Commit 738c1fef authored by Antoine Kaufmann's avatar Antoine Kaufmann
Browse files

add corundum and verilator build files

parent 7f925101
CXXFLAGS = -Wall
VERILATOR = verilator
VFLAGS = +1364-2005ext+v \
-Wno-WIDTH -Wno-PINMISSING -Wno-LITENDIAN -Wno-IMPLICIT -Wno-SELRANGE \
-Wno-CASEINCOMPLETE -Wno-UNSIGNED
SRCS = corundum_verilator.cpp
all: corundum_verilator
obj_dir/Vinterface.cpp: rtl/interface.v
$(VERILATOR) $(VFLAGS) --cc \
-y rtl \
-y lib/axi/rtl \
-y lib/eth/lib/axis/rtl/ \
-y ./lib/pcie/rtl \
rtl/interface.v --exe $(SRCS)
obj_dir/Vinterface: obj_dir/Vinterface.cpp $(SRCS)
$(MAKE) -C obj_dir -f Vinterface.mk
corundum_verilator: obj_dir/Vinterface
cp $< $@
#obj_dir/%.o: CXXFLAGS += -Wno-all
#obj_dir/%.o: CPPFLAGS += -I /usr/share/verilator/include/
#
#obj_dir/verilated.o: /usr/share/verilator/include/verilated.cpp
# $(CXX) $(CXXFLAGS) -c $< -o $@
#
#obj_dir/verilated_vcd_c.o: /usr/share/verilator/include/verilated_vcd_c.cpp
# $(CXX) $(CXXFLAGS) -c $< -o $@
#
#corundum_verilator: corundum_verilator.o obj_dir/verilated.o \
# obj_dir/verilated_vcd_c.o obj_dir/Vinterface.o \
# obj_dir/Vinterface__Syms.o obj_dir/Vinterface__Trace.o \
# obj_dir/Vinterface__Trace__Slow.o
# $(CXX) $(CXXFLAGS) $(LDFLAGS) -o $@ $^ $(LDLIBS)
clean:
rm -rf obj_dir corundum_verilator *.o
.PHONY: all clean
Commit `d0c9a83752cde7715787aa31a5bb951fc808e0cc` from https://github.com/ucsdsysnet/corundum.
#include <iostream>
#include "Vinterface.h"
#include "verilated.h"
#include "verilated_vcd_c.h"
static uint64_t main_time = 0;
double sc_time_stamp()
{
return main_time;
}
int main(int argc, char *argv[])
{
Verilated::commandArgs(argc, argv);
Vinterface *top = new Vinterface;
top->final();
delete top;
return 0;
}
*~
*.lxt
*.pyc
*.vvp
*.kate-swp
Alex Forencich <alex@alexforencich.com>
Copyright (c) 2018 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
README.md
\ No newline at end of file
# Verilog AXI Components Readme
For more information and updates: http://alexforencich.com/wiki/en/verilog/axi/start
GitHub repository: https://github.com/alexforencich/verilog-axi
## Introduction
Collection of AXI4 and AXI4 lite bus components. Most components are fully
parametrizable in interface widths. Includes full MyHDL testbench with
intelligent bus cosimulation endpoints.
## Documentation
### axi_adapter module
AXI width adapter module with parametrizable data and address interface widths.
Supports INCR burst types and narrow bursts. Wrapper for axi_adapter_rd and axi_adapter_wr.
### axi_adapter_rd module
AXI width adapter module with parametrizable data and address interface widths.
Supports INCR burst types and narrow bursts.
### axi_adapter_wr module
AXI width adapter module with parametrizable data and address interface widths.
Supports INCR burst types and narrow bursts.
### axi_axil_adapter module
AXI to AXI lite converter and width adapter module with parametrizable data
and address interface widths. Supports INCR burst types and narrow bursts.
Wrapper for axi_axil_adapter_rd and axi_axil_adapter_wr.
### axi_axil_adapter_rd module
AXI to AXI lite converter and width adapter module with parametrizable data
and address interface widths. Supports INCR burst types and narrow bursts.
### axi_axil_adapter_wr module
AXI to AXI lite converter and width adapter module with parametrizable data
and address interface widths. Supports INCR burst types and narrow bursts.
### axi_cdma module
AXI to AXI DMA engine with parametrizable data and address interface widths.
Generates full-width INCR bursts only, with parametrizable maximum burst
length. Supports unaligned transfers, which can be disabled via parameter
to save on resource consumption.
### axi_cdma_desc_mux module
Descriptor multiplexer/demultiplexer for AXI CDMA module. Enables sharing the
AXI CDMA module between multiple request sources, interleaving requests and
distributing responses.
### axi_crossbar module
AXI nonblocking crossbar interconnect with parametrizable data and address
interface widths and master and slave interface counts. Supports all burst
types. Fully nonblocking with completely separate read and write paths; ID
based transaction ordering protection logic; and per-port address decode,
admission control, and decode error handling. Wrapper for axi_crossbar_rd and
axi_crossbar_wr.
### axi_crossbar_addr module
Address decode and admission control module for AXI nonblocking crossbar interconnect.
### axi_crossbar_rd module
AXI nonblocking crossbar interconnect with parametrizable data and address
interface widths and master and slave interface counts. Read interface only.
Supports all burst types. Fully nonblocking with completely separate read and
write paths; ID based transaction ordering protection logic; and per-port
address decode, admission control, and decode error handling.
### axi_crossbar_wr module
AXI nonblocking crossbar interconnect with parametrizable data and address
interface widths and master and slave interface counts. Write interface only.
Supports all burst types. Fully nonblocking with completely separate read and
write paths; ID based transaction ordering protection logic; and per-port
address decode, admission control, and decode error handling.
### axi_dma module
AXI to AXI stream DMA engine with parametrizable data and address interface
widths. Generates full-width INCR bursts only, with parametrizable maximum
burst length. Supports unaligned transfers, which can be disabled via
parameter to save on resource consumption. Wrapper for axi_dma_rd and
axi_dma_wr.
### axi_dma_desc_mux module
Descriptor multiplexer/demultiplexer for AXI DMA module. Enables sharing the
AXI DMA module between multiple request sources, interleaving requests and
distributing responses.
### axi_dma_rd module
AXI to AXI stream DMA engine with parametrizable data and address interface
widths. Generates full-width INCR bursts only, with parametrizable maximum
burst length. Supports unaligned transfers, which can be disabled via
parameter to save on resource consumption.
### axi_dma_wr module
AXI stream to AXI DMA engine with parametrizable data and address interface
widths. Generates full-width INCR bursts only, with parametrizable maximum
burst length. Supports unaligned transfers, which can be disabled via
parameter to save on resource consumption.
### axi_fifo module
AXI FIFO with parametrizable data and address interface widths. Supports all
burst types. Optionally can delay the address channel until either the write
data is completely shifted into the FIFO or the read data FIFO has enough
capacity to fit the whole burst. Wrapper for axi_fifo_rd and axi_fifo_wr.
### axi_fifo_rd module
AXI FIFO with parametrizable data and address interface widths. AR and R
channels only. Supports all burst types. Optionally can delay the address
channel until either the read data FIFO is empty or has enough capacity to fit
the whole burst.
### axi_fifo_wr module
AXI FIFO with parametrizable data and address interface widths. WR, W, and B
channels only. Supports all burst types. Optionally can delay the address
channel until the write data is shifted completely into the write data FIFO,
or the current burst completely fills the write data FIFO.
### axi_interconnect module
AXI shared interconnect with parametrizable data and address interface
widths and master and slave interface counts. Supports all burst types.
Small in area, but does not support concurrent operations.
### axi_ram module
AXI RAM with parametrizable data and address interface widths. Supports FIXED
and INCR burst types as well as narrow bursts.
### axi_register module
AXI register with parametrizable data and address interface widths. Supports
all burst types. Inserts simple buffers or skid buffers into all channels.
Channel register types can be individually changed or bypassed. Wrapper for
axi_register_rd and axi_register_wr.
### axi_register_rd module
AXI register with parametrizable data and address interface widths. AR and R
channels only. Supports all burst types. Inserts simple buffers or skid
buffers into all channels. Channel register types can be individually changed
or bypassed.
### axi_register_wr module
AXI register with parametrizable data and address interface widths. WR, W,
and B channels only. Supports all burst types. Inserts simple buffers or
skid buffers into all channels. Channel register types can be individually
changed or bypassed.
### axil_adapter module
AXI lite width adapter module with parametrizable data and address interface
widths. Wrapper for axi_adapter_rd and axi_adapter_wr.
### axil_adapter_rd module
AXI lite width adapter module with parametrizable data and address interface
widths.
### axil_adapter_wr module
AXI lite width adapter module with parametrizable data and address interface
widths.
### axil_cdc module
AXI lite clock domain crossing module with parametrizable data and address
interface widths. Wrapper for axi_cdc_rd and axi_cdc_wr.
### axil_cdc_rd module
AXI lite clock domain crossing module with parametrizable data and address
interface widths.
### axil_cdc_wr module
AXI lite clock domain crossing module with parametrizable data and address
interface widths.
### axil_interconnect module
AXI lite shared interconnect with parametrizable data and address interface
widths and master and slave interface counts. Small in area, but does not
support concurrent operations.
### axil_ram module
AXI lite RAM with parametrizable data and address interface widths.
### axil_register module
AXI lite register with parametrizable data and address interface widths.
Inserts skid buffers into all channels. Channel registers can be individually
bypassed. Wrapper for axil_register_rd and axil_register_wr.
### axil_register_rd module
AXI lite register with parametrizable data and address interface widths. AR
and R channels only. Inserts simple buffers into all channels. Channel
registers can be individually bypassed.
### axil_register_wr module
AXI lite register with parametrizable data and address interface widths. WR,
W, and B channels only. Inserts simple buffers into all channels. Channel
registers can be individually bypassed.
### Common signals
awid : Write address ID
awaddr : Write address
awlen : Write burst length
awsize : Write burst size
awburst : Write burst type
awlock : Write locking
awcache : Write cache handling
awprot : Write protection level
awqos : Write QoS setting
awregion : Write region
awuser : Write user sideband signal
awvalid : Write address valid
awready : Write address ready (from slave)
wdata : Write data
wstrb : Write data strobe (byte select)
wlast : Write data last transfer in burst
wuser : Write data user sideband signal
wvalid : Write data valid
wready : Write data ready (from slave)
bid : Write response ID
bresp : Write response
buser : Write response user sideband signal
bvalid : Write response valid
bready : Write response ready (from master)
arid : Read address ID
araddr : Read address
arlen : Read burst length
arsize : Read burst size
arburst : Read burst type
arlock : Read locking
arcache : Read cache handling
arprot : Read protection level
arqos : Read QoS setting
arregion : Read region
aruser : Read user sideband signal
arvalid : Read address valid
arready : Read address ready (from slave)
rid : Read data ID
rdata : Read data
rresp : Read response
rlast : Read data last transfer in burst
ruser : Read data user sideband signal
rvalid : Read response valid
rready : Read response ready (from master)
### Common parameters
ADDR_WIDTH : width of awaddr and araddr signals
DATA_WIDTH : width of wdata and rdata signals
STRB_WIDTH : width of wstrb signal
ID_WIDTH : width of *id signals
AWUSER_ENABLE : enable awuser signal
AWUSER_WIDTH : width of awuser signal
WUSER_ENABLE : enable wuser signal
WUSER_WIDTH : width of wuser signal
BUSER_ENABLE : enable buser signal
BUSER_WIDTH : width of buser signal
ARUSER_ENABLE : enable aruser signal
ARUSER_WIDTH : width of aruser signal
RUSER_ENABLE : enable ruser signal
RUSER_WIDTH : width of ruser signal
### Source Files
rtl/arbiter.v : Parametrizable arbiter
rtl/axi_adapter.v : AXI lite width converter
rtl/axi_adapter_rd.v : AXI lite width converter (read)
rtl/axi_adapter_wr.v : AXI lite width converter (write)
rtl/axi_axil_adapter.v : AXI to AXI lite converter
rtl/axi_axil_adapter_rd.v : AXI to AXI lite converter (read)
rtl/axi_axil_adapter_wr.v : AXI to AXI lite converter (write)
rtl/axi_cdma.v : AXI central DMA engine
rtl/axi_cdma_desc_mux.v : AXI CDMA descriptor mux
rtl/axi_crossbar.v : AXI nonblocking crossbar interconnect
rtl/axi_crossbar_addr.v : AXI crossbar address module
rtl/axi_crossbar_rd.v : AXI crossbar read module
rtl/axi_crossbar_wr.v : AXI crossbar write module
rtl/axi_dma.v : AXI DMA engine
rtl/axi_dma_desc_mux.v : AXI DMA descriptor mux
rtl/axi_dma_rd.v : AXI DMA engine (read)
rtl/axi_dma_wr.v : AXI DMA engine (write)
rtl/axi_fifo.v : AXI FIFO
rtl/axi_fifo_rd.v : AXI FIFO (read)
rtl/axi_fifo_wr.v : AXI FIFO (write)
rtl/axi_interconnect.v : AXI shared interconnect
rtl/axi_ram.v : AXI RAM
rtl/axi_register.v : AXI register
rtl/axi_register_rd.v : AXI register (read)
rtl/axi_register_wr.v : AXI register (write)
rtl/axil_adapter.v : AXI lite width converter
rtl/axil_adapter_rd.v : AXI lite width converter (read)
rtl/axil_adapter_wr.v : AXI lite width converter (write)
rtl/axil_cdc.v : AXI lite CDC
rtl/axil_cdc_rd.v : AXI lite CDC (read)
rtl/axil_cdc_wr.v : AXI lite CDC (write)
rtl/axil_interconnect.v : AXI lite shared interconnect
rtl/axil_ram.v : AXI lite RAM
rtl/axil_register.v : AXI lite register
rtl/axil_register_rd.v : AXI lite register (read)
rtl/axil_register_wr.v : AXI lite register (write)
rtl/priority_encoder.v : Parametrizable priority encoder
### AXI4-Lite Interface Example
Write
___ ___ ___ ___ ___
clk ___/ \___/ \___/ \___/ \___/ \___
_______
awid XXXX_ID____XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
_______
awaddr XXXX_ADDR__XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
_______
awlen XXXX_00____XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
_______
awsize XXXX_0_____XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
_______
awburst XXXX_0_____XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
_______
awprot XXXX_PROT__XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
_______
awvalid ___/ \_______________________________
___________ _______________________
awready \_______/
_______________
wdata XXXX_DATA__________XXXXXXXXXXXXXXXXXXXXXXXX
_______________
wstrb XXXX_STRB__________XXXXXXXXXXXXXXXXXXXXXXXX
_______________
wvalid ___/ \_______________________
_______
wready ___________/ \_______________________
_______
bid XXXXXXXXXXXXXXXXXXXXXXXXXXXX_ID____XXXXXXXX
_______
bresp XXXXXXXXXXXXXXXXXXXXXXXXXXXX_RESP__XXXXXXXX
_______
bvalid ___________________________/ \_______
___________________________________________
bready
Read
___ ___ ___ ___ ___
clk ___/ \___/ \___/ \___/ \___/ \___
_______
arid XXXX_ID____XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
_______
araddr XXXX_ADDR__XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
_______
arlen XXXX_00____XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
_______
arsize XXXX_0_____XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
_______
arburst XXXX_0_____XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
_______
arprot XXXX_PROT__XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
_______
arvalid ___/ \_______________________________
___________________________________________
arready
_______
rid XXXXXXXXXXXXXXXXXXXXXXXXXXXX_ID____XXXXXXXX
_______
rdata XXXXXXXXXXXXXXXXXXXXXXXXXXXX_DATA__XXXXXXXX
_______
rresp XXXXXXXXXXXXXXXXXXXXXXXXXXXX_RESP__XXXXXXXX
_______
rvalid ___________________________/ \_______
___________________________________________
rready
## Testing
Running the included testbenches requires MyHDL and Icarus Verilog. Make sure
that myhdl.vpi is installed properly for cosimulation to work correctly. The
testbenches can be run with a Python test runner like nose or py.test, or the
individual test scripts can be run with python directly.
