n2d_elen; peer->cleanup_enum = di->n2d_nentries; struct SimbricksProtoNetNetIntro *ni = &peer->net_intro; ssize_t ret = send(peer->sock_fd, ni, sizeof(*ni), 0); if (ret < 0) { perror("PeerDevSendIntro: send failed"); return 1; } else if (ret != (ssize_t) sizeof(*ni)) { fprintf(stderr, "PeerDevSendIntro: send incomplete\n"); return 1; } return 0; } int PeerNetSetupQueues(struct Peer *peer) { struct SimbricksProtoNetDevIntro *di = &peer->dev_intro; #ifdef DEBUG fprintf(stderr, "PeerNetSetupQueues(%s)\n", peer->sock_path); fprintf(stderr, " d2n_el=%lu d2n_n=%lu n2d_el=%lu n2d_n=%lu\n", di->d2n_elen, di->d2n_nentries, di->n2d_elen, di->n2d_nentries); #endif if (ShmAlloc(di->d2n_elen * di->d2n_nentries, &di->d2n_offset)) { fprintf(stderr, "PeerNetSetupQueues: ShmAlloc d2n failed"); return 1; } if (ShmAlloc(di->n2d_elen * di->n2d_nentries, &di->n2d_offset)) { fprintf(stderr, "PeerNetSetupQueues: ShmAlloc n2d failed"); return 1; } peer->shm_fd = shm_fd; peer->shm_base = shm_base; peer->local_base = (void *) ((uintptr_t) shm_base + di->n2d_offset); peer->local_elen = di->n2d_elen; peer->local_enum = di->n2d_nentries; peer->cleanup_base = (void *) ((uintptr_t) shm_base + di->d2n_offset); peer->cleanup_elen = di->d2n_elen; peer->cleanup_enum = di->d2n_nentries; if (peer->sock_fd == -1) { /* We can receive the welcome message from our peer before our local connection to the simulator is established. In this case we hold the message till the connection is established and send it then. */ #ifdef DEBUG fprintf(stderr, "PeerNetSetupQueues: socket not ready yet, delaying " "send\n"); #endif return 0; } if (UxsocketSendFd(peer->sock_fd, di, sizeof(*di), peer->shm_fd)) { fprintf(stderr, "PeerNetSetupQueues: sending welcome message failed (%lu)", peer - peers); return 1; } return 0; } int PeerReport(struct Peer *peer, uint32_t written_pos, uint32_t clean_pos) { if (written_pos == peer->cleanup_pos_last && clean_pos == peer->local_pos_cleaned) return 0; #ifdef DEBUG fprintf(stderr, "PeerReport: peer %s written %u -> %u, cleaned %u -> %u\n", peer->sock_path, peer->cleanup_pos_last, written_pos, peer->local_pos_cleaned, clean_pos); #endif peer->cleanup_pos_last = written_pos; while (peer->local_pos_cleaned != clean_pos) { void *entry = (peer->local_base + peer->local_pos_cleaned * peer->local_elen); if (peer->is_dev) { struct SimbricksProtoNetD2NDummy *d2n = entry; d2n->own_type = SIMBRICKS_PROTO_NET_D2N_OWN_DEV; } else { struct SimbricksProtoNetN2DDummy *n2d = entry; n2d->own_type = SIMBRICKS_PROTO_NET_N2D_OWN_NET; } peer->local_pos_cleaned += 1; if (peer->local_pos_cleaned >= peer->local_enum) peer->local_pos_cleaned -= peer->local_enum; } return 0; } static int PeerAcceptEvent(struct Peer *peer) { #ifdef DEBUG fprintf(stderr, "PeerAcceptEvent(%s)\n", peer->sock_path); #endif assert(!peer->is_dev); if ((peer->sock_fd = accept(peer->listen_fd, NULL, NULL)) < 0) { perror("PeersInitNets: accept failed"); return 1; } #ifdef DEBUG fprintf(stderr, "Accepted %zu\n", peer - peers); #endif close(peer->listen_fd); struct epoll_event epev; epev.events = EPOLLIN; epev.data.ptr = peer; if (epoll_ctl(epfd, EPOLL_CTL_ADD, peer->sock_fd, &epev)) { perror("PeersInitNets: epoll_ctl failed"); return 1; } /* we may have already received the welcome message from our remote peer. In that case, send it now. */ if (peer->intro_valid_remote) { #ifdef DEBUG fprintf(stderr, "PeerAcceptEvent(%s): sending welcome message\n", peer->sock_path); #endif if (UxsocketSendFd(peer->sock_fd, &peer->dev_intro, sizeof(peer->dev_intro), peer->shm_fd)) { fprintf(stderr, "PeerAcceptEvent: sending welcome message failed (%lu)", peer - peers); return 1; } } return 0; } static int PeerEvent(struct Peer *peer, uint32_t events) { #ifdef DEBUG fprintf(stderr, "PeerEvent(%s)\n", peer->sock_path); #endif // disable peer if not an input event if (!(events & EPOLLIN)) { fprintf(stderr, "PeerEvent: non-input event, disabling peer (%s)", peer->sock_path); peer->ready = false; return 1; } // if peer is network and not yet connected, this is an accept event if (!peer->is_dev && peer->sock_fd == -1) { return PeerAcceptEvent(peer); } // if we already have the intro, this is not expected if (peer->intro_valid_local) { fprintf(stderr, "PeerEvent: receive event after intro (%s)\n", peer->sock_path); return 1; } // receive intro message if (peer->is_dev) { if (UxsocketRecvFd(peer->sock_fd, &peer->dev_intro, sizeof(peer->dev_intro), &peer->shm_fd)) return 1; if (!