### Testbench Files
tb/axi.py : MyHDL AXI4 master and memory BFM
tb/axil.py : MyHDL AXI4 lite master and memory BFM
/*
Copyright (c) 2014-2018 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* Arbiter module
*/
module arbiter #
(
parameter PORTS = 4,
// arbitration type: "PRIORITY" or "ROUND_ROBIN"
parameter TYPE = "PRIORITY",
// block type: "NONE", "REQUEST", "ACKNOWLEDGE"
parameter BLOCK = "NONE",
// LSB priority: "LOW", "HIGH"
parameter LSB_PRIORITY = "LOW"
)
(
input wire clk,
input wire rst,
input wire [PORTS-1:0] request,
input wire [PORTS-1:0] acknowledge,
output wire [PORTS-1:0] grant,
output wire grant_valid,
output wire [$clog2(PORTS)-1:0] grant_encoded
);
reg [PORTS-1:0] grant_reg = 0, grant_next;
reg grant_valid_reg = 0, grant_valid_next;
reg [$clog2(PORTS)-1:0] grant_encoded_reg = 0, grant_encoded_next;
assign grant_valid = grant_valid_reg;
assign grant = grant_reg;
assign grant_encoded = grant_encoded_reg;
wire request_valid;
wire [$clog2(PORTS)-1:0] request_index;
wire [PORTS-1:0] request_mask;
priority_encoder #(
.WIDTH(PORTS),
.LSB_PRIORITY(LSB_PRIORITY)
)
priority_encoder_inst (
.input_unencoded(request),
.output_valid(request_valid),
.output_encoded(request_index),
.output_unencoded(request_mask)
);
reg [PORTS-1:0] mask_reg = 0, mask_next;
wire masked_request_valid;
wire [$clog2(PORTS)-1:0] masked_request_index;
wire [PORTS-1:0] masked_request_mask;
priority_encoder #(
.WIDTH(PORTS),
.LSB_PRIORITY(LSB_PRIORITY)
)
priority_encoder_masked (
.input_unencoded(request & mask_reg),
.output_valid(masked_request_valid),
.output_encoded(masked_request_index),
.output_unencoded(masked_request_mask)
);
always @* begin
grant_next = 0;
grant_valid_next = 0;
grant_encoded_next = 0;
mask_next = mask_reg;
if (BLOCK == "REQUEST" && grant_reg & request) begin
// granted request still asserted; hold it
grant_valid_next = grant_valid_reg;
grant_next = grant_reg;
grant_encoded_next = grant_encoded_reg;
end else if (BLOCK == "ACKNOWLEDGE" && grant_valid && !(grant_reg & acknowledge)) begin
// granted request not yet acknowledged; hold it
grant_valid_next = grant_valid_reg;
grant_next = grant_reg;
grant_encoded_next = grant_encoded_reg;
end else if (request_valid) begin
if (TYPE == "PRIORITY") begin
grant_valid_next = 1;
grant_next = request_mask;
grant_encoded_next = request_index;
end else if (TYPE == "ROUND_ROBIN") begin
if (masked_request_valid) begin
grant_valid_next = 1;
grant_next = masked_request_mask;
grant_encoded_next = masked_request_index;
if (LSB_PRIORITY == "LOW") begin
mask_next = {PORTS{1'b1}} >> (PORTS - masked_request_index);
end else begin
mask_next = {PORTS{1'b1}} << (masked_request_index + 1);
end
end else begin
grant_valid_next = 1;
grant_next = request_mask;
grant_encoded_next = request_index;
if (LSB_PRIORITY == "LOW") begin
mask_next = {PORTS{1'b1}} >> (PORTS - request_index);
end else begin
mask_next = {PORTS{1'b1}} << (request_index + 1);
end
end
end
end
end
always @(posedge clk) begin
if (rst) begin
grant_reg <= 0;
grant_valid_reg <= 0;
grant_encoded_reg <= 0;
mask_reg <= 0;
end else begin
grant_reg <= grant_next;
grant_valid_reg <= grant_valid_next;
grant_encoded_reg <= grant_encoded_next;
mask_reg <= mask_next;
end
end
endmodule
/*
Copyright (c) 2018 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* AXI4 width adapter
*/
module axi_adapter #
(
// Width of address bus in bits
parameter ADDR_WIDTH = 32,
// Width of input (slave) interface data bus in bits
parameter S_DATA_WIDTH = 32,
// Width of input (slave) interface wstrb (width of data bus in words)
parameter S_STRB_WIDTH = (S_DATA_WIDTH/8),
// Width of output (master) interface data bus in bits
parameter M_DATA_WIDTH = 32,
// Width of output (master) interface wstrb (width of data bus in words)
parameter M_STRB_WIDTH = (M_DATA_WIDTH/8),
// Width of ID signal
parameter ID_WIDTH = 8,
// Propagate awuser signal
parameter AWUSER_ENABLE = 0,
// Width of awuser signal
parameter AWUSER_WIDTH = 1,
// Propagate wuser signal
parameter WUSER_ENABLE = 0,
// Width of wuser signal
parameter WUSER_WIDTH = 1,
// Propagate buser signal
parameter BUSER_ENABLE = 0,
// Width of buser signal
parameter BUSER_WIDTH = 1,
// Propagate aruser signal
parameter ARUSER_ENABLE = 0,
// Width of aruser signal
parameter ARUSER_WIDTH = 1,
// Propagate ruser signal
parameter RUSER_ENABLE = 0,
// Width of ruser signal
parameter RUSER_WIDTH = 1,
// When adapting to a wider bus, re-pack full-width burst instead of passing through narrow burst if possible
parameter CONVERT_BURST = 1,
// When adapting to a wider bus, re-pack all bursts instead of passing through narrow burst if possible
parameter CONVERT_NARROW_BURST = 0,
// Forward ID through adapter
parameter FORWARD_ID = 0
)
(
input wire clk,
input wire rst,
/*
* AXI slave interface
*/
input wire [ID_WIDTH-1:0] s_axi_awid,
input wire [ADDR_WIDTH-1:0] s_axi_awaddr,
input wire [7:0] s_axi_awlen,
input wire [2:0] s_axi_awsize,
input wire [1:0] s_axi_awburst,
input wire s_axi_awlock,
input wire [3:0] s_axi_awcache,
input wire [2:0] s_axi_awprot,
input wire [3:0] s_axi_awqos,
input wire [3:0] s_axi_awregion,
input wire [AWUSER_WIDTH-1:0] s_axi_awuser,
input wire s_axi_awvalid,
output wire s_axi_awready,
input wire [S_DATA_WIDTH-1:0] s_axi_wdata,
input wire [S_STRB_WIDTH-1:0] s_axi_wstrb,
input wire s_axi_wlast,
input wire [WUSER_WIDTH-1:0] s_axi_wuser,
input wire s_axi_wvalid,
output wire s_axi_wready,
output wire [ID_WIDTH-1:0] s_axi_bid,
output wire [1:0] s_axi_bresp,
output wire [BUSER_WIDTH-1:0] s_axi_buser,
output wire s_axi_bvalid,
input wire s_axi_bready,
input wire [ID_WIDTH-1:0] s_axi_arid,
input wire [ADDR_WIDTH-1:0] s_axi_araddr,
input wire [7:0] s_axi_arlen,
input wire [2:0] s_axi_arsize,
input wire [1:0] s_axi_arburst,
input wire s_axi_arlock,
input wire [3:0] s_axi_arcache,
input wire [2:0] s_axi_arprot,
input wire [3:0] s_axi_arqos,
input wire [3:0] s_axi_arregion,
input wire [ARUSER_WIDTH-1:0] s_axi_aruser,
input wire s_axi_arvalid,
output wire s_axi_arready,
output wire [ID_WIDTH-1:0] s_axi_rid,
output wire [S_DATA_WIDTH-1:0] s_axi_rdata,
output wire [1:0] s_axi_rresp,
output wire s_axi_rlast,
output wire [RUSER_WIDTH-1:0] s_axi_ruser,
output wire s_axi_rvalid,
input wire s_axi_rready,
/*
* AXI master interface
*/
output wire [ID_WIDTH-1:0] m_axi_awid,
output wire [ADDR_WIDTH-1:0] m_axi_awaddr,
output wire [7:0] m_axi_awlen,
output wire [2:0] m_axi_awsize,
output wire [1:0] m_axi_awburst,
output wire m_axi_awlock,
output wire [3:0] m_axi_awcache,
output wire [2:0] m_axi_awprot,
output wire [3:0] m_axi_awqos,
output wire [3:0] m_axi_awregion,
output wire [AWUSER_WIDTH-1:0] m_axi_awuser,
output wire m_axi_awvalid,
input wire m_axi_awready,
output wire [M_DATA_WIDTH-1:0] m_axi_wdata,
output wire [M_STRB_WIDTH-1:0] m_axi_wstrb,
output wire m_axi_wlast,
output wire [WUSER_WIDTH-1:0] m_axi_wuser,
output wire m_axi_wvalid,
input wire m_axi_wready,
input wire [ID_WIDTH-1:0] m_axi_bid,
input wire [1:0] m_axi_bresp,
input wire [BUSER_WIDTH-1:0] m_axi_buser,
input wire m_axi_bvalid,
output wire m_axi_bready,
output wire [ID_WIDTH-1:0] m_axi_arid,
output wire [ADDR_WIDTH-1:0] m_axi_araddr,
output wire [7:0] m_axi_arlen,
output wire [2:0] m_axi_arsize,
output wire [1:0] m_axi_arburst,
output wire m_axi_arlock,
output wire [3:0] m_axi_arcache,
output wire [2:0] m_axi_arprot,
output wire [3:0] m_axi_arqos,
output wire [3:0] m_axi_arregion,
output wire [ARUSER_WIDTH-1:0] m_axi_aruser,
output wire m_axi_arvalid,
input wire m_axi_arready,
input wire [ID_WIDTH-1:0] m_axi_rid,
input wire [M_DATA_WIDTH-1:0] m_axi_rdata,
input wire [1:0] m_axi_rresp,
input wire m_axi_rlast,
input wire [RUSER_WIDTH-1:0] m_axi_ruser,
input wire m_axi_rvalid,
output wire m_axi_rready
);
axi_adapter_wr #(
.ADDR_WIDTH(ADDR_WIDTH),
.S_DATA_WIDTH(S_DATA_WIDTH),
.S_STRB_WIDTH(S_STRB_WIDTH),
.M_DATA_WIDTH(M_DATA_WIDTH),
.M_STRB_WIDTH(M_STRB_WIDTH),
.ID_WIDTH(ID_WIDTH),
.AWUSER_ENABLE(AWUSER_ENABLE),
.AWUSER_WIDTH(AWUSER_WIDTH),
.WUSER_ENABLE(WUSER_ENABLE),
.WUSER_WIDTH(WUSER_WIDTH),
.BUSER_ENABLE(BUSER_ENABLE),
.BUSER_WIDTH(BUSER_WIDTH),
.CONVERT_BURST(CONVERT_BURST),
.CONVERT_NARROW_BURST(CONVERT_NARROW_BURST),
.FORWARD_ID(FORWARD_ID)
)
axi_adapter_wr_inst (
.clk(clk),
.rst(rst),
/*
* AXI slave interface
*/
.s_axi_awid(s_axi_awid),
.s_axi_awaddr(s_axi_awaddr),
.s_axi_awlen(s_axi_awlen),
.s_axi_awsize(s_axi_awsize),
.s_axi_awburst(s_axi_awburst),
.s_axi_awlock(s_axi_awlock),
.s_axi_awcache(s_axi_awcache),
.s_axi_awprot(s_axi_awprot),
.s_axi_awqos(s_axi_awqos),
.s_axi_awregion(s_axi_awregion),
.s_axi_awuser(s_axi_awuser),
.s_axi_awvalid(s_axi_awvalid),
.s_axi_awready(s_axi_awready),
.s_axi_wdata(s_axi_wdata),
.s_axi_wstrb(s_axi_wstrb),
.s_axi_wlast(s_axi_wlast),
.s_axi_wuser(s_axi_wuser),
.s_axi_wvalid(s_axi_wvalid),
.s_axi_wready(s_axi_wready),
.s_axi_bid(s_axi_bid),
.s_axi_bresp(s_axi_bresp),
.s_axi_buser(s_axi_buser),
.s_axi_bvalid(s_axi_bvalid),
.s_axi_bready(s_axi_bready),
/*
* AXI master interface
*/
.m_axi_awid(m_axi_awid),
.m_axi_awaddr(m_axi_awaddr),
.m_axi_awlen(m_axi_awlen),
.m_axi_awsize(m_axi_awsize),
.m_axi_awburst(m_axi_awburst),
.m_axi_awlock(m_axi_awlock),
.m_axi_awcache(m_axi_awcache),
.m_axi_awprot(m_axi_awprot),
.m_axi_awqos(m_axi_awqos),
.m_axi_awregion(m_axi_awregion),
.m_axi_awuser(m_axi_awuser),
.m_axi_awvalid(m_axi_awvalid),
.m_axi_awready(m_axi_awready),
.m_axi_wdata(m_axi_wdata),
.m_axi_wstrb(m_axi_wstrb),
.m_axi_wlast(m_axi_wlast),
.m_axi_wuser(m_axi_wuser),
.m_axi_wvalid(m_axi_wvalid),
.m_axi_wready(m_axi_wready),
.m_axi_bid(m_axi_bid),
.m_axi_bresp(m_axi_bresp),
.m_axi_buser(m_axi_buser),
.m_axi_bvalid(m_axi_bvalid),
.m_axi_bready(m_axi_bready)
);
axi_adapter_rd #(
.ADDR_WIDTH(ADDR_WIDTH),
.S_DATA_WIDTH(S_DATA_WIDTH),
.S_STRB_WIDTH(S_STRB_WIDTH),
.M_DATA_WIDTH(M_DATA_WIDTH),
.M_STRB_WIDTH(M_STRB_WIDTH),
.ID_WIDTH(ID_WIDTH),
.ARUSER_ENABLE(ARUSER_ENABLE),
.ARUSER_WIDTH(ARUSER_WIDTH),
.RUSER_ENABLE(RUSER_ENABLE),
.RUSER_WIDTH(RUSER_WIDTH),
.CONVERT_BURST(CONVERT_BURST),
.CONVERT_NARROW_BURST(CONVERT_NARROW_BURST),
.FORWARD_ID(FORWARD_ID)
)
axi_adapter_rd_inst (
.clk(clk),
.rst(rst),
/*
* AXI slave interface
*/
.s_axi_arid(s_axi_arid),
.s_axi_araddr(s_axi_araddr),
.s_axi_arlen(s_axi_arlen),
.s_axi_arsize(s_axi_arsize),
.s_axi_arburst(s_axi_arburst),
.s_axi_arlock(s_axi_arlock),
.s_axi_arcache(s_axi_arcache),
.s_axi_arprot(s_axi_arprot),
.s_axi_arqos(s_axi_arqos),
.s_axi_arregion(s_axi_arregion),
.s_axi_aruser(s_axi_aruser),
.s_axi_arvalid(s_axi_arvalid),
.s_axi_arready(s_axi_arready),
.s_axi_rid(s_axi_rid),
.s_axi_rdata(s_axi_rdata),
.s_axi_rresp(s_axi_rresp),
.s_axi_rlast(s_axi_rlast),
.s_axi_ruser(s_axi_ruser),
.s_axi_rvalid(s_axi_rvalid),
.s_axi_rready(s_axi_rready),
/*
* AXI master interface
*/
.m_axi_arid(m_axi_arid),
.m_axi_araddr(m_axi_araddr),
.m_axi_arlen(m_axi_arlen),
.m_axi_arsize(m_axi_arsize),
.m_axi_arburst(m_axi_arburst),
.m_axi_arlock(m_axi_arlock),
.m_axi_arcache(m_axi_arcache),
.m_axi_arprot(m_axi_arprot),
.m_axi_arqos(m_axi_arqos),
.m_axi_arregion(m_axi_arregion),
.m_axi_aruser(m_axi_aruser),
.m_axi_arvalid(m_axi_arvalid),
.m_axi_arready(m_axi_arready),
.m_axi_rid(m_axi_rid),
.m_axi_rdata(m_axi_rdata),
.m_axi_rresp(m_axi_rresp),
.m_axi_rlast(m_axi_rlast),
.m_axi_ruser(m_axi_ruser),
.m_axi_rvalid(m_axi_rvalid),
.m_axi_rready(m_axi_rready)
);
endmodule
/*
Copyright (c) 2018 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* AXI4 width adapter
*/
module axi_adapter_rd #
(
// Width of address bus in bits
parameter ADDR_WIDTH = 32,
// Width of input (slave) interface data bus in bits
parameter S_DATA_WIDTH = 32,
// Width of input (slave) interface wstrb (width of data bus in words)
parameter S_STRB_WIDTH = (S_DATA_WIDTH/8),
// Width of output (master) interface data bus in bits
parameter M_DATA_WIDTH = 32,
// Width of output (master) interface wstrb (width of data bus in words)
parameter M_STRB_WIDTH = (M_DATA_WIDTH/8),
// Width of ID signal
parameter ID_WIDTH = 8,
// Propagate aruser signal
parameter ARUSER_ENABLE = 0,
// Width of aruser signal
parameter ARUSER_WIDTH = 1,
// Propagate ruser signal
parameter RUSER_ENABLE = 0,
// Width of ruser signal
parameter RUSER_WIDTH = 1,
// When adapting to a wider bus, re-pack full-width burst instead of passing through narrow burst if possible
parameter CONVERT_BURST = 1,
// When adapting to a wider bus, re-pack all bursts instead of passing through narrow burst if possible
parameter CONVERT_NARROW_BURST = 0,
// Forward ID through adapter
parameter FORWARD_ID = 0
)
(
input wire clk,
input wire rst,
/*
* AXI slave interface
*/
input wire [ID_WIDTH-1:0] s_axi_arid,
input wire [ADDR_WIDTH-1:0] s_axi_araddr,
input wire [7:0] s_axi_arlen,
input wire [2:0] s_axi_arsize,
input wire [1:0] s_axi_arburst,
input wire s_axi_arlock,
input wire [3:0] s_axi_arcache,
input wire [2:0] s_axi_arprot,
input wire [3:0] s_axi_arqos,
input wire [3:0] s_axi_arregion,
input wire [ARUSER_WIDTH-1:0] s_axi_aruser,
input wire s_axi_arvalid,
output wire s_axi_arready,
output wire [ID_WIDTH-1:0] s_axi_rid,
output wire [S_DATA_WIDTH-1:0] s_axi_rdata,
output wire [1:0] s_axi_rresp,
output wire s_axi_rlast,
output wire [RUSER_WIDTH-1:0] s_axi_ruser,
output wire s_axi_rvalid,
input wire s_axi_rready,
/*
* AXI master interface
*/
output wire [ID_WIDTH-1:0] m_axi_arid,
output wire [ADDR_WIDTH-1:0] m_axi_araddr,
output wire [7:0] m_axi_arlen,
output wire [2:0] m_axi_arsize,
output wire [1:0] m_axi_arburst,
output wire m_axi_arlock,
output wire [3:0] m_axi_arcache,
output wire [2:0] m_axi_arprot,
output wire [3:0] m_axi_arqos,
output wire [3:0] m_axi_arregion,
output wire [ARUSER_WIDTH-1:0] m_axi_aruser,
output wire m_axi_arvalid,
input wire m_axi_arready,
input wire [ID_WIDTH-1:0] m_axi_rid,
input wire [M_DATA_WIDTH-1:0] m_axi_rdata,
input wire [1:0] m_axi_rresp,
input wire m_axi_rlast,
input wire [RUSER_WIDTH-1:0] m_axi_ruser,
input wire m_axi_rvalid,
output wire m_axi_rready
);
parameter S_ADDR_BIT_OFFSET = $clog2(S_STRB_WIDTH);
parameter M_ADDR_BIT_OFFSET = $clog2(M_STRB_WIDTH);
parameter S_WORD_WIDTH = S_STRB_WIDTH;
parameter M_WORD_WIDTH = M_STRB_WIDTH;
parameter S_WORD_SIZE = S_DATA_WIDTH/S_WORD_WIDTH;
parameter M_WORD_SIZE = M_DATA_WIDTH/M_WORD_WIDTH;
parameter S_BURST_SIZE = $clog2(S_STRB_WIDTH);
parameter M_BURST_SIZE = $clog2(M_STRB_WIDTH);
// output bus is wider
parameter EXPAND = M_STRB_WIDTH > S_STRB_WIDTH;
parameter DATA_WIDTH = EXPAND ? M_DATA_WIDTH : S_DATA_WIDTH;
parameter STRB_WIDTH = EXPAND ? M_STRB_WIDTH : S_STRB_WIDTH;
// required number of segments in wider bus
parameter SEGMENT_COUNT = EXPAND ? (M_STRB_WIDTH / S_STRB_WIDTH) : (S_STRB_WIDTH / M_STRB_WIDTH);
// data width and keep width per segment
parameter SEGMENT_DATA_WIDTH = DATA_WIDTH / SEGMENT_COUNT;
parameter SEGMENT_STRB_WIDTH = STRB_WIDTH / SEGMENT_COUNT;
// bus width assertions
initial begin
if (S_WORD_SIZE * S_STRB_WIDTH != S_DATA_WIDTH) begin
$error("Error: AXI slave interface data width not evenly divisble (instance %m)");
$finish;
end
if (M_WORD_SIZE * M_STRB_WIDTH != M_DATA_WIDTH) begin
$error("Error: AXI master interface data width not evenly divisble (instance %m)");
$finish;
end
if (S_WORD_SIZE != M_WORD_SIZE) begin
$error("Error: word size mismatch (instance %m)");
$finish;
end
if (2**$clog2(S_WORD_WIDTH) != S_WORD_WIDTH) begin
$error("Error: AXI slave interface word width must be even power of two (instance %m)");
$finish;
end
if (2**$clog2(M_WORD_WIDTH) != M_WORD_WIDTH) begin
$error("Error: AXI master interface word width must be even power of two (instance %m)");
$finish;
end
end
localparam [1:0]
STATE_IDLE = 2'd0,
STATE_DATA = 2'd1,
STATE_DATA_READ = 2'd2,
STATE_DATA_SPLIT = 2'd3;
reg [1:0] state_reg = STATE_IDLE, state_next;
reg [ID_WIDTH-1:0] id_reg = {ID_WIDTH{1'b0}}, id_next;
reg [ADDR_WIDTH-1:0] addr_reg = {ADDR_WIDTH{1'b0}}, addr_next;
reg [DATA_WIDTH-1:0] data_reg = {DATA_WIDTH{1'b0}}, data_next;
reg [1:0] resp_reg = 2'd0, resp_next;
reg [RUSER_WIDTH-1:0] ruser_reg = {RUSER_WIDTH{1'b0}}, ruser_next;
reg [7:0] burst_reg = 8'd0, burst_next;
reg [2:0] burst_size_reg = 3'd0, burst_size_next;
reg [7:0] master_burst_reg = 8'd0, master_burst_next;
reg [2:0] master_burst_size_reg = 3'd0, master_burst_size_next;
reg s_axi_arready_reg = 1'b0, s_axi_arready_next;
reg [ID_WIDTH-1:0] m_axi_arid_reg = {ID_WIDTH{1'b0}}, m_axi_arid_next;
reg [ADDR_WIDTH-1:0] m_axi_araddr_reg = {ADDR_WIDTH{1'b0}}, m_axi_araddr_next;
reg [7:0] m_axi_arlen_reg = 8'd0, m_axi_arlen_next;
reg [2:0] m_axi_arsize_reg = 3'd0, m_axi_arsize_next;
reg [1:0] m_axi_arburst_reg = 2'd0, m_axi_arburst_next;
reg m_axi_arlock_reg = 1'b0, m_axi_arlock_next;
reg [3:0] m_axi_arcache_reg = 4'd0, m_axi_arcache_next;
reg [2:0] m_axi_arprot_reg = 3'd0, m_axi_arprot_next;
reg [3:0] m_axi_arqos_reg = 4'd0, m_axi_arqos_next;
reg [3:0] m_axi_arregion_reg = 4'd0, m_axi_arregion_next;
reg [ARUSER_WIDTH-1:0] m_axi_aruser_reg = {ARUSER_WIDTH{1'b0}}, m_axi_aruser_next;
reg m_axi_arvalid_reg = 1'b0, m_axi_arvalid_next;
reg m_axi_rready_reg = 1'b0, m_axi_rready_next;
// internal datapath
reg [ID_WIDTH-1:0] s_axi_rid_int;
reg [S_DATA_WIDTH-1:0] s_axi_rdata_int;
reg [1:0] s_axi_rresp_int;
reg s_axi_rlast_int;
reg [RUSER_WIDTH-1:0] s_axi_ruser_int;
reg s_axi_rvalid_int;
reg s_axi_rready_int_reg = 1'b0;
wire s_axi_rready_int_early;
assign s_axi_arready = s_axi_arready_reg;
assign m_axi_arid = FORWARD_ID ? m_axi_arid_reg : {ID_WIDTH{1'b0}};
assign m_axi_araddr = m_axi_araddr_reg;
assign m_axi_arlen = m_axi_arlen_reg;
assign m_axi_arsize = m_axi_arsize_reg;
assign m_axi_arburst = m_axi_arburst_reg;
assign m_axi_arlock = m_axi_arlock_reg;
assign m_axi_arcache = m_axi_arcache_reg;
assign m_axi_arprot = m_axi_arprot_reg;
assign m_axi_arqos = m_axi_arqos_reg;
assign m_axi_arregion = m_axi_arregion_reg;
assign m_axi_aruser = ARUSER_ENABLE ? m_axi_aruser_reg : {ARUSER_WIDTH{1'b0}};
assign m_axi_arvalid = m_axi_arvalid_reg;
assign m_axi_rready = m_axi_rready_reg;
always @* begin
state_next = STATE_IDLE;
id_next = id_reg;
addr_next = addr_reg;
data_next = data_reg;
resp_next = resp_reg;
ruser_next = ruser_reg;
burst_next = burst_reg;
burst_size_next = burst_size_reg;
master_burst_next = master_burst_reg;
master_burst_size_next = master_burst_size_reg;
s_axi_arready_next = 1'b0;
m_axi_arid_next = m_axi_arid_reg;
m_axi_araddr_next = m_axi_araddr_reg;
m_axi_arlen_next = m_axi_arlen_reg;
m_axi_arsize_next = m_axi_arsize_reg;
m_axi_arburst_next = m_axi_arburst_reg;
m_axi_arlock_next = m_axi_arlock_reg;
m_axi_arcache_next = m_axi_arcache_reg;
m_axi_arprot_next = m_axi_arprot_reg;
m_axi_arqos_next = m_axi_arqos_reg;
m_axi_arregion_next = m_axi_arregion_reg;
m_axi_aruser_next = m_axi_aruser_reg;
m_axi_arvalid_next = m_axi_arvalid_reg && !m_axi_arready;
m_axi_rready_next = 1'b0;
if (SEGMENT_COUNT == 1) begin
// master output is same width; direct transfer with no splitting/merging
s_axi_rid_int = id_reg;
s_axi_rdata_int = m_axi_rdata;
s_axi_rresp_int = m_axi_rresp;
s_axi_rlast_int = m_axi_rlast;
s_axi_ruser_int = m_axi_ruser;
s_axi_rvalid_int = 0;
case (state_reg)
STATE_IDLE: begin
// idle state; wait for new burst
s_axi_arready_next = !m_axi_arvalid;
if (s_axi_arready && s_axi_arvalid) begin
s_axi_arready_next = 1'b0;
id_next = s_axi_arid;
m_axi_arid_next = s_axi_arid;
m_axi_araddr_next = s_axi_araddr;
m_axi_arlen_next = s_axi_arlen;
m_axi_arsize_next = s_axi_arsize;
m_axi_arburst_next = s_axi_arburst;
m_axi_arlock_next = s_axi_arlock;
m_axi_arcache_next = s_axi_arcache;
m_axi_arprot_next = s_axi_arprot;
m_axi_arqos_next = s_axi_arqos;
m_axi_arregion_next = s_axi_arregion;
m_axi_aruser_next = s_axi_aruser;
m_axi_arvalid_next = 1'b1;
m_axi_rready_next = s_axi_rready_int_early;
state_next = STATE_DATA;
end else begin
state_next = STATE_IDLE;
end
end
STATE_DATA: begin
// data state; transfer read data
m_axi_rready_next = s_axi_rready_int_early;
if (m_axi_rready && m_axi_rvalid) begin
s_axi_rid_int = id_reg;
s_axi_rdata_int = m_axi_rdata;
s_axi_rresp_int = m_axi_rresp;
s_axi_rlast_int = m_axi_rlast;
s_axi_ruser_int = m_axi_ruser;
s_axi_rvalid_int = 1'b1;
if (m_axi_rlast) begin
// last data word, return to idle
m_axi_rready_next = 1'b0;
s_axi_arready_next = !m_axi_arvalid;
state_next = STATE_IDLE;
end else begin
state_next = STATE_DATA;
end
end else begin
state_next = STATE_DATA;
end
end
endcase
end else if (EXPAND) begin
// master output is wider; split reads
s_axi_rid_int = id_reg;
s_axi_rdata_int = m_axi_rdata;
s_axi_rresp_int = m_axi_rresp;
s_axi_rlast_int = m_axi_rlast;
s_axi_ruser_int = m_axi_ruser;
s_axi_rvalid_int = 0;
case (state_reg)
STATE_IDLE: begin
// idle state; wait for new burst
s_axi_arready_next = !m_axi_arvalid;
if (s_axi_arready && s_axi_arvalid) begin
s_axi_arready_next = 1'b0;
id_next = s_axi_arid;
m_axi_arid_next = s_axi_arid;
m_axi_araddr_next = s_axi_araddr;
addr_next = s_axi_araddr;
burst_next = s_axi_arlen;
burst_size_next = s_axi_arsize;
if (CONVERT_BURST && s_axi_arcache[1] && (CONVERT_NARROW_BURST || s_axi_arsize == S_BURST_SIZE)) begin
// split reads
// require CONVERT_BURST and arcache[1] set
master_burst_size_next = M_BURST_SIZE;
if (CONVERT_NARROW_BURST) begin
m_axi_arlen_next = (({{S_ADDR_BIT_OFFSET+1{1'b0}}, s_axi_arlen} << s_axi_arsize) + s_axi_araddr[M_ADDR_BIT_OFFSET-1:0]) >> M_BURST_SIZE;
end else begin
m_axi_arlen_next = ({1'b0, s_axi_arlen} + s_axi_araddr[M_ADDR_BIT_OFFSET-1:S_ADDR_BIT_OFFSET]) >> $clog2(SEGMENT_COUNT);
end
m_axi_arsize_next = M_BURST_SIZE;
state_next = STATE_DATA_READ;
end else begin
// output narrow burst
master_burst_size_next = s_axi_arsize;
m_axi_arlen_next = s_axi_arlen;
m_axi_arsize_next = s_axi_arsize;
state_next = STATE_DATA;
end
m_axi_arburst_next = s_axi_arburst;
m_axi_arlock_next = s_axi_arlock;
m_axi_arcache_next = s_axi_arcache;
m_axi_arprot_next = s_axi_arprot;
m_axi_arqos_next = s_axi_arqos;
m_axi_arregion_next = s_axi_arregion;
m_axi_aruser_next = s_axi_aruser;
m_axi_arvalid_next = 1'b1;
m_axi_rready_next = s_axi_rready_int_early;
end else begin
state_next = STATE_IDLE;
end
end
STATE_DATA: begin
m_axi_rready_next = s_axi_rready_int_early;
if (m_axi_rready && m_axi_rvalid) begin
s_axi_rid_int = id_reg;
s_axi_rdata_int = m_axi_rdata >> (addr_reg[M_ADDR_BIT_OFFSET-1:S_ADDR_BIT_OFFSET] * S_DATA_WIDTH);
s_axi_rresp_int = m_axi_rresp;
s_axi_rlast_int = m_axi_rlast;
s_axi_ruser_int = m_axi_ruser;
s_axi_rvalid_int = 1'b1;
addr_next = addr_reg + (1 << burst_size_reg);
if (m_axi_rlast) begin
m_axi_rready_next = 1'b0;
s_axi_arready_next = !m_axi_arvalid;
state_next = STATE_IDLE;
end else begin
state_next = STATE_DATA;
end
end else begin
state_next = STATE_DATA;
end
end
STATE_DATA_READ: begin
m_axi_rready_next = s_axi_rready_int_early;
if (m_axi_rready && m_axi_rvalid) begin
s_axi_rid_int = id_reg;
data_next = m_axi_rdata;
resp_next = m_axi_rresp;
ruser_next = m_axi_ruser;
s_axi_rdata_int = m_axi_rdata >> (addr_reg[M_ADDR_BIT_OFFSET-1:S_ADDR_BIT_OFFSET] * S_DATA_WIDTH);
s_axi_rresp_int = m_axi_rresp;
s_axi_rlast_int = 1'b0;
s_axi_ruser_int = m_axi_ruser;
s_axi_rvalid_int = 1'b1;
burst_next = burst_reg - 1;
addr_next = addr_reg + (1 << burst_size_reg);
if (burst_reg == 0) begin
m_axi_rready_next = 1'b0;
s_axi_arready_next = !m_axi_arvalid;
s_axi_rlast_int = 1'b1;
state_next = STATE_IDLE;
end else if (addr_next[master_burst_size_reg] != addr_reg[master_burst_size_reg]) begin
state_next = STATE_DATA_READ;
end else begin
m_axi_rready_next = 1'b0;
state_next = STATE_DATA_SPLIT;
end
end else begin
state_next = STATE_DATA_READ;
end
end
STATE_DATA_SPLIT: begin
m_axi_rready_next = 1'b0;
if (s_axi_rready_int_reg) begin
s_axi_rid_int = id_reg;
s_axi_rdata_int = data_reg >> (addr_reg[M_ADDR_BIT_OFFSET-1:S_ADDR_BIT_OFFSET] * S_DATA_WIDTH);
s_axi_rresp_int = resp_reg;
s_axi_rlast_int = 1'b0;
s_axi_ruser_int = ruser_reg;
s_axi_rvalid_int = 1'b1;
burst_next = burst_reg - 1;
addr_next = addr_reg + (1 << burst_size_reg);
if (burst_reg == 0) begin
s_axi_arready_next = !m_axi_arvalid;
s_axi_rlast_int = 1'b1;
state_next = STATE_IDLE;
end else if (addr_next[master_burst_size_reg] != addr_reg[master_burst_size_reg]) begin
m_axi_rready_next = s_axi_rready_int_early;
state_next = STATE_DATA_READ;
end else begin
state_next = STATE_DATA_SPLIT;
end
end else begin
state_next = STATE_DATA_SPLIT;
end
end
endcase
end else begin
// master output is narrower; merge reads and possibly split burst
s_axi_rid_int = id_reg;
s_axi_rdata_int = data_reg;
s_axi_rresp_int = resp_reg;
s_axi_rlast_int = 1'b0;
s_axi_ruser_int = m_axi_ruser;
s_axi_rvalid_int = 0;
case (state_reg)
STATE_IDLE: begin
// idle state; wait for new burst
s_axi_arready_next = !m_axi_arvalid;
resp_next = 2'd0;
if (s_axi_arready && s_axi_arvalid) begin
s_axi_arready_next = 1'b0;
id_next = s_axi_arid;
m_axi_arid_next = s_axi_arid;
m_axi_araddr_next = s_axi_araddr;
addr_next = s_axi_araddr;
burst_next = s_axi_arlen;
burst_size_next = s_axi_arsize;
if (s_axi_arsize > M_BURST_SIZE) begin
// need to adjust burst size
if ({s_axi_arlen, {S_BURST_SIZE-M_BURST_SIZE{1'b1}}} >> (S_BURST_SIZE-s_axi_arsize) > 255) begin
// limit burst length to max
master_burst_next = 8'd255;
end else begin
master_burst_next = {s_axi_arlen, {S_BURST_SIZE-M_BURST_SIZE{1'b1}}} >> (S_BURST_SIZE-s_axi_arsize);
end
master_burst_size_next = M_BURST_SIZE;
m_axi_arlen_next = master_burst_next;
m_axi_arsize_next = master_burst_size_next;
end else begin
// pass through narrow (enough) burst
master_burst_next = s_axi_arlen;
master_burst_size_next = s_axi_arsize;
m_axi_arlen_next = s_axi_arlen;
m_axi_arsize_next = s_axi_arsize;
end
m_axi_arburst_next = s_axi_arburst;
m_axi_arlock_next = s_axi_arlock;
m_axi_arcache_next = s_axi_arcache;
m_axi_arprot_next = s_axi_arprot;
m_axi_arqos_next = s_axi_arqos;
m_axi_arregion_next = s_axi_arregion;
m_axi_aruser_next = s_axi_aruser;
m_axi_arvalid_next = 1'b1;
m_axi_rready_next = 1'b0;
state_next = STATE_DATA;
end else begin
state_next = STATE_IDLE;
end
end
STATE_DATA: begin
m_axi_rready_next = s_axi_rready_int_early && !m_axi_arvalid;
if (m_axi_rready && m_axi_rvalid) begin
data_next[addr_reg[S_ADDR_BIT_OFFSET-1:M_ADDR_BIT_OFFSET]*SEGMENT_DATA_WIDTH +: SEGMENT_DATA_WIDTH] = m_axi_rdata;
if (m_axi_rresp) begin
resp_next = m_axi_rresp;
end
s_axi_rid_int = id_reg;
s_axi_rdata_int = data_next;
s_axi_rresp_int = resp_next;
s_axi_rlast_int = 1'b0;
s_axi_ruser_int = m_axi_ruser;
s_axi_rvalid_int = 1'b0;
master_burst_next = master_burst_reg - 1;
addr_next = addr_reg + (1 << master_burst_size_reg);
if (addr_next[burst_size_reg] != addr_reg[burst_size_reg]) begin
data_next = {DATA_WIDTH{1'b0}};
burst_next = burst_reg - 1;
s_axi_rvalid_int = 1'b1;
end
if (master_burst_reg == 0) begin
if (burst_reg == 0) begin
m_axi_rready_next = 1'b0;
s_axi_rlast_int = 1'b1;
s_axi_rvalid_int = 1'b1;
s_axi_arready_next = !m_axi_arvalid;
state_next = STATE_IDLE;
end else begin
// start new burst
m_axi_araddr_next = addr_next;
if (burst_size_reg > M_BURST_SIZE) begin
// need to adjust burst size
if ({burst_next, {S_BURST_SIZE-M_BURST_SIZE{1'b1}}} >> (S_BURST_SIZE-burst_size_reg) > 255) begin
// limit burst length to max
master_burst_next = 8'd255;
end else begin
master_burst_next = {burst_next, {S_BURST_SIZE-M_BURST_SIZE{1'b1}}} >> (S_BURST_SIZE-burst_size_reg);
end
master_burst_size_next = M_BURST_SIZE;
m_axi_arlen_next = master_burst_next;
m_axi_arsize_next = master_burst_size_next;
end else begin
// pass through narrow (enough) burst
master_burst_next = burst_next;
master_burst_size_next = burst_size_reg;
m_axi_arlen_next = burst_next;
m_axi_arsize_next = burst_size_reg;
end
m_axi_arvalid_next = 1'b1;
m_axi_rready_next = 1'b0;
state_next = STATE_DATA;
end
end else begin
state_next = STATE_DATA;
end
end else begin
state_next = STATE_DATA;
end
end
endcase
end
end
always @(posedge clk) begin
if (rst) begin
state_reg <= STATE_IDLE;
s_axi_arready_reg <= 1'b0;
m_axi_arvalid_reg <= 1'b0;
m_axi_rready_reg <= 1'b0;
end else begin
state_reg <= state_next;
s_axi_arready_reg <= s_axi_arready_next;
m_axi_arvalid_reg <= m_axi_arvalid_next;
m_axi_rready_reg <= m_axi_rready_next;
end
id_reg <= id_next;
addr_reg <= addr_next;
data_reg <= data_next;
resp_reg <= resp_next;
ruser_reg <= ruser_next;
burst_reg <= burst_next;
burst_size_reg <= burst_size_next;
master_burst_reg <= master_burst_next;
master_burst_size_reg <= master_burst_size_next;
m_axi_arid_reg <= m_axi_arid_next;
m_axi_araddr_reg <= m_axi_araddr_next;
m_axi_arlen_reg <= m_axi_arlen_next;
m_axi_arsize_reg <= m_axi_arsize_next;
m_axi_arburst_reg <= m_axi_arburst_next;
m_axi_arlock_reg <= m_axi_arlock_next;
m_axi_arcache_reg <= m_axi_arcache_next;
m_axi_arprot_reg <= m_axi_arprot_next;
m_axi_arqos_reg <= m_axi_arqos_next;
m_axi_arregion_reg <= m_axi_arregion_next;
m_axi_aruser_reg <= m_axi_aruser_next;
end
// output datapath logic
reg [ID_WIDTH-1:0] s_axi_rid_reg = {ID_WIDTH{1'b0}};
reg [S_DATA_WIDTH-1:0] s_axi_rdata_reg = {S_DATA_WIDTH{1'b0}};
reg [1:0] s_axi_rresp_reg = 2'd0;
reg s_axi_rlast_reg = 1'b0;
reg [RUSER_WIDTH-1:0] s_axi_ruser_reg = 1'b0;
reg s_axi_rvalid_reg = 1'b0, s_axi_rvalid_next;
reg [ID_WIDTH-1:0] temp_s_axi_rid_reg = {ID_WIDTH{1'b0}};
reg [S_DATA_WIDTH-1:0] temp_s_axi_rdata_reg = {S_DATA_WIDTH{1'b0}};
reg [1:0] temp_s_axi_rresp_reg = 2'd0;
reg temp_s_axi_rlast_reg = 1'b0;
reg [RUSER_WIDTH-1:0] temp_s_axi_ruser_reg = 1'b0;
reg temp_s_axi_rvalid_reg = 1'b0, temp_s_axi_rvalid_next;
// datapath control
reg store_axi_r_int_to_output;
reg store_axi_r_int_to_temp;
reg store_axi_r_temp_to_output;
assign s_axi_rid = s_axi_rid_reg;
assign s_axi_rdata = s_axi_rdata_reg;
assign s_axi_rresp = s_axi_rresp_reg;
assign s_axi_rlast = s_axi_rlast_reg;
assign s_axi_ruser = RUSER_ENABLE ? s_axi_ruser_reg : {RUSER_WIDTH{1'b0}};
assign s_axi_rvalid = s_axi_rvalid_reg;
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
assign s_axi_rready_int_early = s_axi_rready | (~temp_s_axi_rvalid_reg & (~s_axi_rvalid_reg | ~s_axi_rvalid_int));
always @* begin
// transfer sink ready state to source
s_axi_rvalid_next = s_axi_rvalid_reg;
temp_s_axi_rvalid_next = temp_s_axi_rvalid_reg;
store_axi_r_int_to_output = 1'b0;
store_axi_r_int_to_temp = 1'b0;
store_axi_r_temp_to_output = 1'b0;
if (s_axi_rready_int_reg) begin
// input is ready
if (s_axi_rready | ~s_axi_rvalid_reg) begin
// output is ready or currently not valid, transfer data to output
s_axi_rvalid_next = s_axi_rvalid_int;
store_axi_r_int_to_output = 1'b1;
end else begin
// output is not ready, store input in temp
temp_s_axi_rvalid_next = s_axi_rvalid_int;
store_axi_r_int_to_temp = 1'b1;
end
end else if (s_axi_rready) begin
// input is not ready, but output is ready
s_axi_rvalid_next = temp_s_axi_rvalid_reg;
temp_s_axi_rvalid_next = 1'b0;
store_axi_r_temp_to_output = 1'b1;
end
end
always @(posedge clk) begin
if (rst) begin
s_axi_rvalid_reg <= 1'b0;
s_axi_rready_int_reg <= 1'b0;
temp_s_axi_rvalid_reg <= 1'b0;
end else begin
s_axi_rvalid_reg <= s_axi_rvalid_next;
s_axi_rready_int_reg <= s_axi_rready_int_early;
temp_s_axi_rvalid_reg <= temp_s_axi_rvalid_next;
end
// datapath
if (store_axi_r_int_to_output) begin
s_axi_rid_reg <= s_axi_rid_int;
s_axi_rdata_reg <= s_axi_rdata_int;
s_axi_rresp_reg <= s_axi_rresp_int;
s_axi_rlast_reg <= s_axi_rlast_int;
s_axi_ruser_reg <= s_axi_ruser_int;
end else if (store_axi_r_temp_to_output) begin
s_axi_rid_reg <= temp_s_axi_rid_reg;
s_axi_rdata_reg <= temp_s_axi_rdata_reg;
s_axi_rresp_reg <= temp_s_axi_rresp_reg;
s_axi_rlast_reg <= temp_s_axi_rlast_reg;
s_axi_ruser_reg <= temp_s_axi_ruser_reg;
end
if (store_axi_r_int_to_temp) begin
temp_s_axi_rid_reg <= s_axi_rid_int;
temp_s_axi_rdata_reg <= s_axi_rdata_int;
temp_s_axi_rresp_reg <= s_axi_rresp_int;
temp_s_axi_rlast_reg <= s_axi_rlast_int;
temp_s_axi_ruser_reg <= s_axi_ruser_int;
end
end
endmodule
/*
Copyright (c) 2018 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* AXI4 width adapter
*/
module axi_adapter_wr #
(
// Width of address bus in bits
parameter ADDR_WIDTH = 32,
// Width of input (slave) interface data bus in bits
parameter S_DATA_WIDTH = 32,
// Width of input (slave) interface wstrb (width of data bus in words)
parameter S_STRB_WIDTH = (S_DATA_WIDTH/8),
// Width of output (master) interface data bus in bits
parameter M_DATA_WIDTH = 32,
// Width of output (master) interface wstrb (width of data bus in words)
parameter M_STRB_WIDTH = (M_DATA_WIDTH/8),
// Width of ID signal
parameter ID_WIDTH = 8,
// Propagate awuser signal
parameter AWUSER_ENABLE = 0,
// Width of awuser signal
parameter AWUSER_WIDTH = 1,
// Propagate wuser signal
parameter WUSER_ENABLE = 0,
// Width of wuser signal
parameter WUSER_WIDTH = 1,
// Propagate buser signal
parameter BUSER_ENABLE = 0,
// Width of buser signal
parameter BUSER_WIDTH = 1,
// When adapting to a wider bus, re-pack full-width burst instead of passing through narrow burst if possible
parameter CONVERT_BURST = 1,
// When adapting to a wider bus, re-pack all bursts instead of passing through narrow burst if possible
parameter CONVERT_NARROW_BURST = 0,
// Forward ID through adapter
parameter FORWARD_ID = 0
)
(
input wire clk,
input wire rst,
/*
* AXI slave interface
*/
input wire [ID_WIDTH-1:0] s_axi_awid,
input wire [ADDR_WIDTH-1:0] s_axi_awaddr,
input wire [7:0] s_axi_awlen,