(peer->shm_base = ShmMap(peer->shm_fd, &peer->shm_size))) return 1; } else { ssize_t ret = recv(peer->sock_fd, &peer->net_intro, sizeof(peer->net_intro), 0); if (ret < 0) { perror("PeerEvent: recv failed"); return 1; } else if (ret != (ssize_t) sizeof(peer->net_intro)) { fprintf(stderr, "PeerEvent: partial receive (%zd)\n", ret); return 1; } } peer->intro_valid_local = true; // pass intro along via RDMA if (RdmaPassIntro(peer)) return 1; if (peer->intro_valid_remote) { #ifdef DEBUG fprintf(stderr, "PeerEvent(%s): marking peer as ready\n", peer->sock_path); #endif peer->ready = true; } return 0; } static inline void PollPeerTransfer(struct Peer *peer, bool *report) { // XXX: consider batching this to forward multiple entries at once if possible size_t n; for (n = 0; n < kPollMax && peer->local_pos + n < peer->local_enum; n++) { void *entry = (peer->local_base + (peer->local_pos + n) * peer->local_elen); bool ready; if (peer->is_dev) { struct SimbricksProtoNetD2NDummy *d2n = entry; ready = (d2n->own_type & SIMBRICKS_PROTO_NET_D2N_OWN_MASK) == SIMBRICKS_PROTO_NET_D2N_OWN_NET; } else { struct SimbricksProtoNetN2DDummy *n2d = entry; ready = (n2d->own_type & SIMBRICKS_PROTO_NET_N2D_OWN_MASK) == SIMBRICKS_PROTO_NET_N2D_OWN_DEV; } if (!ready) break; } if (n > 0) { RdmaPassEntry(peer, n); peer->local_pos += n; if (peer->local_pos >= peer->local_enum) peer->local_pos -= peer->local_enum; uint64_t unreported = (peer->local_pos - peer->local_pos_reported) % peer->local_enum; if (unreported >= kPollReportThreshold) *report = true; } } static inline void PollPeerCleanup(struct Peer *peer, bool *report) { // XXX: could also be batched if (peer->cleanup_pos_next == peer->cleanup_pos_last) return; void *entry = (peer->cleanup_base + peer->cleanup_pos_next * peer->cleanup_elen); bool ready; if (peer->is_dev) { struct SimbricksProtoNetN2DDummy *n2d = entry; ready = (n2d->own_type & SIMBRICKS_PROTO_NET_N2D_OWN_MASK) == SIMBRICKS_PROTO_NET_N2D_OWN_NET; } else { struct SimbricksProtoNetD2NDummy *d2n = entry; ready = (d2n->own_type & SIMBRICKS_PROTO_NET_D2N_OWN_MASK) == SIMBRICKS_PROTO_NET_D2N_OWN_DEV; } if (ready) { #ifdef DEBUG fprintf(stderr, "PollPeerCleanup: peer %s has clean entry at %u\n", peer->sock_path, peer->cleanup_pos_next); #endif peer->cleanup_pos_next += 1; if (peer->cleanup_pos_next >= peer->cleanup_enum) peer->cleanup_pos_next -= peer->cleanup_enum; uint64_t unreported = (peer->cleanup_pos_next - peer->cleanup_pos_reported) % peer->cleanup_enum; if (unreported >= kCleanReportThreshold) *report = true; } } static void *PollThread(void *data) { while (true) { // poll queue for transferring entries bool report = false; for (size_t i = 0; i < peer_num; i++) { struct Peer *peer = &peers[i]; if (!peer->ready) continue; PollPeerTransfer(peer, &report); PollPeerCleanup(peer, &report); } if (report) RdmaPassReport(); } return NULL; } static int IOLoop() { while (1) { const size_t kNumEvs = 8; struct epoll_event evs[kNumEvs]; int n = epoll_wait(epfd, evs, kNumEvs, -1); if (n < 0) { perror("IOLoop: epoll_wait failed"); return 1; } for (int i = 0; i < n; i++) { struct Peer *peer = evs[i].data.ptr; if (peer && PeerEvent(peer, evs[i].events)) return 1; else if (!peer && RdmaEvent()) return 1; } fflush(stdout); } } int main(int argc, char *argv[]) { if (ParseArgs(argc, argv)) return EXIT_FAILURE; #ifdef DEBUG fprintf(stderr, "pid=%d shm=%s\n", getpid(), shm_path); #endif if ((shm_fd = ShmCreate(shm_path, shm_size, &shm_base)) < 0) return EXIT_FAILURE; if ((epfd = epoll_create1(0)) < 0) { perror("epoll_create1 failed"); return EXIT_FAILURE; } if (mode_listen) { if (RdmaListen(&addr)) return EXIT_FAILURE; } else { if (RdmaConnect(&addr)) return EXIT_FAILURE; } printf("RDMA connected\n"); fflush(stdout); if (PeersInitNets()) return EXIT_FAILURE; printf("Networks initialized\n"); fflush(stdout); if (PeersInitDevs()) return EXIT_FAILURE; printf("Devices initialized\n"); fflush(stdout); pthread_t poll_thread; if (pthread_create(&poll_thread, NULL, PollThread, NULL)) { perror("pthread_create failed (poll thread)"); return EXIT_FAILURE; } return IOLoop(); }