input wire [2:0] s_axi_awsize,
input wire [1:0] s_axi_awburst,
input wire s_axi_awlock,
input wire [3:0] s_axi_awcache,
input wire [2:0] s_axi_awprot,
input wire [3:0] s_axi_awqos,
input wire [3:0] s_axi_awregion,
input wire [AWUSER_WIDTH-1:0] s_axi_awuser,
input wire s_axi_awvalid,
output wire s_axi_awready,
input wire [S_DATA_WIDTH-1:0] s_axi_wdata,
input wire [S_STRB_WIDTH-1:0] s_axi_wstrb,
input wire s_axi_wlast,
input wire [WUSER_WIDTH-1:0] s_axi_wuser,
input wire s_axi_wvalid,
output wire s_axi_wready,
output wire [ID_WIDTH-1:0] s_axi_bid,
output wire [1:0] s_axi_bresp,
output wire [BUSER_WIDTH-1:0] s_axi_buser,
output wire s_axi_bvalid,
input wire s_axi_bready,
/*
* AXI master interface
*/
output wire [ID_WIDTH-1:0] m_axi_awid,
output wire [ADDR_WIDTH-1:0] m_axi_awaddr,
output wire [7:0] m_axi_awlen,
output wire [2:0] m_axi_awsize,
output wire [1:0] m_axi_awburst,
output wire m_axi_awlock,
output wire [3:0] m_axi_awcache,
output wire [2:0] m_axi_awprot,
output wire [3:0] m_axi_awqos,
output wire [3:0] m_axi_awregion,
output wire [AWUSER_WIDTH-1:0] m_axi_awuser,
output wire m_axi_awvalid,
input wire m_axi_awready,
output wire [M_DATA_WIDTH-1:0] m_axi_wdata,
output wire [M_STRB_WIDTH-1:0] m_axi_wstrb,
output wire m_axi_wlast,
output wire [WUSER_WIDTH-1:0] m_axi_wuser,
output wire m_axi_wvalid,
input wire m_axi_wready,
input wire [ID_WIDTH-1:0] m_axi_bid,
input wire [1:0] m_axi_bresp,
input wire [BUSER_WIDTH-1:0] m_axi_buser,
input wire m_axi_bvalid,
output wire m_axi_bready
);
parameter S_ADDR_BIT_OFFSET = $clog2(S_STRB_WIDTH);
parameter M_ADDR_BIT_OFFSET = $clog2(M_STRB_WIDTH);
parameter S_WORD_WIDTH = S_STRB_WIDTH;
parameter M_WORD_WIDTH = M_STRB_WIDTH;
parameter S_WORD_SIZE = S_DATA_WIDTH/S_WORD_WIDTH;
parameter M_WORD_SIZE = M_DATA_WIDTH/M_WORD_WIDTH;
parameter S_BURST_SIZE = $clog2(S_STRB_WIDTH);
parameter M_BURST_SIZE = $clog2(M_STRB_WIDTH);
// output bus is wider
parameter EXPAND = M_STRB_WIDTH > S_STRB_WIDTH;
parameter DATA_WIDTH = EXPAND ? M_DATA_WIDTH : S_DATA_WIDTH;
parameter STRB_WIDTH = EXPAND ? M_STRB_WIDTH : S_STRB_WIDTH;
// required number of segments in wider bus
parameter SEGMENT_COUNT = EXPAND ? (M_STRB_WIDTH / S_STRB_WIDTH) : (S_STRB_WIDTH / M_STRB_WIDTH);
// data width and keep width per segment
parameter SEGMENT_DATA_WIDTH = DATA_WIDTH / SEGMENT_COUNT;
parameter SEGMENT_STRB_WIDTH = STRB_WIDTH / SEGMENT_COUNT;
// bus width assertions
initial begin
if (S_WORD_SIZE * S_STRB_WIDTH != S_DATA_WIDTH) begin
$error("Error: AXI slave interface data width not evenly divisble (instance %m)");
$finish;
end
if (M_WORD_SIZE * M_STRB_WIDTH != M_DATA_WIDTH) begin
$error("Error: AXI master interface data width not evenly divisble (instance %m)");
$finish;
end
if (S_WORD_SIZE != M_WORD_SIZE) begin
$error("Error: word size mismatch (instance %m)");
$finish;
end
if (2**$clog2(S_WORD_WIDTH) != S_WORD_WIDTH) begin
$error("Error: AXI slave interface word width must be even power of two (instance %m)");
$finish;
end
if (2**$clog2(M_WORD_WIDTH) != M_WORD_WIDTH) begin
$error("Error: AXI master interface word width must be even power of two (instance %m)");
$finish;
end
end
localparam [1:0]
STATE_IDLE = 2'd0,
STATE_DATA = 2'd1,
STATE_DATA_2 = 2'd2,
STATE_RESP = 2'd3;
reg [1:0] state_reg = STATE_IDLE, state_next;
reg [ID_WIDTH-1:0] id_reg = {ID_WIDTH{1'b0}}, id_next;
reg [ADDR_WIDTH-1:0] addr_reg = {ADDR_WIDTH{1'b0}}, addr_next;
reg [DATA_WIDTH-1:0] data_reg = {DATA_WIDTH{1'b0}}, data_next;
reg [STRB_WIDTH-1:0] strb_reg = {STRB_WIDTH{1'b0}}, strb_next;
reg [WUSER_WIDTH-1:0] wuser_reg = {WUSER_WIDTH{1'b0}}, wuser_next;
reg [7:0] burst_reg = 8'd0, burst_next;
reg [2:0] burst_size_reg = 3'd0, burst_size_next;
reg [7:0] master_burst_reg = 8'd0, master_burst_next;
reg [2:0] master_burst_size_reg = 3'd0, master_burst_size_next;
reg burst_active_reg = 1'b0, burst_active_next;
reg first_transfer_reg = 1'b0, first_transfer_next;
reg s_axi_awready_reg = 1'b0, s_axi_awready_next;
reg s_axi_wready_reg = 1'b0, s_axi_wready_next;
reg [ID_WIDTH-1:0] s_axi_bid_reg = {ID_WIDTH{1'b0}}, s_axi_bid_next;
reg [1:0] s_axi_bresp_reg = 2'd0, s_axi_bresp_next;
reg [BUSER_WIDTH-1:0] s_axi_buser_reg = {BUSER_WIDTH{1'b0}}, s_axi_buser_next;
reg s_axi_bvalid_reg = 1'b0, s_axi_bvalid_next;
reg [ID_WIDTH-1:0] m_axi_awid_reg = {ID_WIDTH{1'b0}}, m_axi_awid_next;
reg [ADDR_WIDTH-1:0] m_axi_awaddr_reg = {ADDR_WIDTH{1'b0}}, m_axi_awaddr_next;
reg [7:0] m_axi_awlen_reg = 8'd0, m_axi_awlen_next;
reg [2:0] m_axi_awsize_reg = 3'd0, m_axi_awsize_next;
reg [1:0] m_axi_awburst_reg = 2'd0, m_axi_awburst_next;
reg m_axi_awlock_reg = 1'b0, m_axi_awlock_next;
reg [3:0] m_axi_awcache_reg = 4'd0, m_axi_awcache_next;
reg [2:0] m_axi_awprot_reg = 3'd0, m_axi_awprot_next;
reg [3:0] m_axi_awqos_reg = 4'd0, m_axi_awqos_next;
reg [3:0] m_axi_awregion_reg = 4'd0, m_axi_awregion_next;
reg [AWUSER_WIDTH-1:0] m_axi_awuser_reg = {AWUSER_WIDTH{1'b0}}, m_axi_awuser_next;
reg m_axi_awvalid_reg = 1'b0, m_axi_awvalid_next;
reg m_axi_bready_reg = 1'b0, m_axi_bready_next;
// internal datapath
reg [M_DATA_WIDTH-1:0] m_axi_wdata_int;
reg [M_STRB_WIDTH-1:0] m_axi_wstrb_int;
reg m_axi_wlast_int;
reg [WUSER_WIDTH-1:0] m_axi_wuser_int;
reg m_axi_wvalid_int;
reg m_axi_wready_int_reg = 1'b0;
wire m_axi_wready_int_early;
assign s_axi_awready = s_axi_awready_reg;
assign s_axi_wready = s_axi_wready_reg;
assign s_axi_bid = s_axi_bid_reg;
assign s_axi_bresp = s_axi_bresp_reg;
assign s_axi_buser = BUSER_ENABLE ? s_axi_buser_reg : {BUSER_WIDTH{1'b0}};
assign s_axi_bvalid = s_axi_bvalid_reg;
assign m_axi_awid = FORWARD_ID ? m_axi_awid_reg : {ID_WIDTH{1'b0}};
assign m_axi_awaddr = m_axi_awaddr_reg;
assign m_axi_awlen = m_axi_awlen_reg;
assign m_axi_awsize = m_axi_awsize_reg;
assign m_axi_awburst = m_axi_awburst_reg;
assign m_axi_awlock = m_axi_awlock_reg;
assign m_axi_awcache = m_axi_awcache_reg;
assign m_axi_awprot = m_axi_awprot_reg;
assign m_axi_awqos = m_axi_awqos_reg;
assign m_axi_awregion = m_axi_awregion_reg;
assign m_axi_awuser = AWUSER_ENABLE ? m_axi_awuser_reg : {AWUSER_WIDTH{1'b0}};
assign m_axi_awvalid = m_axi_awvalid_reg;
assign m_axi_bready = m_axi_bready_reg;
integer i;
always @* begin
state_next = STATE_IDLE;
id_next = id_reg;
addr_next = addr_reg;
data_next = data_reg;
strb_next = strb_reg;
wuser_next = wuser_reg;
burst_next = burst_reg;
burst_size_next = burst_size_reg;
master_burst_next = master_burst_reg;
master_burst_size_next = master_burst_size_reg;
burst_active_next = burst_active_reg;
first_transfer_next = first_transfer_reg;
s_axi_awready_next = 1'b0;
s_axi_wready_next = 1'b0;
s_axi_bid_next = s_axi_bid_reg;
s_axi_bresp_next = s_axi_bresp_reg;
s_axi_buser_next = s_axi_buser_reg;
s_axi_bvalid_next = s_axi_bvalid_reg && !s_axi_bready;
m_axi_awid_next = m_axi_awid_reg;
m_axi_awaddr_next = m_axi_awaddr_reg;
m_axi_awlen_next = m_axi_awlen_reg;
m_axi_awsize_next = m_axi_awsize_reg;
m_axi_awburst_next = m_axi_awburst_reg;
m_axi_awlock_next = m_axi_awlock_reg;
m_axi_awcache_next = m_axi_awcache_reg;
m_axi_awprot_next = m_axi_awprot_reg;
m_axi_awqos_next = m_axi_awqos_reg;
m_axi_awregion_next = m_axi_awregion_reg;
m_axi_awuser_next = m_axi_awuser_reg;
m_axi_awvalid_next = m_axi_awvalid_reg && !m_axi_awready;
m_axi_bready_next = 1'b0;
if (SEGMENT_COUNT == 1) begin
// master output is same width; direct transfer with no splitting/merging
m_axi_wdata_int = s_axi_wdata;
m_axi_wstrb_int = s_axi_wstrb;
m_axi_wlast_int = s_axi_wlast;
m_axi_wuser_int = s_axi_wuser;
m_axi_wvalid_int = 1'b0;
case (state_reg)
STATE_IDLE: begin
// idle state; wait for new burst
s_axi_awready_next = !m_axi_awvalid;
if (s_axi_awready && s_axi_awvalid) begin
s_axi_awready_next = 1'b0;
id_next = s_axi_awid;
m_axi_awid_next = s_axi_awid;
m_axi_awaddr_next = s_axi_awaddr;
m_axi_awlen_next = s_axi_awlen;
m_axi_awsize_next = s_axi_awsize;
m_axi_awburst_next = s_axi_awburst;
m_axi_awlock_next = s_axi_awlock;
m_axi_awcache_next = s_axi_awcache;
m_axi_awprot_next = s_axi_awprot;
m_axi_awqos_next = s_axi_awqos;
m_axi_awregion_next = s_axi_awregion;
m_axi_awuser_next = s_axi_awuser;
m_axi_awvalid_next = 1'b1;
s_axi_wready_next = m_axi_wready_int_early;
state_next = STATE_DATA;
end else begin
state_next = STATE_IDLE;
end
end
STATE_DATA: begin
// data state; transfer write data
s_axi_wready_next = m_axi_wready_int_early;
if (s_axi_wready && s_axi_wvalid) begin
m_axi_wdata_int = s_axi_wdata;
m_axi_wstrb_int = s_axi_wstrb;
m_axi_wlast_int = s_axi_wlast;
m_axi_wuser_int = s_axi_wuser;
m_axi_wvalid_int = 1'b1;
if (s_axi_wlast) begin
// last data word, wait for response
s_axi_wready_next = 1'b0;
m_axi_bready_next = !s_axi_bvalid;
state_next = STATE_RESP;
end else begin
state_next = STATE_DATA;
end
end else begin
state_next = STATE_DATA;
end
end
STATE_RESP: begin
// resp state; transfer write response
m_axi_bready_next = !s_axi_bvalid;
if (m_axi_bready && m_axi_bvalid) begin
m_axi_bready_next = 1'b0;
s_axi_bid_next = id_reg;
s_axi_bresp_next = m_axi_bresp;
s_axi_buser_next = m_axi_buser;
s_axi_bvalid_next = 1'b1;
s_axi_awready_next = !m_axi_awvalid;
state_next = STATE_IDLE;
end else begin
state_next = STATE_RESP;
end
end
endcase
end else if (EXPAND) begin
// master output is wider; merge writes
m_axi_wdata_int = {(M_WORD_WIDTH/S_WORD_WIDTH){s_axi_wdata}};
m_axi_wstrb_int = s_axi_wstrb;
m_axi_wlast_int = s_axi_wlast;
m_axi_wuser_int = s_axi_wuser;
m_axi_wvalid_int = 1'b0;
case (state_reg)
STATE_IDLE: begin
// idle state; wait for new burst
s_axi_awready_next = !m_axi_awvalid;
data_next = {DATA_WIDTH{1'b0}};
strb_next = {STRB_WIDTH{1'b0}};
if (s_axi_awready && s_axi_awvalid) begin
s_axi_awready_next = 1'b0;
id_next = s_axi_awid;
m_axi_awid_next = s_axi_awid;
m_axi_awaddr_next = s_axi_awaddr;
addr_next = s_axi_awaddr;
burst_next = s_axi_awlen;
burst_size_next = s_axi_awsize;
if (CONVERT_BURST && s_axi_awcache[1] && (CONVERT_NARROW_BURST || s_axi_awsize == S_BURST_SIZE)) begin
// merge writes
// require CONVERT_BURST and awcache[1] set
master_burst_size_next = M_BURST_SIZE;
if (CONVERT_NARROW_BURST) begin
m_axi_awlen_next = (({{S_ADDR_BIT_OFFSET+1{1'b0}}, s_axi_awlen} << s_axi_awsize) + s_axi_awaddr[M_ADDR_BIT_OFFSET-1:0]) >> M_BURST_SIZE;
end else begin
m_axi_awlen_next = ({1'b0, s_axi_awlen} + s_axi_awaddr[M_ADDR_BIT_OFFSET-1:S_ADDR_BIT_OFFSET]) >> $clog2(SEGMENT_COUNT);
end
m_axi_awsize_next = M_BURST_SIZE;
state_next = STATE_DATA_2;
end else begin
// output narrow burst
master_burst_size_next = s_axi_awsize;
m_axi_awlen_next = s_axi_awlen;
m_axi_awsize_next = s_axi_awsize;
state_next = STATE_DATA;
end
m_axi_awburst_next = s_axi_awburst;
m_axi_awlock_next = s_axi_awlock;
m_axi_awcache_next = s_axi_awcache;
m_axi_awprot_next = s_axi_awprot;
m_axi_awqos_next = s_axi_awqos;
m_axi_awregion_next = s_axi_awregion;
m_axi_awuser_next = s_axi_awuser;
m_axi_awvalid_next = 1'b1;
s_axi_wready_next = m_axi_wready_int_early;
end else begin
state_next = STATE_IDLE;
end
end
STATE_DATA: begin
// data state; transfer write data
s_axi_wready_next = m_axi_wready_int_early;
if (s_axi_wready && s_axi_wvalid) begin
m_axi_wdata_int = {(M_WORD_WIDTH/S_WORD_WIDTH){s_axi_wdata}};
m_axi_wstrb_int = s_axi_wstrb << (addr_reg[M_ADDR_BIT_OFFSET-1:S_ADDR_BIT_OFFSET] * S_STRB_WIDTH);
m_axi_wlast_int = s_axi_wlast;
m_axi_wuser_int = s_axi_wuser;
m_axi_wvalid_int = 1'b1;
addr_next = addr_reg + (1 << burst_size_reg);
if (s_axi_wlast) begin
s_axi_wready_next = 1'b0;
m_axi_bready_next = !s_axi_bvalid;
state_next = STATE_RESP;
end else begin
state_next = STATE_DATA;
end
end else begin
state_next = STATE_DATA;
end
end
STATE_DATA_2: begin
s_axi_wready_next = m_axi_wready_int_early;
if (s_axi_wready && s_axi_wvalid) begin
if (CONVERT_NARROW_BURST) begin
for (i = 0; i < S_WORD_WIDTH; i = i + 1) begin
if (s_axi_wstrb[i]) begin
data_next[addr_reg[M_ADDR_BIT_OFFSET-1:S_ADDR_BIT_OFFSET]*SEGMENT_DATA_WIDTH+i*M_WORD_SIZE +: M_WORD_SIZE] = s_axi_wdata[i*M_WORD_SIZE +: M_WORD_SIZE];
strb_next[addr_reg[M_ADDR_BIT_OFFSET-1:S_ADDR_BIT_OFFSET]*SEGMENT_STRB_WIDTH+i] = 1'b1;
end
end
end else begin
data_next[addr_reg[M_ADDR_BIT_OFFSET-1:S_ADDR_BIT_OFFSET]*SEGMENT_DATA_WIDTH +: SEGMENT_DATA_WIDTH] = s_axi_wdata;
strb_next[addr_reg[M_ADDR_BIT_OFFSET-1:S_ADDR_BIT_OFFSET]*SEGMENT_STRB_WIDTH +: SEGMENT_STRB_WIDTH] = s_axi_wstrb;
end
m_axi_wdata_int = data_next;
m_axi_wstrb_int = strb_next;
m_axi_wlast_int = s_axi_wlast;
m_axi_wuser_int = s_axi_wuser;
burst_next = burst_reg - 1;
addr_next = addr_reg + (1 << burst_size_reg);
if (addr_next[master_burst_size_reg] != addr_reg[master_burst_size_reg]) begin
data_next = {DATA_WIDTH{1'b0}};
strb_next = {STRB_WIDTH{1'b0}};
m_axi_wvalid_int = 1'b1;
end
if (burst_reg == 0) begin
m_axi_wvalid_int = 1'b1;
s_axi_wready_next = 1'b0;
m_axi_bready_next = !s_axi_bvalid;
state_next = STATE_RESP;
end else begin
state_next = STATE_DATA_2;
end
end else begin
state_next = STATE_DATA_2;
end
end
STATE_RESP: begin
// resp state; transfer write response
m_axi_bready_next = !s_axi_bvalid;
if (m_axi_bready && m_axi_bvalid) begin
m_axi_bready_next = 1'b0;
s_axi_bid_next = id_reg;
s_axi_bresp_next = m_axi_bresp;
s_axi_buser_next = m_axi_buser;
s_axi_bvalid_next = 1'b1;
s_axi_awready_next = !m_axi_awvalid;
state_next = STATE_IDLE;
end else begin
state_next = STATE_RESP;
end
end
endcase
end else begin
// master output is narrower; split writes, and possibly split burst
m_axi_wdata_int = data_reg;
m_axi_wstrb_int = strb_reg;
m_axi_wlast_int = 1'b0;
m_axi_wuser_int = wuser_reg;
m_axi_wvalid_int = 1'b0;
case (state_reg)
STATE_IDLE: begin
// idle state; wait for new burst
s_axi_awready_next = !m_axi_awvalid;
first_transfer_next = 1'b1;
if (s_axi_awready && s_axi_awvalid) begin
s_axi_awready_next = 1'b0;
id_next = s_axi_awid;
m_axi_awid_next = s_axi_awid;
m_axi_awaddr_next = s_axi_awaddr;
addr_next = s_axi_awaddr;
burst_next = s_axi_awlen;
burst_size_next = s_axi_awsize;
burst_active_next = 1'b1;
if (s_axi_awsize > M_BURST_SIZE) begin
// need to adjust burst size
if ({s_axi_awlen, {S_BURST_SIZE-M_BURST_SIZE{1'b1}}} >> (S_BURST_SIZE-s_axi_awsize) > 255) begin
// limit burst length to max
master_burst_next = 8'd255;
end else begin
master_burst_next = {s_axi_awlen, {S_BURST_SIZE-M_BURST_SIZE{1'b1}}} >> (S_BURST_SIZE-s_axi_awsize);
end
master_burst_size_next = M_BURST_SIZE;
m_axi_awlen_next = master_burst_next;
m_axi_awsize_next = master_burst_size_next;
end else begin
// pass through narrow (enough) burst
master_burst_next = s_axi_awlen;
master_burst_size_next = s_axi_awsize;
m_axi_awlen_next = s_axi_awlen;
m_axi_awsize_next = s_axi_awsize;
end
m_axi_awburst_next = s_axi_awburst;
m_axi_awlock_next = s_axi_awlock;
m_axi_awcache_next = s_axi_awcache;
m_axi_awprot_next = s_axi_awprot;
m_axi_awqos_next = s_axi_awqos;
m_axi_awregion_next = s_axi_awregion;
m_axi_awuser_next = s_axi_awuser;
m_axi_awvalid_next = 1'b1;
s_axi_wready_next = m_axi_wready_int_early;
state_next = STATE_DATA;
end else begin
state_next = STATE_IDLE;
end
end
STATE_DATA: begin
s_axi_wready_next = m_axi_wready_int_early;
if (s_axi_wready && s_axi_wvalid) begin
data_next = s_axi_wdata;
strb_next = s_axi_wstrb;
wuser_next = s_axi_wuser;
m_axi_wdata_int = s_axi_wdata >> (addr_reg[S_ADDR_BIT_OFFSET-1:M_ADDR_BIT_OFFSET] * M_DATA_WIDTH);
m_axi_wstrb_int = s_axi_wstrb >> (addr_reg[S_ADDR_BIT_OFFSET-1:M_ADDR_BIT_OFFSET] * M_STRB_WIDTH);
m_axi_wlast_int = 1'b0;
m_axi_wuser_int = s_axi_wuser;
m_axi_wvalid_int = 1'b1;
burst_next = burst_reg - 1;
burst_active_next = burst_reg != 0;
master_burst_next = master_burst_reg - 1;
addr_next = addr_reg + (1 << master_burst_size_reg);
if (master_burst_reg == 0) begin
s_axi_wready_next = 1'b0;
m_axi_bready_next = !s_axi_bvalid && !s_axi_awvalid;
m_axi_wlast_int = 1'b1;
state_next = STATE_RESP;
end else if (addr_next[burst_size_reg] != addr_reg[burst_size_reg]) begin
state_next = STATE_DATA;
end else begin
s_axi_wready_next = 1'b0;
state_next = STATE_DATA_2;
end
end else begin
state_next = STATE_DATA;
end
end
STATE_DATA_2: begin
s_axi_wready_next = 1'b0;
if (m_axi_wready_int_reg) begin
m_axi_wdata_int = data_reg >> (addr_reg[S_ADDR_BIT_OFFSET-1:M_ADDR_BIT_OFFSET] * M_DATA_WIDTH);
m_axi_wstrb_int = strb_reg >> (addr_reg[S_ADDR_BIT_OFFSET-1:M_ADDR_BIT_OFFSET] * M_STRB_WIDTH);
m_axi_wlast_int = 1'b0;
m_axi_wuser_int = wuser_reg;
m_axi_wvalid_int = 1'b1;
master_burst_next = master_burst_reg - 1;
addr_next = addr_reg + (1 << master_burst_size_reg);
if (master_burst_reg == 0) begin
// burst on master interface finished; transfer response
s_axi_wready_next = 1'b0;
m_axi_bready_next = !s_axi_bvalid && !m_axi_awvalid;
m_axi_wlast_int = 1'b1;
state_next = STATE_RESP;
end else if (addr_next[burst_size_reg] != addr_reg[burst_size_reg]) begin
state_next = STATE_DATA;
end else begin
s_axi_wready_next = 1'b0;
state_next = STATE_DATA_2;
end
end else begin
state_next = STATE_DATA_2;
end
end
STATE_RESP: begin
// resp state; transfer write response
m_axi_bready_next = !s_axi_bvalid && !m_axi_awvalid;
if (m_axi_bready && m_axi_bvalid) begin
first_transfer_next = 1'b0;
m_axi_bready_next = 1'b0;
s_axi_bid_next = id_reg;
if (first_transfer_reg || m_axi_bresp != 0) begin
s_axi_bresp_next = m_axi_bresp;
end
if (burst_active_reg) begin
// burst on slave interface still active; start new burst
m_axi_awaddr_next = addr_reg;
if (burst_size_reg > M_BURST_SIZE) begin
// need to adjust burst size
if ({burst_reg, {S_BURST_SIZE-M_BURST_SIZE{1'b1}}} >> (S_BURST_SIZE-burst_size_reg) > 255) begin
// limit burst length to max
master_burst_next = 8'd255;
end else begin
master_burst_next = {burst_reg, {S_BURST_SIZE-M_BURST_SIZE{1'b1}}} >> (S_BURST_SIZE-burst_size_reg);
end
master_burst_size_next = M_BURST_SIZE;
m_axi_awlen_next = master_burst_next;
m_axi_awsize_next = master_burst_size_next;
end else begin
// pass through narrow (enough) burst
master_burst_next = burst_reg;
master_burst_size_next = burst_size_reg;
m_axi_awlen_next = burst_reg;
m_axi_awsize_next = burst_size_reg;
end
m_axi_awvalid_next = 1'b1;
state_next = STATE_DATA;
end else begin
// burst on slave interface finished; return to idle
s_axi_bvalid_next = 1'b1;
s_axi_awready_next = !m_axi_awvalid;
state_next = STATE_IDLE;
end
end else begin
state_next = STATE_RESP;
end
end
endcase
end
end
always @(posedge clk) begin
if (rst) begin
state_reg <= STATE_IDLE;
s_axi_awready_reg <= 1'b0;
s_axi_wready_reg <= 1'b0;
s_axi_bvalid_reg <= 1'b0;
m_axi_awvalid_reg <= 1'b0;
m_axi_bready_reg <= 1'b0;
end else begin
state_reg <= state_next;
s_axi_awready_reg <= s_axi_awready_next;
s_axi_wready_reg <= s_axi_wready_next;
s_axi_bvalid_reg <= s_axi_bvalid_next;
m_axi_awvalid_reg <= m_axi_awvalid_next;
m_axi_bready_reg <= m_axi_bready_next;
end
id_reg <= id_next;
addr_reg <= addr_next;
data_reg <= data_next;
strb_reg <= strb_next;
wuser_reg <= wuser_next;
burst_reg <= burst_next;
burst_size_reg <= burst_size_next;
master_burst_reg <= master_burst_next;
master_burst_size_reg <= master_burst_size_next;
burst_active_reg <= burst_active_next;
first_transfer_reg <= first_transfer_next;
s_axi_bid_reg <= s_axi_bid_next;
s_axi_bresp_reg <= s_axi_bresp_next;
s_axi_buser_reg <= s_axi_buser_next;
m_axi_awid_reg <= m_axi_awid_next;
m_axi_awaddr_reg <= m_axi_awaddr_next;
m_axi_awlen_reg <= m_axi_awlen_next;
m_axi_awsize_reg <= m_axi_awsize_next;
m_axi_awburst_reg <= m_axi_awburst_next;
m_axi_awlock_reg <= m_axi_awlock_next;
m_axi_awcache_reg <= m_axi_awcache_next;
m_axi_awprot_reg <= m_axi_awprot_next;
m_axi_awqos_reg <= m_axi_awqos_next;
m_axi_awregion_reg <= m_axi_awregion_next;
m_axi_awuser_reg <= m_axi_awuser_next;
end
// output datapath logic
reg [M_DATA_WIDTH-1:0] m_axi_wdata_reg = {M_DATA_WIDTH{1'b0}};
reg [M_STRB_WIDTH-1:0] m_axi_wstrb_reg = {M_STRB_WIDTH{1'b0}};
reg m_axi_wlast_reg = 1'b0;
reg [WUSER_WIDTH-1:0] m_axi_wuser_reg = 1'b0;
reg m_axi_wvalid_reg = 1'b0, m_axi_wvalid_next;
reg [M_DATA_WIDTH-1:0] temp_m_axi_wdata_reg = {M_DATA_WIDTH{1'b0}};
reg [M_STRB_WIDTH-1:0] temp_m_axi_wstrb_reg = {M_STRB_WIDTH{1'b0}};
reg temp_m_axi_wlast_reg = 1'b0;
reg [WUSER_WIDTH-1:0] temp_m_axi_wuser_reg = 1'b0;
reg temp_m_axi_wvalid_reg = 1'b0, temp_m_axi_wvalid_next;
// datapath control
reg store_axi_w_int_to_output;
reg store_axi_w_int_to_temp;
reg store_axi_w_temp_to_output;
assign m_axi_wdata = m_axi_wdata_reg;
assign m_axi_wstrb = m_axi_wstrb_reg;
assign m_axi_wlast = m_axi_wlast_reg;
assign m_axi_wuser = WUSER_ENABLE ? m_axi_wuser_reg : {WUSER_WIDTH{1'b0}};
assign m_axi_wvalid = m_axi_wvalid_reg;
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
assign m_axi_wready_int_early = m_axi_wready | (~temp_m_axi_wvalid_reg & (~m_axi_wvalid_reg | ~m_axi_wvalid_int));
always @* begin
// transfer sink ready state to source
m_axi_wvalid_next = m_axi_wvalid_reg;
temp_m_axi_wvalid_next = temp_m_axi_wvalid_reg;
store_axi_w_int_to_output = 1'b0;
store_axi_w_int_to_temp = 1'b0;
store_axi_w_temp_to_output = 1'b0;
if (m_axi_wready_int_reg) begin
// input is ready
if (m_axi_wready | ~m_axi_wvalid_reg) begin
// output is ready or currently not valid, transfer data to output
m_axi_wvalid_next = m_axi_wvalid_int;
store_axi_w_int_to_output = 1'b1;
end else begin
// output is not ready, store input in temp
temp_m_axi_wvalid_next = m_axi_wvalid_int;
store_axi_w_int_to_temp = 1'b1;
end
end else if (m_axi_wready) begin
// input is not ready, but output is ready
m_axi_wvalid_next = temp_m_axi_wvalid_reg;
temp_m_axi_wvalid_next = 1'b0;
store_axi_w_temp_to_output = 1'b1;
end
end
always @(posedge clk) begin
if (rst) begin
m_axi_wvalid_reg <= 1'b0;
m_axi_wready_int_reg <= 1'b0;
temp_m_axi_wvalid_reg <= 1'b0;
end else begin
m_axi_wvalid_reg <= m_axi_wvalid_next;
m_axi_wready_int_reg <= m_axi_wready_int_early;
temp_m_axi_wvalid_reg <= temp_m_axi_wvalid_next;
end
// datapath
if (store_axi_w_int_to_output) begin
m_axi_wdata_reg <= m_axi_wdata_int;
m_axi_wstrb_reg <= m_axi_wstrb_int;
m_axi_wlast_reg <= m_axi_wlast_int;
m_axi_wuser_reg <= m_axi_wuser_int;
end else if (store_axi_w_temp_to_output) begin
m_axi_wdata_reg <= temp_m_axi_wdata_reg;
m_axi_wstrb_reg <= temp_m_axi_wstrb_reg;
m_axi_wlast_reg <= temp_m_axi_wlast_reg;
m_axi_wuser_reg <= temp_m_axi_wuser_reg;
end
if (store_axi_w_int_to_temp) begin
temp_m_axi_wdata_reg <= m_axi_wdata_int;
temp_m_axi_wstrb_reg <= m_axi_wstrb_int;
temp_m_axi_wlast_reg <= m_axi_wlast_int;
temp_m_axi_wuser_reg <= m_axi_wuser_int;
end
end
endmodule
/*
Copyright (c) 2019 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* AXI4 to AXI4-Lite adapter
*/
module axi_axil_adapter #
(
// Width of address bus in bits
parameter ADDR_WIDTH = 32,
// Width of input (slave) AXI interface data bus in bits
parameter AXI_DATA_WIDTH = 32,
// Width of input (slave) AXI interface wstrb (width of data bus in words)
parameter AXI_STRB_WIDTH = (AXI_DATA_WIDTH/8),
// Width of AXI ID signal
parameter AXI_ID_WIDTH = 8,
// Width of output (master) AXI lite interface data bus in bits
parameter AXIL_DATA_WIDTH = 32,
// Width of output (master) AXI lite interface wstrb (width of data bus in words)
parameter AXIL_STRB_WIDTH = (AXIL_DATA_WIDTH/8),
// When adapting to a wider bus, re-pack full-width burst instead of passing through narrow burst if possible
parameter CONVERT_BURST = 1,
// When adapting to a wider bus, re-pack all bursts instead of passing through narrow burst if possible
parameter CONVERT_NARROW_BURST = 0
)
(
input wire clk,
input wire rst,
/*
* AXI slave interface
*/
input wire [AXI_ID_WIDTH-1:0] s_axi_awid,
input wire [ADDR_WIDTH-1:0] s_axi_awaddr,
input wire [7:0] s_axi_awlen,
input wire [2:0] s_axi_awsize,
input wire [1:0] s_axi_awburst,
input wire s_axi_awlock,
input wire [3:0] s_axi_awcache,
input wire [2:0] s_axi_awprot,
input wire s_axi_awvalid,
output wire s_axi_awready,
input wire [AXI_DATA_WIDTH-1:0] s_axi_wdata,
input wire [AXI_STRB_WIDTH-1:0] s_axi_wstrb,
input wire s_axi_wlast,
input wire s_axi_wvalid,
output wire s_axi_wready,
output wire [AXI_ID_WIDTH-1:0] s_axi_bid,
output wire [1:0] s_axi_bresp,
output wire s_axi_bvalid,
input wire s_axi_bready,
input wire [AXI_ID_WIDTH-1:0] s_axi_arid,
input wire [ADDR_WIDTH-1:0] s_axi_araddr,
input wire [7:0] s_axi_arlen,
input wire [2:0] s_axi_arsize,
input wire [1:0] s_axi_arburst,
input wire s_axi_arlock,
input wire [3:0] s_axi_arcache,
input wire [2:0] s_axi_arprot,
input wire s_axi_arvalid,
output wire s_axi_arready,
output wire [AXI_ID_WIDTH-1:0] s_axi_rid,
output wire [AXI_DATA_WIDTH-1:0] s_axi_rdata,
output wire [1:0] s_axi_rresp,
output wire s_axi_rlast,
output wire s_axi_rvalid,
input wire s_axi_rready,
/*
* AXI lite master interface
*/
output wire [ADDR_WIDTH-1:0] m_axil_awaddr,
output wire [2:0] m_axil_awprot,
output wire m_axil_awvalid,
input wire m_axil_awready,
output wire [AXIL_DATA_WIDTH-1:0] m_axil_wdata,
output wire [AXIL_STRB_WIDTH-1:0] m_axil_wstrb,
output wire m_axil_wvalid,
input wire m_axil_wready,
input wire [1:0] m_axil_bresp,
input wire m_axil_bvalid,
output wire m_axil_bready,
output wire [ADDR_WIDTH-1:0] m_axil_araddr,
output wire [2:0] m_axil_arprot,
output wire m_axil_arvalid,
input wire m_axil_arready,
input wire [AXIL_DATA_WIDTH-1:0] m_axil_rdata,
input wire [1:0] m_axil_rresp,
input wire m_axil_rvalid,
output wire m_axil_rready
);
axi_axil_adapter_wr #(
.ADDR_WIDTH(ADDR_WIDTH),
.AXI_DATA_WIDTH(AXI_DATA_WIDTH),
.AXI_STRB_WIDTH(AXI_STRB_WIDTH),
.AXI_ID_WIDTH(AXI_ID_WIDTH),
.AXIL_DATA_WIDTH(AXIL_DATA_WIDTH),
.AXIL_STRB_WIDTH(AXIL_STRB_WIDTH),
.CONVERT_BURST(CONVERT_BURST),
.CONVERT_NARROW_BURST(CONVERT_NARROW_BURST)
)
axi_axil_adapter_wr_inst (
.clk(clk),
.rst(rst),
/*
* AXI slave interface
*/
.s_axi_awid(s_axi_awid),
.s_axi_awaddr(s_axi_awaddr),
.s_axi_awlen(s_axi_awlen),
.s_axi_awsize(s_axi_awsize),
.s_axi_awburst(s_axi_awburst),
.s_axi_awlock(s_axi_awlock),
.s_axi_awcache(s_axi_awcache),
.s_axi_awprot(s_axi_awprot),
.s_axi_awvalid(s_axi_awvalid),
.s_axi_awready(s_axi_awready),
.s_axi_wdata(s_axi_wdata),
.s_axi_wstrb(s_axi_wstrb),
.s_axi_wlast(s_axi_wlast),
.s_axi_wvalid(s_axi_wvalid),
.s_axi_wready(s_axi_wready),
.s_axi_bid(s_axi_bid),
.s_axi_bresp(s_axi_bresp),
.s_axi_bvalid(s_axi_bvalid),
.s_axi_bready(s_axi_bready),
/*
* AXI lite master interface
*/
.m_axil_awaddr(m_axil_awaddr),
.m_axil_awprot(m_axil_awprot),
.m_axil_awvalid(m_axil_awvalid),
.m_axil_awready(m_axil_awready),
.m_axil_wdata(m_axil_wdata),
.m_axil_wstrb(m_axil_wstrb),
.m_axil_wvalid(m_axil_wvalid),
.m_axil_wready(m_axil_wready),
.m_axil_bresp(m_axil_bresp),
.m_axil_bvalid(m_axil_bvalid),
.m_axil_bready(m_axil_bready)
);
axi_axil_adapter_rd #(
.ADDR_WIDTH(ADDR_WIDTH),
.AXI_DATA_WIDTH(AXI_DATA_WIDTH),
.AXI_STRB_WIDTH(AXI_STRB_WIDTH),
.AXI_ID_WIDTH(AXI_ID_WIDTH),
.AXIL_DATA_WIDTH(AXIL_DATA_WIDTH),
.AXIL_STRB_WIDTH(AXIL_STRB_WIDTH),
.CONVERT_BURST(CONVERT_BURST),
.CONVERT_NARROW_BURST(CONVERT_NARROW_BURST)
)
axi_axil_adapter_rd_inst (
.clk(clk),
.rst(rst),
/*
* AXI slave interface
*/
.s_axi_arid(s_axi_arid),
.s_axi_araddr(s_axi_araddr),
.s_axi_arlen(s_axi_arlen),
.s_axi_arsize(s_axi_arsize),
.s_axi_arburst(s_axi_arburst),
.s_axi_arlock(s_axi_arlock),
.s_axi_arcache(s_axi_arcache),
.s_axi_arprot(s_axi_arprot),
.s_axi_arvalid(s_axi_arvalid),
.s_axi_arready(s_axi_arready),
.s_axi_rid(s_axi_rid),
.s_axi_rdata(s_axi_rdata),
.s_axi_rresp(s_axi_rresp),
.s_axi_rlast(s_axi_rlast),
.s_axi_rvalid(s_axi_rvalid),
.s_axi_rready(s_axi_rready),
/*
* AXI lite master interface
*/
.m_axil_araddr(m_axil_araddr),
.m_axil_arprot(m_axil_arprot),
.m_axil_arvalid(m_axil_arvalid),
.m_axil_arready(m_axil_arready),
.m_axil_rdata(m_axil_rdata),
.m_axil_rresp(m_axil_rresp),
.m_axil_rvalid(m_axil_rvalid),
.m_axil_rready(m_axil_rready)
);
endmodule
/*
Copyright (c) 2019 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* AXI4 to AXI4-Lite adapter (read)
*/
module axi_axil_adapter_rd #
(
// Width of address bus in bits
parameter ADDR_WIDTH = 32,
// Width of input (slave) AXI interface data bus in bits
parameter AXI_DATA_WIDTH = 32,
// Width of input (slave) AXI interface wstrb (width of data bus in words)
parameter AXI_STRB_WIDTH = (AXI_DATA_WIDTH/8),
// Width of AXI ID signal
parameter AXI_ID_WIDTH = 8,
// Width of output (master) AXI lite interface data bus in bits
parameter AXIL_DATA_WIDTH = 32,
// Width of output (master) AXI lite interface wstrb (width of data bus in words)
parameter AXIL_STRB_WIDTH = (AXIL_DATA_WIDTH/8),
// When adapting to a wider bus, re-pack full-width burst instead of passing through narrow burst if possible
parameter CONVERT_BURST = 1,
// When adapting to a wider bus, re-pack all bursts instead of passing through narrow burst if possible
parameter CONVERT_NARROW_BURST = 0
)
(
input wire clk,
input wire rst,
/*
* AXI slave interface
*/
input wire [AXI_ID_WIDTH-1:0] s_axi_arid,
input wire [ADDR_WIDTH-1:0] s_axi_araddr,
input wire [7:0] s_axi_arlen,
input wire [2:0] s_axi_arsize,
input wire [1:0] s_axi_arburst,
input wire s_axi_arlock,
input wire [3:0] s_axi_arcache,
input wire [2:0] s_axi_arprot,
input wire s_axi_arvalid,
output wire s_axi_arready,
output wire [AXI_ID_WIDTH-1:0] s_axi_rid,
output wire [AXI_DATA_WIDTH-1:0] s_axi_rdata,
output wire [1:0] s_axi_rresp,
output wire s_axi_rlast,
output wire s_axi_rvalid,
input wire s_axi_rready,
/*
* AXI lite master interface
*/
output wire [ADDR_WIDTH-1:0] m_axil_araddr,
output wire [2:0] m_axil_arprot,
output wire m_axil_arvalid,
input wire m_axil_arready,
input wire [AXIL_DATA_WIDTH-1:0] m_axil_rdata,
input wire [1:0] m_axil_rresp,
input wire m_axil_rvalid,
output wire m_axil_rready
);
parameter AXI_ADDR_BIT_OFFSET = $clog2(AXI_STRB_WIDTH);
parameter AXIL_ADDR_BIT_OFFSET = $clog2(AXIL_STRB_WIDTH);
parameter AXI_WORD_WIDTH = AXI_STRB_WIDTH;
parameter AXIL_WORD_WIDTH = AXIL_STRB_WIDTH;
parameter AXI_WORD_SIZE = AXI_DATA_WIDTH/AXI_WORD_WIDTH;
parameter AXIL_WORD_SIZE = AXIL_DATA_WIDTH/AXIL_WORD_WIDTH;
parameter AXI_BURST_SIZE = $clog2(AXI_STRB_WIDTH);
parameter AXIL_BURST_SIZE = $clog2(AXIL_STRB_WIDTH);
// output bus is wider
parameter EXPAND = AXIL_STRB_WIDTH > AXI_STRB_WIDTH;
parameter DATA_WIDTH = EXPAND ? AXIL_DATA_WIDTH : AXI_DATA_WIDTH;
parameter STRB_WIDTH = EXPAND ? AXIL_STRB_WIDTH : AXI_STRB_WIDTH;
// required number of segments in wider bus
parameter SEGMENT_COUNT = EXPAND ? (AXIL_STRB_WIDTH / AXI_STRB_WIDTH) : (AXI_STRB_WIDTH / AXIL_STRB_WIDTH);
// data width and keep width per segment
parameter SEGMENT_DATA_WIDTH = DATA_WIDTH / SEGMENT_COUNT;
parameter SEGMENT_STRB_WIDTH = STRB_WIDTH / SEGMENT_COUNT;
// bus width assertions
initial begin
if (AXI_WORD_SIZE * AXI_STRB_WIDTH != AXI_DATA_WIDTH) begin
$error("Error: AXI slave interface data width not evenly divisble (instance %m)");
$finish;
end
if (AXIL_WORD_SIZE * AXIL_STRB_WIDTH != AXIL_DATA_WIDTH) begin
$error("Error: AXI lite master interface data width not evenly divisble (instance %m)");
$finish;
end
if (AXI_WORD_SIZE != AXIL_WORD_SIZE) begin
$error("Error: word size mismatch (instance %m)");
$finish;
end
if (2**$clog2(AXI_WORD_WIDTH) != AXI_WORD_WIDTH) begin
$error("Error: AXI slave interface word width must be even power of two (instance %m)");
$finish;
end
if (2**$clog2(AXIL_WORD_WIDTH) != AXIL_WORD_WIDTH) begin
$error("Error: AXI lite master interface word width must be even power of two (instance %m)");
$finish;
end
end
localparam [1:0]
STATE_IDLE = 2'd0,
STATE_DATA = 2'd1,
STATE_DATA_READ = 2'd2,
STATE_DATA_SPLIT = 2'd3;
reg [1:0] state_reg = STATE_IDLE, state_next;
reg [AXI_ID_WIDTH-1:0] id_reg = {AXI_ID_WIDTH{1'b0}}, id_next;
reg [ADDR_WIDTH-1:0] addr_reg = {ADDR_WIDTH{1'b0}}, addr_next;
reg [DATA_WIDTH-1:0] data_reg = {DATA_WIDTH{1'b0}}, data_next;
reg [1:0] resp_reg = 2'd0, resp_next;
reg [7:0] burst_reg = 8'd0, burst_next;
reg [2:0] burst_size_reg = 3'd0, burst_size_next;
reg [7:0] master_burst_reg = 8'd0, master_burst_next;
reg [2:0] master_burst_size_reg = 3'd0, master_burst_size_next;
reg s_axi_arready_reg = 1'b0, s_axi_arready_next;
reg [AXI_ID_WIDTH-1:0] s_axi_rid_reg = {AXI_ID_WIDTH{1'b0}}, s_axi_rid_next;
reg [AXI_DATA_WIDTH-1:0] s_axi_rdata_reg = {AXI_DATA_WIDTH{1'b0}}, s_axi_rdata_next;
reg [1:0] s_axi_rresp_reg = 2'd0, s_axi_rresp_next;
reg s_axi_rlast_reg = 1'b0, s_axi_rlast_next;
reg s_axi_rvalid_reg = 1'b0, s_axi_rvalid_next;
reg [ADDR_WIDTH-1:0] m_axil_araddr_reg = {ADDR_WIDTH{1'b0}}, m_axil_araddr_next;
reg [2:0] m_axil_arprot_reg = 3'd0, m_axil_arprot_next;
reg m_axil_arvalid_reg = 1'b0, m_axil_arvalid_next;
reg m_axil_rready_reg = 1'b0, m_axil_rready_next;
assign s_axi_arready = s_axi_arready_reg;
assign s_axi_rid = s_axi_rid_reg;
assign s_axi_rdata = s_axi_rdata_reg;
assign s_axi_rresp = s_axi_rresp_reg;
assign s_axi_rlast = s_axi_rlast_reg;
assign s_axi_rvalid = s_axi_rvalid_reg;
assign m_axil_araddr = m_axil_araddr_reg;
assign m_axil_arprot = m_axil_arprot_reg;
assign m_axil_arvalid = m_axil_arvalid_reg;
assign m_axil_rready = m_axil_rready_reg;
always @* begin
state_next = STATE_IDLE;
id_next = id_reg;
addr_next = addr_reg;
data_next = data_reg;
resp_next = resp_reg;
burst_next = burst_reg;
burst_size_next = burst_size_reg;
master_burst_next = master_burst_reg;
master_burst_size_next = master_burst_size_reg;
s_axi_arready_next = 1'b0;
s_axi_rid_next = s_axi_rid_reg;
s_axi_rdata_next = s_axi_rdata_reg;
s_axi_rresp_next = s_axi_rresp_reg;
s_axi_rlast_next = s_axi_rlast_reg;
s_axi_rvalid_next = s_axi_rvalid_reg && !s_axi_rready;
m_axil_araddr_next = m_axil_araddr_reg;
m_axil_arprot_next = m_axil_arprot_reg;
m_axil_arvalid_next = m_axil_arvalid_reg && !m_axil_arready;
m_axil_rready_next = 1'b0;
if (SEGMENT_COUNT == 1) begin
// master output is same width; direct transfer with no splitting/merging
case (state_reg)
STATE_IDLE: begin
// idle state; wait for new burst
s_axi_arready_next = !m_axil_arvalid;
if (s_axi_arready && s_axi_arvalid) begin
s_axi_arready_next = 1'b0;
id_next = s_axi_arid;
m_axil_araddr_next = s_axi_araddr;
addr_next = s_axi_araddr;
burst_next = s_axi_arlen;
burst_size_next = s_axi_arsize;
m_axil_arprot_next = s_axi_arprot;
m_axil_arvalid_next = 1'b1;
m_axil_rready_next = 1'b0;
state_next = STATE_DATA;
end else begin
state_next = STATE_IDLE;
end
end
STATE_DATA: begin
// data state; transfer read data
m_axil_rready_next = !s_axi_rvalid && !m_axil_arvalid;
if (m_axil_rready && m_axil_rvalid) begin
s_axi_rid_next = id_reg;
s_axi_rdata_next = m_axil_rdata;
s_axi_rresp_next = m_axil_rresp;
s_axi_rlast_next = 1'b0;
s_axi_rvalid_next = 1'b1;
burst_next = burst_reg - 1;
addr_next = addr_reg + (1 << burst_size_reg);
if (burst_reg == 0) begin
// last data word, return to idle
m_axil_rready_next = 1'b0;
s_axi_rlast_next = 1'b1;
s_axi_arready_next = !m_axil_arvalid;
state_next = STATE_IDLE;
end else begin
// start new AXI lite read
m_axil_araddr_next = addr_next;
m_axil_arvalid_next = 1'b1;
m_axil_rready_next = 1'b0;
state_next = STATE_DATA;
end
end else begin
state_next = STATE_DATA;
end
end
endcase
end else if (EXPAND) begin
// master output is wider; split reads
case (state_reg)
STATE_IDLE: begin
// idle state; wait for new burst
s_axi_arready_next = !m_axil_arvalid;
if (s_axi_arready && s_axi_arvalid) begin
s_axi_arready_next = 1'b0;
id_next = s_axi_arid;
m_axil_araddr_next = s_axi_araddr;
addr_next = s_axi_araddr;
burst_next = s_axi_arlen;
burst_size_next = s_axi_arsize;
if (CONVERT_BURST && s_axi_arcache[1] && (CONVERT_NARROW_BURST || s_axi_arsize == AXI_BURST_SIZE)) begin
// split reads
// require CONVERT_BURST and arcache[1] set
master_burst_size_next = AXIL_BURST_SIZE;
state_next = STATE_DATA_READ;
end else begin
// output narrow burst
master_burst_size_next = s_axi_arsize;
state_next = STATE_DATA;
end
m_axil_arprot_next = s_axi_arprot;
m_axil_arvalid_next = 1'b1;
m_axil_rready_next = 1'b0;
end else begin
state_next = STATE_IDLE;
end
end
STATE_DATA: begin
m_axil_rready_next = !s_axi_rvalid && !m_axil_arvalid;
if (m_axil_rready && m_axil_rvalid) begin
s_axi_rid_next = id_reg;
s_axi_rdata_next = m_axil_rdata >> (addr_reg[AXIL_ADDR_BIT_OFFSET-1:AXI_ADDR_BIT_OFFSET] * AXI_DATA_WIDTH);
s_axi_rresp_next = m_axil_rresp;
s_axi_rlast_next = 1'b0;
s_axi_rvalid_next = 1'b1;
burst_next = burst_reg - 1;
addr_next = addr_reg + (1 << burst_size_reg);
if (burst_reg == 0) begin
// last data word, return to idle
m_axil_rready_next = 1'b0;
s_axi_rlast_next = 1'b1;
s_axi_arready_next = !m_axil_arvalid;
state_next = STATE_IDLE;
end else begin
// start new AXI lite read
m_axil_araddr_next = addr_next;
m_axil_arvalid_next = 1'b1;
m_axil_rready_next = 1'b0;
state_next = STATE_DATA;
end
end else begin
state_next = STATE_DATA;
end
end
STATE_DATA_READ: begin
m_axil_rready_next = !s_axi_rvalid && !m_axil_arvalid;
if (m_axil_rready && m_axil_rvalid) begin
s_axi_rid_next = id_reg;
data_next = m_axil_rdata;
resp_next = m_axil_rresp;
s_axi_rdata_next = m_axil_rdata >> (addr_reg[AXIL_ADDR_BIT_OFFSET-1:AXI_ADDR_BIT_OFFSET] * AXI_DATA_WIDTH);
s_axi_rresp_next = m_axil_rresp;
s_axi_rlast_next = 1'b0;
s_axi_rvalid_next = 1'b1;
burst_next = burst_reg - 1;
addr_next = addr_reg + (1 << burst_size_reg);
if (burst_reg == 0) begin
m_axil_rready_next = 1'b0;
s_axi_arready_next = !m_axil_arvalid;
s_axi_rlast_next = 1'b1;
state_next = STATE_IDLE;
end else if (addr_next[master_burst_size_reg] != addr_reg[master_burst_size_reg]) begin
// start new AXI lite read
m_axil_araddr_next = addr_next;
m_axil_arvalid_next = 1'b1;
m_axil_rready_next = 1'b0;
state_next = STATE_DATA_READ;
end else begin
m_axil_rready_next = 1'b0;
state_next = STATE_DATA_SPLIT;
end
end else begin
state_next = STATE_DATA_READ;
end
end
STATE_DATA_SPLIT: begin
m_axil_rready_next = 1'b0;
if (s_axi_rready || !s_axi_rvalid) begin
s_axi_rid_next = id_reg;
s_axi_rdata_next = data_reg >> (addr_reg[AXIL_ADDR_BIT_OFFSET-1:AXI_ADDR_BIT_OFFSET] * AXI_DATA_WIDTH);
s_axi_rresp_next = resp_reg;
s_axi_rlast_next = 1'b0;
s_axi_rvalid_next = 1'b1;
burst_next = burst_reg - 1;
addr_next = addr_reg + (1 << burst_size_reg);
if (burst_reg == 0) begin
s_axi_arready_next = !m_axil_arvalid;
s_axi_rlast_next = 1'b1;
state_next = STATE_IDLE;
end else if (addr_next[master_burst_size_reg] != addr_reg[master_burst_size_reg]) begin
// start new AXI lite read
m_axil_araddr_next = addr_next;
m_axil_arvalid_next = 1'b1;
m_axil_rready_next = 1'b0;
state_next = STATE_DATA_READ;
end else begin
state_next = STATE_DATA_SPLIT;
end
end else begin
state_next = STATE_DATA_SPLIT;
end
end
endcase
end else begin
// master output is narrower; merge reads and possibly split burst
case (state_reg)
STATE_IDLE: begin
// idle state; wait for new burst
s_axi_arready_next = !m_axil_arvalid;
resp_next = 2'd0;
if (s_axi_arready && s_axi_arvalid) begin
s_axi_arready_next = 1'b0;
id_next = s_axi_arid;
m_axil_araddr_next = s_axi_araddr;
addr_next = s_axi_araddr;
burst_next = s_axi_arlen;
burst_size_next = s_axi_arsize;
if (s_axi_arsize > AXIL_BURST_SIZE) begin
// need to adjust burst size
if ({s_axi_arlen, {AXI_BURST_SIZE-AXIL_BURST_SIZE{1'b1}}} >> (AXI_BURST_SIZE-s_axi_arsize) > 255) begin
// limit burst length to max
master_burst_next = 8'd255;
end else begin
master_burst_next = {s_axi_arlen, {AXI_BURST_SIZE-AXIL_BURST_SIZE{1'b1}}} >> (AXI_BURST_SIZE-s_axi_arsize);
end
master_burst_size_next = AXIL_BURST_SIZE;
end else begin
// pass through narrow (enough) burst
master_burst_next = s_axi_arlen;
master_burst_size_next = s_axi_arsize;
end
m_axil_arprot_next = s_axi_arprot;
m_axil_arvalid_next = 1'b1;
m_axil_rready_next = 1'b0;
state_next = STATE_DATA;
end else begin
state_next = STATE_IDLE;
end
end
STATE_DATA: begin
m_axil_rready_next = !s_axi_rvalid && !m_axil_arvalid;
if (m_axil_rready && m_axil_rvalid) begin
data_next[addr_reg[AXI_ADDR_BIT_OFFSET-1:AXIL_ADDR_BIT_OFFSET]*SEGMENT_DATA_WIDTH +: SEGMENT_DATA_WIDTH] = m_axil_rdata;
if (m_axil_rresp) begin
resp_next = m_axil_rresp;
end
s_axi_rid_next = id_reg;
s_axi_rdata_next = data_next;
s_axi_rresp_next = resp_next;
s_axi_rlast_next = 1'b0;
s_axi_rvalid_next = 1'b0;
master_burst_next = master_burst_reg - 1;
addr_next = addr_reg + (1 << master_burst_size_reg);
if (addr_next[burst_size_reg] != addr_reg[burst_size_reg]) begin
data_next = {DATA_WIDTH{1'b0}};
burst_next = burst_reg - 1;
s_axi_rvalid_next = 1'b1;
end
if (master_burst_reg == 0) begin
if (burst_reg == 0) begin
m_axil_rready_next = 1'b0;
s_axi_rlast_next = 1'b1;
s_axi_rvalid_next = 1'b1;
s_axi_arready_next = !m_axil_arvalid;
state_next = STATE_IDLE;
end else begin
// start new burst
m_axil_araddr_next = addr_next;
if (burst_size_reg > AXIL_BURST_SIZE) begin
// need to adjust burst size
if ({burst_next, {AXI_BURST_SIZE-AXIL_BURST_SIZE{1'b1}}} >> (AXI_BURST_SIZE-burst_size_reg) > 255) begin
// limit burst length to max
master_burst_next = 8'd255;
end else begin
master_burst_next = {burst_next, {AXI_BURST_SIZE-AXIL_BURST_SIZE{1'b1}}} >> (AXI_BURST_SIZE-burst_size_reg);
end
master_burst_size_next = AXIL_BURST_SIZE;
end else begin
// pass through narrow (enough) burst
master_burst_next = burst_next;
master_burst_size_next = burst_size_reg;
end
m_axil_arvalid_next = 1'b1;
m_axil_rready_next = 1'b0;
state_next = STATE_DATA;
end
end else begin
m_axil_araddr_next = addr_next;
m_axil_arvalid_next = 1'b1;
m_axil_rready_next = 1'b0;
state_next = STATE_DATA;
end
end else begin
state_next = STATE_DATA;
end
end
endcase
end
end
always @(posedge clk) begin
if (rst) begin
state_reg <= STATE_IDLE;
s_axi_arready_reg <= 1'b0;
s_axi_rvalid_reg <= 1'b0;
m_axil_arvalid_reg <= 1'b0;
m_axil_rready_reg <= 1'b0;
end else begin
state_reg <= state_next;
s_axi_arready_reg <= s_axi_arready_next;
s_axi_rvalid_reg <= s_axi_rvalid_next;
m_axil_arvalid_reg <= m_axil_arvalid_next;
m_axil_rready_reg <= m_axil_rready_next;
end
id_reg <= id_next;
addr_reg <= addr_next;
data_reg <= data_next;
resp_reg <= resp_next;
burst_reg <= burst_next;
burst_size_reg <= burst_size_next;
master_burst_reg <= master_burst_next;
master_burst_size_reg <= master_burst_size_next;
s_axi_rid_reg <= s_axi_rid_next;
s_axi_rdata_reg <= s_axi_rdata_next;
s_axi_rresp_reg <= s_axi_rresp_next;
s_axi_rlast_reg <= s_axi_rlast_next;
m_axil_araddr_reg <= m_axil_araddr_next;
m_axil_arprot_reg <= m_axil_arprot_next;
end
endmodule
/*
Copyright (c) 2019 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* AXI4 to AXI4-Lite adapter (write)
*/
module axi_axil_adapter_wr #
(
// Width of address bus in bits
parameter ADDR_WIDTH = 32,
// Width of input (slave) AXI interface data bus in bits
parameter AXI_DATA_WIDTH = 32,
// Width of input (slave) AXI interface wstrb (width of data bus in words)
parameter AXI_STRB_WIDTH = (AXI_DATA_WIDTH/8),
// Width of AXI ID signal
parameter AXI_ID_WIDTH = 8,
// Width of output (master) AXI lite interface data bus in bits
parameter AXIL_DATA_WIDTH = 32,
// Width of output (master) AXI lite interface wstrb (width of data bus in words)
parameter AXIL_STRB_WIDTH = (AXIL_DATA_WIDTH/8),
// When adapting to a wider bus, re-pack full-width burst instead of passing through narrow burst if possible
parameter CONVERT_BURST = 1,
// When adapting to a wider bus, re-pack all bursts instead of passing through narrow burst if possible
parameter CONVERT_NARROW_BURST = 0
)
(
input wire clk,
input wire rst,
/*
* AXI slave interface
*/
input wire [AXI_ID_WIDTH-1:0] s_axi_awid,
input wire [ADDR_WIDTH-1:0] s_axi_awaddr,
input wire [7:0] s_axi_awlen,
input wire [2:0] s_axi_awsize,
input wire [1:0] s_axi_awburst,
input wire s_axi_awlock,
input wire [3:0] s_axi_awcache,
input wire [2:0] s_axi_awprot,
input wire s_axi_awvalid,
output wire s_axi_awready,
input wire [AXI_DATA_WIDTH-1:0] s_axi_wdata,
input wire [AXI_STRB_WIDTH-1:0] s_axi_wstrb,
input wire s_axi_wlast,
input wire s_axi_wvalid,
output wire s_axi_wready,
output wire [AXI_ID_WIDTH-1:0] s_axi_bid,
output wire [1:0] s_axi_bresp,
output wire s_axi_bvalid,
input wire s_axi_bready,
/*
* AXI lite master interface
*/
output wire [ADDR_WIDTH-1:0] m_axil_awaddr,
output wire [2:0] m_axil_awprot,
output wire m_axil_awvalid,
input wire m_axil_awready,
output wire [AXIL_DATA_WIDTH-1:0] m_axil_wdata,
output wire [AXIL_STRB_WIDTH-1:0] m_axil_wstrb,
output wire m_axil_wvalid,
input wire m_axil_wready,
input wire [1:0] m_axil_bresp,
input wire m_axil_bvalid,
output wire m_axil_bready
);
parameter AXI_ADDR_BIT_OFFSET = $clog2(AXI_STRB_WIDTH);
parameter AXIL_ADDR_BIT_OFFSET = $clog2(AXIL_STRB_WIDTH);
parameter AXI_WORD_WIDTH = AXI_STRB_WIDTH;
parameter AXIL_WORD_WIDTH = AXIL_STRB_WIDTH;
parameter AXI_WORD_SIZE = AXI_DATA_WIDTH/AXI_WORD_WIDTH;
parameter AXIL_WORD_SIZE = AXIL_DATA_WIDTH/AXIL_WORD_WIDTH;
parameter AXI_BURST_SIZE = $clog2(AXI_STRB_WIDTH);
parameter AXIL_BURST_SIZE = $clog2(AXIL_STRB_WIDTH);
// output bus is wider
parameter EXPAND = AXIL_STRB_WIDTH > AXI_STRB_WIDTH;
parameter DATA_WIDTH = EXPAND ? AXIL_DATA_WIDTH : AXI_DATA_WIDTH;
parameter STRB_WIDTH = EXPAND ? AXIL_STRB_WIDTH : AXI_STRB_WIDTH;
// required number of segments in wider bus
parameter SEGMENT_COUNT = EXPAND ? (AXIL_STRB_WIDTH / AXI_STRB_WIDTH) : (AXI_STRB_WIDTH / AXIL_STRB_WIDTH);
// data width and keep width per segment
parameter SEGMENT_DATA_WIDTH = DATA_WIDTH / SEGMENT_COUNT;
parameter SEGMENT_STRB_WIDTH = STRB_WIDTH / SEGMENT_COUNT;
// bus width assertions
initial begin
if (AXI_WORD_SIZE * AXI_STRB_WIDTH != AXI_DATA_WIDTH) begin
$error("Error: AXI slave interface data width not evenly divisble (instance %m)");
$finish;
end
if (AXIL_WORD_SIZE * AXIL_STRB_WIDTH != AXIL_DATA_WIDTH) begin
$error("Error: AXI lite master interface data width not evenly divisble (instance %m)");
$finish;
end
if (AXI_WORD_SIZE != AXIL_WORD_SIZE) begin
$error("Error: word size mismatch (instance %m)");
$finish;
end
if (2**$clog2(AXI_WORD_WIDTH) != AXI_WORD_WIDTH) begin
$error("Error: AXI slave interface word width must be even power of two (instance %m)");
$finish;
end
if (2**$clog2(AXIL_WORD_WIDTH) != AXIL_WORD_WIDTH) begin
$error("Error: AXI lite master interface word width must be even power of two (instance %m)");
$finish;
end
end
localparam [1:0]
STATE_IDLE = 2'd0,
STATE_DATA = 2'd1,
STATE_DATA_2 = 2'd2,
STATE_RESP = 2'd3;
reg [1:0] state_reg = STATE_IDLE, state_next;
reg [AXI_ID_WIDTH-1:0] id_reg = {AXI_ID_WIDTH{1'b0}}, id_next;
reg [ADDR_WIDTH-1:0] addr_reg = {ADDR_WIDTH{1'b0}}, addr_next;
reg [DATA_WIDTH-1:0] data_reg = {DATA_WIDTH{1'b0}}, data_next;
reg [STRB_WIDTH-1:0] strb_reg = {STRB_WIDTH{1'b0}}, strb_next;
reg [7:0] burst_reg = 8'd0, burst_next;
reg [2:0] burst_size_reg = 3'd0, burst_size_next;
reg [2:0] master_burst_size_reg = 3'd0, master_burst_size_next;
reg burst_active_reg = 1'b0, burst_active_next;
reg convert_burst_reg = 1'b0, convert_burst_next;
reg first_transfer_reg = 1'b0, first_transfer_next;
reg last_segment_reg = 1'b0, last_segment_next;
reg s_axi_awready_reg = 1'b0, s_axi_awready_next;
reg s_axi_wready_reg = 1'b0, s_axi_wready_next;
reg [AXI_ID_WIDTH-1:0] s_axi_bid_reg = {AXI_ID_WIDTH{1'b0}}, s_axi_bid_next;
reg [1:0] s_axi_bresp_reg = 2'd0, s_axi_bresp_next;
reg s_axi_bvalid_reg = 1'b0, s_axi_bvalid_next;
reg [ADDR_WIDTH-1:0] m_axil_awaddr_reg = {ADDR_WIDTH{1'b0}}, m_axil_awaddr_next;
reg [2:0] m_axil_awprot_reg = 3'd0, m_axil_awprot_next;
reg m_axil_awvalid_reg = 1'b0, m_axil_awvalid_next;
reg [AXIL_DATA_WIDTH-1:0] m_axil_wdata_reg = {AXIL_DATA_WIDTH{1'b0}}, m_axil_wdata_next;
reg [AXIL_STRB_WIDTH-1:0] m_axil_wstrb_reg = {AXIL_STRB_WIDTH{1'b0}}, m_axil_wstrb_next;
reg m_axil_wvalid_reg = 1'b0, m_axil_wvalid_next;
reg m_axil_bready_reg = 1'b0, m_axil_bready_next;
assign s_axi_awready = s_axi_awready_reg;
assign s_axi_wready = s_axi_wready_reg;
assign s_axi_bid = s_axi_bid_reg;
assign s_axi_bresp = s_axi_bresp_reg;
assign s_axi_bvalid = s_axi_bvalid_reg;
assign m_axil_awaddr = m_axil_awaddr_reg;
//assign m_axil_awlen = m_axil_awlen_reg;
//assign m_axil_awsize = m_axil_awsize_reg;
//assign m_axil_awburst = m_axil_awburst_reg;
assign m_axil_awprot = m_axil_awprot_reg;
assign m_axil_awvalid = m_axil_awvalid_reg;
assign m_axil_wdata = m_axil_wdata_reg;
assign m_axil_wstrb = m_axil_wstrb_reg;
assign m_axil_wvalid = m_axil_wvalid_reg;
assign m_axil_bready = m_axil_bready_reg;
integer i;
always @* begin
state_next = STATE_IDLE;
id_next = id_reg;
addr_next = addr_reg;
data_next = data_reg;
strb_next = strb_reg;
burst_next = burst_reg;
burst_size_next = burst_size_reg;
master_burst_size_next = master_burst_size_reg;
burst_active_next = burst_active_reg;
convert_burst_next = convert_burst_reg;
first_transfer_next = first_transfer_reg;
last_segment_next = last_segment_reg;
s_axi_awready_next = 1'b0;
s_axi_wready_next = 1'b0;
s_axi_bid_next = s_axi_bid_reg;
s_axi_bresp_next = s_axi_bresp_reg;
s_axi_bvalid_next = s_axi_bvalid_reg && !s_axi_bready;
m_axil_awaddr_next = m_axil_awaddr_reg;
m_axil_awprot_next = m_axil_awprot_reg;
m_axil_awvalid_next = m_axil_awvalid_reg && !m_axil_awready;
m_axil_wdata_next = m_axil_wdata_reg;
m_axil_wstrb_next = m_axil_wstrb_reg;
m_axil_wvalid_next = m_axil_wvalid_reg && !m_axil_wready;
m_axil_bready_next = 1'b0;
if (SEGMENT_COUNT == 1) begin
// master output is same width; direct transfer with no splitting/merging
case (state_reg)
STATE_IDLE: begin
// idle state; wait for new burst
s_axi_awready_next = !m_axil_awvalid;
first_transfer_next = 1'b1;
if (s_axi_awready && s_axi_awvalid) begin
s_axi_awready_next = 1'b0;
id_next = s_axi_awid;
m_axil_awaddr_next = s_axi_awaddr;
addr_next = s_axi_awaddr;
burst_next = s_axi_awlen;
burst_size_next = s_axi_awsize;
burst_active_next = 1'b1;
m_axil_awprot_next = s_axi_awprot;
m_axil_awvalid_next = 1'b1;
s_axi_wready_next = !m_axil_wvalid;
state_next = STATE_DATA;
end else begin
state_next = STATE_IDLE;
end
end
STATE_DATA: begin
// data state; transfer write data
s_axi_wready_next = !m_axil_wvalid;
if (s_axi_wready && s_axi_wvalid) begin
m_axil_wdata_next = s_axi_wdata;
m_axil_wstrb_next = s_axi_wstrb;
m_axil_wvalid_next = 1'b1;
burst_next = burst_reg - 1;
burst_active_next = burst_reg != 0;
addr_next = addr_reg + (1 << burst_size_reg);
s_axi_wready_next = 1'b0;
m_axil_bready_next = !s_axi_bvalid && !m_axil_awvalid;
state_next = STATE_RESP;
end else begin
state_next = STATE_DATA;
end
end
STATE_RESP: begin
// resp state; transfer write response
m_axil_bready_next = !s_axi_bvalid && !m_axil_awvalid;
if (m_axil_bready && m_axil_bvalid) begin
m_axil_bready_next = 1'b0;
s_axi_bid_next = id_reg;
first_transfer_next = 1'b0;
if (first_transfer_reg || m_axil_bresp != 0) begin
s_axi_bresp_next = m_axil_bresp;
end
if (burst_active_reg) begin
// burst on slave interface still active; start new AXI lite write
m_axil_awaddr_next = addr_reg;
m_axil_awvalid_next = 1'b1;
s_axi_wready_next = !m_axil_wvalid;
state_next = STATE_DATA;
end else begin
// burst on slave interface finished; return to idle
s_axi_bvalid_next = 1'b1;
s_axi_awready_next = !m_axil_awvalid;
state_next = STATE_IDLE;
end
end else begin
state_next = STATE_RESP;
end
end
endcase
end else if (EXPAND) begin
// master output is wider; merge writes
case (state_reg)
STATE_IDLE: begin
// idle state; wait for new burst
s_axi_awready_next = !m_axil_awvalid;
first_transfer_next = 1'b1;
data_next = {DATA_WIDTH{1'b0}};
strb_next = {STRB_WIDTH{1'b0}};
if (s_axi_awready && s_axi_awvalid) begin
s_axi_awready_next = 1'b0;
id_next = s_axi_awid;
m_axil_awaddr_next = s_axi_awaddr;
addr_next = s_axi_awaddr;
burst_next = s_axi_awlen;
burst_size_next = s_axi_awsize;
if (CONVERT_BURST && s_axi_awcache[1] && (CONVERT_NARROW_BURST || s_axi_awsize == AXI_BURST_SIZE)) begin
// merge writes
// require CONVERT_BURST and awcache[1] set
convert_burst_next = 1'b1;
master_burst_size_next = AXIL_BURST_SIZE;
state_next = STATE_DATA_2;
end else begin
// output narrow burst
convert_burst_next = 1'b0;
master_burst_size_next = s_axi_awsize;
state_next = STATE_DATA;
end
m_axil_awprot_next = s_axi_awprot;
m_axil_awvalid_next = 1'b1;
s_axi_wready_next = !m_axil_wvalid;
end else begin
state_next = STATE_IDLE;
end
end
STATE_DATA: begin
// data state; transfer write data
s_axi_wready_next = !m_axil_wvalid || m_axil_wready;
if (s_axi_wready && s_axi_wvalid) begin
m_axil_wdata_next = {(AXIL_WORD_WIDTH/AXI_WORD_WIDTH){s_axi_wdata}};
m_axil_wstrb_next = s_axi_wstrb << (addr_reg[AXIL_ADDR_BIT_OFFSET-1:AXI_ADDR_BIT_OFFSET] * AXI_STRB_WIDTH);
m_axil_wvalid_next = 1'b1;
burst_next = burst_reg - 1;
burst_active_next = burst_reg != 0;
addr_next = addr_reg + (1 << burst_size_reg);
s_axi_wready_next = 1'b0;
m_axil_bready_next = !s_axi_bvalid && !m_axil_awvalid;
state_next = STATE_RESP;
end else begin
state_next = STATE_DATA;
end
end
STATE_DATA_2: begin
s_axi_wready_next = !m_axil_wvalid;
if (s_axi_wready && s_axi_wvalid) begin
if (CONVERT_NARROW_BURST) begin
for (i = 0; i < AXI_WORD_WIDTH; i = i + 1) begin
if (s_axi_wstrb[i]) begin
data_next[addr_reg[AXIL_ADDR_BIT_OFFSET-1:AXI_ADDR_BIT_OFFSET]*SEGMENT_DATA_WIDTH+i*AXIL_WORD_SIZE +: AXIL_WORD_SIZE] = s_axi_wdata[i*AXIL_WORD_SIZE +: AXIL_WORD_SIZE];
strb_next[addr_reg[AXIL_ADDR_BIT_OFFSET-1:AXI_ADDR_BIT_OFFSET]*SEGMENT_STRB_WIDTH+i] = 1'b1;
end
end
end else begin
data_next[addr_reg[AXIL_ADDR_BIT_OFFSET-1:AXI_ADDR_BIT_OFFSET]*SEGMENT_DATA_WIDTH +: SEGMENT_DATA_WIDTH] = s_axi_wdata;
strb_next[addr_reg[AXIL_ADDR_BIT_OFFSET-1:AXI_ADDR_BIT_OFFSET]*SEGMENT_STRB_WIDTH +: SEGMENT_STRB_WIDTH] = s_axi_wstrb;
end
m_axil_wdata_next = data_next;
m_axil_wstrb_next = strb_next;
burst_next = burst_reg - 1;
burst_active_next = burst_reg != 0;
addr_next = addr_reg + (1 << burst_size_reg);
if (burst_reg == 0 || addr_next[master_burst_size_reg] != addr_reg[master_burst_size_reg]) begin
data_next = {DATA_WIDTH{1'b0}};
strb_next = {STRB_WIDTH{1'b0}};
m_axil_wvalid_next = 1'b1;
s_axi_wready_next = 1'b0;
m_axil_bready_next = !s_axi_bvalid && !m_axil_awvalid;
state_next = STATE_RESP;
end else begin
state_next = STATE_DATA_2;
end
end else begin
state_next = STATE_DATA_2;
end
end
STATE_RESP: begin
// resp state; transfer write response
m_axil_bready_next = !s_axi_bvalid && !m_axil_awvalid;
if (m_axil_bready && m_axil_bvalid) begin
m_axil_bready_next = 1'b0;
s_axi_bid_next = id_reg;
first_transfer_next = 1'b0;
if (first_transfer_reg || m_axil_bresp != 0) begin
s_axi_bresp_next = m_axil_bresp;
end
if (burst_active_reg) begin
// burst on slave interface still active; start new AXI lite write
m_axil_awaddr_next = addr_reg;
m_axil_awvalid_next = 1'b1;
s_axi_wready_next = !m_axil_wvalid || m_axil_wready;
if (convert_burst_reg) begin
state_next = STATE_DATA_2;
end else begin
state_next = STATE_DATA;
end
end else begin
// burst on slave interface finished; return to idle
s_axi_bvalid_next = 1'b1;
s_axi_awready_next = !m_axil_awvalid;
state_next = STATE_IDLE;
end
end else begin
state_next = STATE_RESP;
end
end
endcase
end else begin
// master output is narrower; split writes, and possibly split burst
case (state_reg)
STATE_IDLE: begin
// idle state; wait for new burst
s_axi_awready_next = !m_axil_awvalid;
first_transfer_next = 1'b1;
if (s_axi_awready && s_axi_awvalid) begin
s_axi_awready_next = 1'b0;
id_next = s_axi_awid;
m_axil_awaddr_next = s_axi_awaddr;
addr_next = s_axi_awaddr;
burst_next = s_axi_awlen;
burst_size_next = s_axi_awsize;
burst_active_next = 1'b1;
if (s_axi_awsize > AXIL_BURST_SIZE) begin
// need to adjust burst size
master_burst_size_next = AXIL_BURST_SIZE;
end else begin
// pass through narrow (enough) burst
master_burst_size_next = s_axi_awsize;
end
m_axil_awprot_next = s_axi_awprot;
m_axil_awvalid_next = 1'b1;
s_axi_wready_next = !m_axil_wvalid;
state_next = STATE_DATA;
end else begin
state_next = STATE_IDLE;
end
end
STATE_DATA: begin
s_axi_wready_next = !m_axil_wvalid;
if (s_axi_wready && s_axi_wvalid) begin
data_next = s_axi_wdata;
strb_next = s_axi_wstrb;
m_axil_wdata_next = s_axi_wdata >> (addr_reg[AXI_ADDR_BIT_OFFSET-1:AXIL_ADDR_BIT_OFFSET] * AXIL_DATA_WIDTH);
m_axil_wstrb_next = s_axi_wstrb >> (addr_reg[AXI_ADDR_BIT_OFFSET-1:AXIL_ADDR_BIT_OFFSET] * AXIL_STRB_WIDTH);
m_axil_wvalid_next = 1'b1;
burst_next = burst_reg - 1;
burst_active_next = burst_reg != 0;
addr_next = addr_reg + (1 << master_burst_size_reg);
last_segment_next = addr_next[burst_size_reg] != addr_reg[burst_size_reg];
s_axi_wready_next = 1'b0;
m_axil_bready_next = !s_axi_bvalid && !m_axil_awvalid;
state_next = STATE_RESP;
end else begin
state_next = STATE_DATA;
end
end
STATE_DATA_2: begin
s_axi_wready_next = 1'b0;
if (!m_axil_wvalid || m_axil_wready) begin
m_axil_wdata_next = data_reg >> (addr_reg[AXI_ADDR_BIT_OFFSET-1:AXIL_ADDR_BIT_OFFSET] * AXIL_DATA_WIDTH);
m_axil_wstrb_next = strb_reg >> (addr_reg[AXI_ADDR_BIT_OFFSET-1:AXIL_ADDR_BIT_OFFSET] * AXIL_STRB_WIDTH);
m_axil_wvalid_next = 1'b1;
addr_next = addr_reg + (1 << master_burst_size_reg);
last_segment_next = addr_next[burst_size_reg] != addr_reg[burst_size_reg];
s_axi_wready_next = 1'b0;
m_axil_bready_next = !s_axi_bvalid && !m_axil_awvalid;
state_next = STATE_RESP;
end else begin
state_next = STATE_DATA_2;
end
end
STATE_RESP: begin
// resp state; transfer write response
m_axil_bready_next = !s_axi_bvalid && !m_axil_awvalid;
if (m_axil_bready && m_axil_bvalid) begin
first_transfer_next = 1'b0;
m_axil_bready_next = 1'b0;
s_axi_bid_next = id_reg;
if (first_transfer_reg || m_axil_bresp != 0) begin
s_axi_bresp_next = m_axil_bresp;
end
if (burst_active_reg || !last_segment_reg) begin
// burst on slave interface still active; start new burst
m_axil_awaddr_next = addr_reg;
m_axil_awvalid_next = 1'b1;
if (last_segment_reg) begin
s_axi_wready_next = !m_axil_wvalid;
state_next = STATE_DATA;
end else begin
s_axi_wready_next = 1'b0;
state_next = STATE_DATA_2;
end
end else begin
// burst on slave interface finished; return to idle
s_axi_bvalid_next = 1'b1;
s_axi_awready_next = !m_axil_awvalid;
state_next = STATE_IDLE;
end
end else begin
state_next = STATE_RESP;
end
end
endcase
end
end
always @(posedge clk) begin
if (rst) begin
state_reg <= STATE_IDLE;
s_axi_awready_reg <= 1'b0;
s_axi_wready_reg <= 1'b0;
s_axi_bvalid_reg <= 1'b0;
m_axil_awvalid_reg <= 1'b0;
m_axil_wvalid_reg <= 1'b0;
m_axil_bready_reg <= 1'b0;
end else begin
state_reg <= state_next;
s_axi_awready_reg <= s_axi_awready_next;
s_axi_wready_reg <= s_axi_wready_next;
s_axi_bvalid_reg <= s_axi_bvalid_next;
m_axil_awvalid_reg <= m_axil_awvalid_next;
m_axil_wvalid_reg <= m_axil_wvalid_next;
m_axil_bready_reg <= m_axil_bready_next;
end
id_reg <= id_next;
addr_reg <= addr_next;
data_reg <= data_next;
strb_reg <= strb_next;
burst_reg <= burst_next;
burst_size_reg <= burst_size_next;
master_burst_size_reg <= master_burst_size_next;
burst_active_reg <= burst_active_next;
convert_burst_reg <= convert_burst_next;
first_transfer_reg <= first_transfer_next;
last_segment_reg <= last_segment_next;
s_axi_bid_reg <= s_axi_bid_next;
s_axi_bresp_reg <= s_axi_bresp_next;
m_axil_awaddr_reg <= m_axil_awaddr_next;
m_axil_awprot_reg <= m_axil_awprot_next;
m_axil_wdata_reg <= m_axil_wdata_next;
m_axil_wstrb_reg <= m_axil_wstrb_next;
end
endmodule
/*
Copyright (c) 2018 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* AXI4 Central DMA
*/
module axi_cdma #
(
// Width of data bus in bits
parameter AXI_DATA_WIDTH = 32,
// Width of address bus in bits
parameter AXI_ADDR_WIDTH = 16,
// Width of wstrb (width of data bus in words)
parameter AXI_STRB_WIDTH = (AXI_DATA_WIDTH/8),
// Width of AXI ID signal
parameter AXI_ID_WIDTH = 8,
// Maximum AXI burst length to generate
parameter AXI_MAX_BURST_LEN = 16,
// Width of length field
parameter LEN_WIDTH = 20,
// Width of tag field
parameter TAG_WIDTH = 8,
// Enable support for unaligned transfers
parameter ENABLE_UNALIGNED = 0
)
(
input wire clk,
input wire rst,
/*
* AXI descriptor input
*/
input wire [AXI_ADDR_WIDTH-1:0] s_axis_desc_read_addr,
input wire [AXI_ADDR_WIDTH-1:0] s_axis_desc_write_addr,
input wire [LEN_WIDTH-1:0] s_axis_desc_len,
input wire [TAG_WIDTH-1:0] s_axis_desc_tag,
input wire s_axis_desc_valid,
output wire s_axis_desc_ready,
/*
* AXI descriptor status output
*/
output wire [TAG_WIDTH-1:0] m_axis_desc_status_tag,
output wire m_axis_desc_status_valid,
/*
* AXI write master interface
*/
output wire [AXI_ID_WIDTH-1:0] m_axi_awid,
output wire [AXI_ADDR_WIDTH-1:0] m_axi_awaddr,
output wire [7:0] m_axi_awlen,
output wire [2:0] m_axi_awsize,
output wire [1:0] m_axi_awburst,
output wire m_axi_awlock,
output wire [3:0] m_axi_awcache,
output wire [2:0] m_axi_awprot,
output wire m_axi_awvalid,
input wire m_axi_awready,
output wire [AXI_DATA_WIDTH-1:0] m_axi_wdata,
output wire [AXI_STRB_WIDTH-1:0] m_axi_wstrb,
output wire m_axi_wlast,
output wire m_axi_wvalid,
input wire m_axi_wready,
input wire [AXI_ID_WIDTH-1:0] m_axi_bid,
input wire [1:0] m_axi_bresp,
input wire m_axi_bvalid,
output wire m_axi_bready,
/*
* AXI read master interface
*/
output wire [AXI_ID_WIDTH-1:0] m_axi_arid,
output wire [AXI_ADDR_WIDTH-1:0] m_axi_araddr,
output wire [7:0] m_axi_arlen,
output wire [2:0] m_axi_arsize,
output wire [1:0] m_axi_arburst,
output wire m_axi_arlock,
output wire [3:0] m_axi_arcache,
output wire [2:0] m_axi_arprot,
output wire m_axi_arvalid,
input wire m_axi_arready,
input wire [AXI_ID_WIDTH-1:0] m_axi_rid,
input wire [AXI_DATA_WIDTH-1:0] m_axi_rdata,
input wire [1:0] m_axi_rresp,
input wire m_axi_rlast,
input wire m_axi_rvalid,
output wire m_axi_rready,
/*
* Configuration
*/
input wire enable
);
parameter AXI_WORD_WIDTH = AXI_STRB_WIDTH;
parameter AXI_WORD_SIZE = AXI_DATA_WIDTH/AXI_WORD_WIDTH;
parameter AXI_BURST_SIZE = $clog2(AXI_STRB_WIDTH);
parameter AXI_MAX_BURST_SIZE = AXI_MAX_BURST_LEN << AXI_BURST_SIZE;
parameter OFFSET_WIDTH = AXI_STRB_WIDTH > 1 ? $clog2(AXI_STRB_WIDTH) : 1;
parameter OFFSET_MASK = AXI_STRB_WIDTH > 1 ? {OFFSET_WIDTH{1'b1}} : 0;
parameter ADDR_MASK = {AXI_ADDR_WIDTH{1'b1}} << $clog2(AXI_STRB_WIDTH);
parameter CYCLE_COUNT_WIDTH = LEN_WIDTH - AXI_BURST_SIZE + 1;
parameter STATUS_FIFO_ADDR_WIDTH = 5;
// bus width assertions
initial begin
if (AXI_WORD_SIZE * AXI_STRB_WIDTH != AXI_DATA_WIDTH) begin
$error("Error: AXI data width not evenly divisble (instance %m)");
$finish;
end
if (2**$clog2(AXI_WORD_WIDTH) != AXI_WORD_WIDTH) begin
$error("Error: AXI word width must be even power of two (instance %m)");
$finish;
end
if (AXI_MAX_BURST_LEN < 1 || AXI_MAX_BURST_LEN > 256) begin
$error("Error: AXI_MAX_BURST_LEN must be between 1 and 256 (instance %m)");
$finish;
end
end
localparam [1:0]
READ_STATE_IDLE = 2'd0,
READ_STATE_START = 2'd1,
READ_STATE_REQ = 2'd2;
reg [1:0] read_state_reg = READ_STATE_IDLE, read_state_next;
localparam [0:0]
AXI_STATE_IDLE = 1'd0,
AXI_STATE_WRITE = 1'd1;
reg [0:0] axi_state_reg = AXI_STATE_IDLE, axi_state_next;
// datapath control signals
reg transfer_in_save;
reg axi_cmd_ready;
reg status_fifo_we;
reg [AXI_ADDR_WIDTH-1:0] read_addr_reg = {AXI_ADDR_WIDTH{1'b0}}, read_addr_next;
reg [AXI_ADDR_WIDTH-1:0] write_addr_reg = {AXI_ADDR_WIDTH{1'b0}}, write_addr_next;
reg [LEN_WIDTH-1:0] op_word_count_reg = {LEN_WIDTH{1'b0}}, op_word_count_next;
reg [LEN_WIDTH-1:0] tr_word_count_reg = {LEN_WIDTH{1'b0}}, tr_word_count_next;
reg [LEN_WIDTH-1:0] axi_word_count_reg = {LEN_WIDTH{1'b0}}, axi_word_count_next;
reg [AXI_ADDR_WIDTH-1:0] axi_cmd_addr_reg = {AXI_ADDR_WIDTH{1'b0}}, axi_cmd_addr_next;
reg [OFFSET_WIDTH-1:0] axi_cmd_offset_reg = {OFFSET_WIDTH{1'b0}}, axi_cmd_offset_next;
reg [OFFSET_WIDTH-1:0] axi_cmd_first_cycle_offset_reg = {OFFSET_WIDTH{1'b0}}, axi_cmd_first_cycle_offset_next;
reg [OFFSET_WIDTH-1:0] axi_cmd_last_cycle_offset_reg = {OFFSET_WIDTH{1'b0}}, axi_cmd_last_cycle_offset_next;
reg [CYCLE_COUNT_WIDTH-1:0] axi_cmd_input_cycle_count_reg = {CYCLE_COUNT_WIDTH{1'b0}}, axi_cmd_input_cycle_count_next;
reg [CYCLE_COUNT_WIDTH-1:0] axi_cmd_output_cycle_count_reg = {CYCLE_COUNT_WIDTH{1'b0}}, axi_cmd_output_cycle_count_next;
reg axi_cmd_bubble_cycle_reg = 1'b0, axi_cmd_bubble_cycle_next;
reg axi_cmd_last_transfer_reg = 1'b0, axi_cmd_last_transfer_next;
reg [TAG_WIDTH-1:0] axi_cmd_tag_reg = {TAG_WIDTH{1'b0}}, axi_cmd_tag_next;
reg axi_cmd_valid_reg = 1'b0, axi_cmd_valid_next;
reg [OFFSET_WIDTH-1:0] offset_reg = {OFFSET_WIDTH{1'b0}}, offset_next;
reg [OFFSET_WIDTH-1:0] first_cycle_offset_reg = {OFFSET_WIDTH{1'b0}}, first_cycle_offset_next;
reg [OFFSET_WIDTH-1:0] last_cycle_offset_reg = {OFFSET_WIDTH{1'b0}}, last_cycle_offset_next;
reg [CYCLE_COUNT_WIDTH-1:0] input_cycle_count_reg = {CYCLE_COUNT_WIDTH{1'b0}}, input_cycle_count_next;
reg [CYCLE_COUNT_WIDTH-1:0] output_cycle_count_reg = {CYCLE_COUNT_WIDTH{1'b0}}, output_cycle_count_next;
reg input_active_reg = 1'b0, input_active_next;
reg output_active_reg = 1'b0, output_active_next;
reg bubble_cycle_reg = 1'b0, bubble_cycle_next;
reg first_input_cycle_reg = 1'b0, first_input_cycle_next;
reg first_output_cycle_reg = 1'b0, first_output_cycle_next;
reg output_last_cycle_reg = 1'b0, output_last_cycle_next;
reg last_transfer_reg = 1'b0, last_transfer_next;
reg [TAG_WIDTH-1:0] tag_reg = {TAG_WIDTH{1'b0}}, tag_next;
reg [STATUS_FIFO_ADDR_WIDTH+1-1:0] status_fifo_wr_ptr_reg = 0, status_fifo_wr_ptr_next;
reg [STATUS_FIFO_ADDR_WIDTH+1-1:0] status_fifo_rd_ptr_reg = 0, status_fifo_rd_ptr_next;
reg [TAG_WIDTH-1:0] status_fifo_tag[(2**STATUS_FIFO_ADDR_WIDTH)-1:0];
reg status_fifo_last[(2**STATUS_FIFO_ADDR_WIDTH)-1:0];
reg [TAG_WIDTH-1:0] status_fifo_wr_tag;
reg status_fifo_wr_last;
reg s_axis_desc_ready_reg = 1'b0, s_axis_desc_ready_next;
reg [TAG_WIDTH-1:0] m_axis_desc_status_tag_reg = {TAG_WIDTH{1'b0}}, m_axis_desc_status_tag_next;
reg m_axis_desc_status_valid_reg = 1'b0, m_axis_desc_status_valid_next;
reg [AXI_ADDR_WIDTH-1:0] m_axi_araddr_reg = {AXI_ADDR_WIDTH{1'b0}}, m_axi_araddr_next;
reg [7:0] m_axi_arlen_reg = 8'd0, m_axi_arlen_next;
reg m_axi_arvalid_reg = 1'b0, m_axi_arvalid_next;
reg m_axi_rready_reg = 1'b0, m_axi_rready_next;
reg [AXI_ADDR_WIDTH-1:0] m_axi_awaddr_reg = {AXI_ADDR_WIDTH{1'b0}}, m_axi_awaddr_next;
reg [7:0] m_axi_awlen_reg = 8'd0, m_axi_awlen_next;
reg m_axi_awvalid_reg = 1'b0, m_axi_awvalid_next;
reg m_axi_bready_reg = 1'b0, m_axi_bready_next;
reg [AXI_DATA_WIDTH-1:0] save_axi_rdata_reg = {AXI_DATA_WIDTH{1'b0}};
wire [AXI_DATA_WIDTH-1:0] shift_axi_rdata = {m_axi_rdata, save_axi_rdata_reg} >> ((AXI_STRB_WIDTH-offset_reg)*AXI_WORD_SIZE);
// internal datapath
reg [AXI_DATA_WIDTH-1:0] m_axi_wdata_int;
reg [AXI_STRB_WIDTH-1:0] m_axi_wstrb_int;
reg m_axi_wlast_int;
reg m_axi_wvalid_int;
reg m_axi_wready_int_reg = 1'b0;
wire m_axi_wready_int_early;
assign s_axis_desc_ready = s_axis_desc_ready_reg;
assign m_axis_desc_status_tag = m_axis_desc_status_tag_reg;
assign m_axis_desc_status_valid = m_axis_desc_status_valid_reg;
assign m_axi_arid = {AXI_ID_WIDTH{1'b0}};
assign m_axi_araddr = m_axi_araddr_reg;
assign m_axi_arlen = m_axi_arlen_reg;
assign m_axi_arsize = AXI_BURST_SIZE;
assign m_axi_arburst = 2'b01;
assign m_axi_arlock = 1'b0;
assign m_axi_arcache = 4'b0011;
assign m_axi_arprot = 3'b010;
assign m_axi_arvalid = m_axi_arvalid_reg;
assign m_axi_rready = m_axi_rready_reg;
assign m_axi_awid = {AXI_ID_WIDTH{1'b0}};
assign m_axi_awaddr = m_axi_awaddr_reg;
assign m_axi_awlen = m_axi_awlen_reg;
assign m_axi_awsize = AXI_BURST_SIZE;
assign m_axi_awburst = 2'b01;
assign m_axi_awlock = 1'b0;
assign m_axi_awcache = 4'b0011;
assign m_axi_awprot = 3'b010;
assign m_axi_awvalid = m_axi_awvalid_reg;
assign m_axi_bready = m_axi_bready_reg;
wire [AXI_ADDR_WIDTH-1:0] read_addr_plus_max_burst = read_addr_reg + AXI_MAX_BURST_SIZE;
wire [AXI_ADDR_WIDTH-1:0] read_addr_plus_op_count = read_addr_reg + op_word_count_reg;
wire [AXI_ADDR_WIDTH-1:0] read_addr_plus_axi_count = read_addr_reg + axi_word_count_reg;
wire [AXI_ADDR_WIDTH-1:0] write_addr_plus_max_burst = write_addr_reg + AXI_MAX_BURST_SIZE;
wire [AXI_ADDR_WIDTH-1:0] write_addr_plus_op_count = write_addr_reg + op_word_count_reg;
wire [AXI_ADDR_WIDTH-1:0] write_addr_plus_axi_count = write_addr_reg + axi_word_count_reg;
always @* begin
read_state_next = READ_STATE_IDLE;
s_axis_desc_ready_next = 1'b0;
m_axi_araddr_next = m_axi_araddr_reg;
m_axi_arlen_next = m_axi_arlen_reg;
m_axi_arvalid_next = m_axi_arvalid_reg && !m_axi_arready;
read_addr_next = read_addr_reg;
write_addr_next = write_addr_reg;
op_word_count_next = op_word_count_reg;
tr_word_count_next = tr_word_count_reg;
axi_word_count_next = axi_word_count_reg;
axi_cmd_addr_next = axi_cmd_addr_reg;
axi_cmd_offset_next = axi_cmd_offset_reg;
axi_cmd_first_cycle_offset_next = axi_cmd_first_cycle_offset_reg;
axi_cmd_last_cycle_offset_next = axi_cmd_last_cycle_offset_reg;
axi_cmd_input_cycle_count_next = axi_cmd_input_cycle_count_reg;
axi_cmd_output_cycle_count_next = axi_cmd_output_cycle_count_reg;
axi_cmd_bubble_cycle_next = axi_cmd_bubble_cycle_reg;
axi_cmd_last_transfer_next = axi_cmd_last_transfer_reg;
axi_cmd_tag_next = axi_cmd_tag_reg;
axi_cmd_valid_next = axi_cmd_valid_reg && !axi_cmd_ready;
case (read_state_reg)
READ_STATE_IDLE: begin
// idle state - load new descriptor to start operation
s_axis_desc_ready_next = !axi_cmd_valid_reg && enable;
if (s_axis_desc_ready && s_axis_desc_valid) begin
if (ENABLE_UNALIGNED) begin
read_addr_next = s_axis_desc_read_addr;
write_addr_next = s_axis_desc_write_addr;
end else begin
read_addr_next = s_axis_desc_read_addr & ADDR_MASK;
write_addr_next = s_axis_desc_write_addr & ADDR_MASK;
end
axi_cmd_tag_next = s_axis_desc_tag;
op_word_count_next = s_axis_desc_len;
s_axis_desc_ready_next = 1'b0;
read_state_next = READ_STATE_START;
end else begin
read_state_next = READ_STATE_IDLE;
end
end
READ_STATE_START: begin
// start state - compute write length
if (!axi_cmd_valid_reg) begin
if (op_word_count_reg <= AXI_MAX_BURST_SIZE - (write_addr_reg & OFFSET_MASK)) begin
// packet smaller than max burst size
if (write_addr_reg[12] != write_addr_plus_op_count[12]) begin
// crosses 4k boundary
axi_word_count_next = 13'h1000 - write_addr_reg[11:0];
end else begin
// does not cross 4k boundary
axi_word_count_next = op_word_count_reg;
end
end else begin
// packet larger than max burst size
if (write_addr_reg[12] != write_addr_plus_max_burst[12]) begin
// crosses 4k boundary
axi_word_count_next = 13'h1000 - write_addr_reg[11:0];
end else begin
// does not cross 4k boundary
axi_word_count_next = AXI_MAX_BURST_SIZE - (write_addr_reg & OFFSET_MASK);
end
end
write_addr_next = write_addr_reg + axi_word_count_next;
op_word_count_next = op_word_count_reg - axi_word_count_next;
axi_cmd_addr_next = write_addr_reg;
if (ENABLE_UNALIGNED) begin
axi_cmd_input_cycle_count_next = (axi_word_count_next + (read_addr_reg & OFFSET_MASK) - 1) >> AXI_BURST_SIZE;
axi_cmd_output_cycle_count_next = (axi_word_count_next + (write_addr_reg & OFFSET_MASK) - 1) >> AXI_BURST_SIZE;
axi_cmd_offset_next = (write_addr_reg & OFFSET_MASK) - (read_addr_reg & OFFSET_MASK);
axi_cmd_bubble_cycle_next = (read_addr_reg & OFFSET_MASK) > (write_addr_reg & OFFSET_MASK);
axi_cmd_first_cycle_offset_next = write_addr_reg & OFFSET_MASK;
axi_cmd_last_cycle_offset_next = axi_cmd_first_cycle_offset_next + axi_word_count_next & OFFSET_MASK;
end else begin
axi_cmd_input_cycle_count_next = (axi_word_count_next - 1) >> AXI_BURST_SIZE;
axi_cmd_output_cycle_count_next = (axi_word_count_next - 1) >> AXI_BURST_SIZE;
axi_cmd_offset_next = 0;
axi_cmd_bubble_cycle_next = 0;
axi_cmd_first_cycle_offset_next = 0;
axi_cmd_last_cycle_offset_next = axi_word_count_next & OFFSET_MASK;
end
axi_cmd_last_transfer_next = op_word_count_next == 0;
axi_cmd_valid_next = 1'b1;
read_state_next = READ_STATE_REQ;
end else begin
read_state_next = READ_STATE_START;
end
end
READ_STATE_REQ: begin
// request state - issue AXI read requests
if (!m_axi_arvalid) begin
if (axi_word_count_reg <= AXI_MAX_BURST_SIZE - (read_addr_reg & OFFSET_MASK)) begin
// packet smaller than max burst size
if (read_addr_reg[12] != read_addr_plus_axi_count[12]) begin
// crosses 4k boundary
tr_word_count_next = 13'h1000 - read_addr_reg[11:0];
end else begin
// does not cross 4k boundary
tr_word_count_next = axi_word_count_reg;
end
end else begin
// packet larger than max burst size
if (read_addr_reg[12] != read_addr_plus_max_burst[12]) begin
// crosses 4k boundary
tr_word_count_next = 13'h1000 - read_addr_reg[11:0];
end else begin
// does not cross 4k boundary
tr_word_count_next = AXI_MAX_BURST_SIZE - (read_addr_reg & OFFSET_MASK);
end
end
m_axi_araddr_next = read_addr_reg;
if (ENABLE_UNALIGNED) begin
m_axi_arlen_next = (tr_word_count_next + (read_addr_reg & OFFSET_MASK) - 1) >> AXI_BURST_SIZE;
end else begin
m_axi_arlen_next = (tr_word_count_next - 1) >> AXI_BURST_SIZE;
end
m_axi_arvalid_next = 1'b1;
read_addr_next = read_addr_reg + tr_word_count_next;
axi_word_count_next = axi_word_count_reg - tr_word_count_next;
if (axi_word_count_next > 0) begin
read_state_next = READ_STATE_REQ;
end else if (op_word_count_next > 0) begin
read_state_next = READ_STATE_START;
end else begin
s_axis_desc_ready_next = !axi_cmd_valid_reg && enable;
read_state_next = READ_STATE_IDLE;
end
end else begin
read_state_next = READ_STATE_REQ;
end
end
endcase
end
always @* begin
axi_state_next = AXI_STATE_IDLE;
m_axis_desc_status_tag_next = m_axis_desc_status_tag_reg;
m_axis_desc_status_valid_next = 1'b0;
m_axi_awaddr_next = m_axi_awaddr_reg;
m_axi_awlen_next = m_axi_awlen_reg;
m_axi_awvalid_next = m_axi_awvalid_reg && !m_axi_awready;
m_axi_wdata_int = shift_axi_rdata;
m_axi_wstrb_int = {AXI_STRB_WIDTH{1'b0}};
m_axi_wlast_int = 1'b0;
m_axi_wvalid_int = 1'b0;
m_axi_bready_next = 1'b0;
m_axi_rready_next = 1'b0;
transfer_in_save = 1'b0;
axi_cmd_ready = 1'b0;
status_fifo_we = 1'b0;
offset_next = offset_reg;
first_cycle_offset_next = first_cycle_offset_reg;
last_cycle_offset_next = last_cycle_offset_reg;
input_cycle_count_next = input_cycle_count_reg;
output_cycle_count_next = output_cycle_count_reg;
input_active_next = input_active_reg;
output_active_next = output_active_reg;
bubble_cycle_next = bubble_cycle_reg;
first_input_cycle_next = first_input_cycle_reg;
first_output_cycle_next = first_output_cycle_reg;
output_last_cycle_next = output_last_cycle_reg;
last_transfer_next = last_transfer_reg;
tag_next = tag_reg;
status_fifo_rd_ptr_next = status_fifo_rd_ptr_reg;
status_fifo_wr_tag = tag_reg;
status_fifo_wr_last = 1'b0;
case (axi_state_reg)
AXI_STATE_IDLE: begin
// idle state - load new descriptor to start operation
m_axi_rready_next = 1'b0;
// store transfer parameters
if (ENABLE_UNALIGNED) begin
offset_next = axi_cmd_offset_reg;
first_cycle_offset_next = axi_cmd_first_cycle_offset_reg;
end else begin
offset_next = 0;
first_cycle_offset_next = 0;
end
last_cycle_offset_next = axi_cmd_last_cycle_offset_reg;
input_cycle_count_next = axi_cmd_input_cycle_count_reg;
output_cycle_count_next = axi_cmd_output_cycle_count_reg;
bubble_cycle_next = axi_cmd_bubble_cycle_reg;
last_transfer_next = axi_cmd_last_transfer_reg;
tag_next = axi_cmd_tag_reg;
output_last_cycle_next = output_cycle_count_next == 0;
input_active_next = 1'b1;
output_active_next = 1'b1;
first_input_cycle_next = 1'b1;
first_output_cycle_next = 1'b1;
if (!m_axi_awvalid && axi_cmd_valid_reg) begin
axi_cmd_ready = 1'b1;
m_axi_awaddr_next = axi_cmd_addr_reg;
m_axi_awlen_next = axi_cmd_output_cycle_count_reg;
m_axi_awvalid_next = 1'b1;
m_axi_rready_next = m_axi_wready_int_early;
axi_state_next = AXI_STATE_WRITE;
end
end
AXI_STATE_WRITE: begin
// handle AXI read data
m_axi_rready_next = m_axi_wready_int_early && input_active_reg;
if (m_axi_wready_int_reg && ((m_axi_rready && m_axi_rvalid) || !input_active_reg)) begin
// transfer in AXI read data
transfer_in_save = m_axi_rready && m_axi_rvalid;
if (ENABLE_UNALIGNED && first_input_cycle_reg && bubble_cycle_reg) begin
if (input_active_reg) begin
input_cycle_count_next = input_cycle_count_reg - 1;
input_active_next = input_cycle_count_reg > 0;
end
bubble_cycle_next = 1'b0;
first_input_cycle_next = 1'b0;
m_axi_rready_next = m_axi_wready_int_early && input_active_next;
axi_state_next = AXI_STATE_WRITE;
end else begin
// update counters
if (input_active_reg) begin
input_cycle_count_next = input_cycle_count_reg - 1;
input_active_next = input_cycle_count_reg > 0;
end
if (output_active_reg) begin
output_cycle_count_next = output_cycle_count_reg - 1;
output_active_next = output_cycle_count_reg > 0;
end
output_last_cycle_next = output_cycle_count_next == 0;
bubble_cycle_next = 1'b0;
first_input_cycle_next = 1'b0;
first_output_cycle_next = 1'b0;
// pass through read data
m_axi_wdata_int = shift_axi_rdata;
if (first_output_cycle_reg) begin
m_axi_wstrb_int = {AXI_STRB_WIDTH{1'b1}} << first_cycle_offset_reg;
end else begin
m_axi_wstrb_int = {AXI_STRB_WIDTH{1'b1}};
end
m_axi_wvalid_int = 1'b1;
if (output_last_cycle_reg) begin
// no more data to transfer, finish operation
if (last_cycle_offset_reg > 0) begin
m_axi_wstrb_int = m_axi_wstrb_int & {AXI_STRB_WIDTH{1'b1}} >> (AXI_STRB_WIDTH - last_cycle_offset_reg);
end
m_axi_wlast_int = 1'b1;
status_fifo_we = 1'b1;
status_fifo_wr_tag = tag_reg;
status_fifo_wr_last = last_transfer_reg;
m_axi_rready_next = 1'b0;
axi_state_next = AXI_STATE_IDLE;
end else begin
// more cycles in AXI transfer
axi_state_next = AXI_STATE_WRITE;
end
end
end else begin
axi_state_next = AXI_STATE_WRITE;
end
end
endcase
if (status_fifo_rd_ptr_reg != status_fifo_wr_ptr_reg) begin
// status FIFO not empty
if (m_axi_bready && m_axi_bvalid) begin
// got write completion, pop and return status
m_axis_desc_status_tag_next = status_fifo_tag[status_fifo_rd_ptr_reg[STATUS_FIFO_ADDR_WIDTH-1:0]];
m_axis_desc_status_valid_next = status_fifo_last[status_fifo_rd_ptr_reg[STATUS_FIFO_ADDR_WIDTH-1:0]];
status_fifo_rd_ptr_next = status_fifo_rd_ptr_reg + 1;
m_axi_bready_next = 1'b0;
end else begin
// wait for write completion
m_axi_bready_next = 1'b1;
end
end
end
always @(posedge clk) begin
if (rst) begin
read_state_reg <= READ_STATE_IDLE;
axi_state_reg <= AXI_STATE_IDLE;
axi_cmd_valid_reg <= 1'b0;
s_axis_desc_ready_reg <= 1'b0;
m_axis_desc_status_valid_reg <= 1'b0;
m_axi_awvalid_reg <= 1'b0;
m_axi_bready_reg <= 1'b0;
m_axi_arvalid_reg <= 1'b0;
m_axi_rready_reg <= 1'b0;
status_fifo_wr_ptr_reg <= 0;
status_fifo_rd_ptr_reg <= 0;
end else begin
read_state_reg <= read_state_next;
axi_state_reg <= axi_state_next;
axi_cmd_valid_reg <= axi_cmd_valid_next;
s_axis_desc_ready_reg <= s_axis_desc_ready_next;
m_axis_desc_status_valid_reg <= m_axis_desc_status_valid_next;
m_axi_awvalid_reg <= m_axi_awvalid_next;
m_axi_bready_reg <= m_axi_bready_next;
m_axi_arvalid_reg <= m_axi_arvalid_next;
m_axi_rready_reg <= m_axi_rready_next;
if (status_fifo_we) begin
status_fifo_wr_ptr_reg <= status_fifo_wr_ptr_reg + 1;
end
status_fifo_rd_ptr_reg <= status_fifo_rd_ptr_next;
end
m_axis_desc_status_tag_reg <= m_axis_desc_status_tag_next;
m_axi_awaddr_reg <= m_axi_awaddr_next;
m_axi_awlen_reg <= m_axi_awlen_next;
m_axi_araddr_reg <= m_axi_araddr_next;
m_axi_arlen_reg <= m_axi_arlen_next;
read_addr_reg <= read_addr_next;
write_addr_reg <= write_addr_next;
op_word_count_reg <= op_word_count_next;
tr_word_count_reg <= tr_word_count_next;
axi_word_count_reg <= axi_word_count_next;
axi_cmd_addr_reg <= axi_cmd_addr_next;
axi_cmd_offset_reg <= axi_cmd_offset_next;
axi_cmd_first_cycle_offset_reg <= axi_cmd_first_cycle_offset_next;
axi_cmd_last_cycle_offset_reg <= axi_cmd_last_cycle_offset_next;
axi_cmd_input_cycle_count_reg <= axi_cmd_input_cycle_count_next;
axi_cmd_output_cycle_count_reg <= axi_cmd_output_cycle_count_next;
axi_cmd_bubble_cycle_reg <= axi_cmd_bubble_cycle_next;
axi_cmd_last_transfer_reg <= axi_cmd_last_transfer_next;
axi_cmd_tag_reg <= axi_cmd_tag_next;
axi_cmd_valid_reg <= axi_cmd_valid_next;
offset_reg <= offset_next;
first_cycle_offset_reg <= first_cycle_offset_next;
last_cycle_offset_reg <= last_cycle_offset_next;
input_cycle_count_reg <= input_cycle_count_next;
output_cycle_count_reg <= output_cycle_count_next;
input_active_reg <= input_active_next;
output_active_reg <= output_active_next;
bubble_cycle_reg <= bubble_cycle_next;
first_input_cycle_reg <= first_input_cycle_next;
first_output_cycle_reg <= first_output_cycle_next;
output_last_cycle_reg <= output_last_cycle_next;
last_transfer_reg <= last_transfer_next;
tag_reg <= tag_next;
if (transfer_in_save) begin
save_axi_rdata_reg <= m_axi_rdata;
end
if (status_fifo_we) begin
status_fifo_tag[status_fifo_wr_ptr_reg[STATUS_FIFO_ADDR_WIDTH-1:0]] <= status_fifo_wr_tag;
status_fifo_last[status_fifo_wr_ptr_reg[STATUS_FIFO_ADDR_WIDTH-1:0]] <= status_fifo_wr_last;
status_fifo_wr_ptr_reg <= status_fifo_wr_ptr_reg + 1;
end
end
// output datapath logic
reg [AXI_DATA_WIDTH-1:0] m_axi_wdata_reg = {AXI_DATA_WIDTH{1'b0}};
reg [AXI_STRB_WIDTH-1:0] m_axi_wstrb_reg = {AXI_STRB_WIDTH{1'b0}};
reg m_axi_wlast_reg = 1'b0;
reg m_axi_wvalid_reg = 1'b0, m_axi_wvalid_next;
reg [AXI_DATA_WIDTH-1:0] temp_m_axi_wdata_reg = {AXI_DATA_WIDTH{1'b0}};
reg [AXI_STRB_WIDTH-1:0] temp_m_axi_wstrb_reg = {AXI_STRB_WIDTH{1'b0}};
reg temp_m_axi_wlast_reg = 1'b0;
reg temp_m_axi_wvalid_reg = 1'b0, temp_m_axi_wvalid_next;
// datapath control
reg store_axi_w_int_to_output;
reg store_axi_w_int_to_temp;
reg store_axi_w_temp_to_output;
assign m_axi_wdata = m_axi_wdata_reg;
assign m_axi_wstrb = m_axi_wstrb_reg;
assign m_axi_wvalid = m_axi_wvalid_reg;
assign m_axi_wlast = m_axi_wlast_reg;
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
assign m_axi_wready_int_early = m_axi_wready || (!temp_m_axi_wvalid_reg && (!m_axi_wvalid_reg || !m_axi_wvalid_int));
always @* begin
// transfer sink ready state to source
m_axi_wvalid_next = m_axi_wvalid_reg;
temp_m_axi_wvalid_next = temp_m_axi_wvalid_reg;
store_axi_w_int_to_output = 1'b0;
store_axi_w_int_to_temp = 1'b0;
store_axi_w_temp_to_output = 1'b0;
if (m_axi_wready_int_reg) begin
// input is ready
if (m_axi_wready || !m_axi_wvalid_reg) begin
// output is ready or currently not valid, transfer data to output
m_axi_wvalid_next = m_axi_wvalid_int;
store_axi_w_int_to_output = 1'b1;
end else begin
// output is not ready, store input in temp
temp_m_axi_wvalid_next = m_axi_wvalid_int;
store_axi_w_int_to_temp = 1'b1;
end
end else if (m_axi_wready) begin
// input is not ready, but output is ready
m_axi_wvalid_next = temp_m_axi_wvalid_reg;
temp_m_axi_wvalid_next = 1'b0;
store_axi_w_temp_to_output = 1'b1;
end
end
always @(posedge clk) begin
if (rst) begin
m_axi_wvalid_reg <= 1'b0;
m_axi_wready_int_reg <= 1'b0;
temp_m_axi_wvalid_reg <= 1'b0;
end else begin
m_axi_wvalid_reg <= m_axi_wvalid_next;
m_axi_wready_int_reg <= m_axi_wready_int_early;
temp_m_axi_wvalid_reg <= temp_m_axi_wvalid_next;
end
// datapath
if (store_axi_w_int_to_output) begin
m_axi_wdata_reg <= m_axi_wdata_int;
m_axi_wstrb_reg <= m_axi_wstrb_int;
m_axi_wlast_reg <= m_axi_wlast_int;
end else if (store_axi_w_temp_to_output) begin
m_axi_wdata_reg <= temp_m_axi_wdata_reg;
m_axi_wstrb_reg <= temp_m_axi_wstrb_reg;
m_axi_wlast_reg <= temp_m_axi_wlast_reg;
end
if (store_axi_w_int_to_temp) begin
temp_m_axi_wdata_reg <= m_axi_wdata_int;
temp_m_axi_wstrb_reg <= m_axi_wstrb_int;
temp_m_axi_wlast_reg <= m_axi_wlast_int;
end
end
endmodule
/*
Copyright (c) 2019 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* AXI CDMA descriptor mux
*/
module axi_cdma_desc_mux #
(
// Number of ports
parameter PORTS = 2,
// AXI address width
parameter AXI_ADDR_WIDTH = 16,
// Length field width
parameter LEN_WIDTH = 20,
// Input tag field width
parameter S_TAG_WIDTH = 8,
// Output tag field width (towards CDMA module)
// Additional bits required for response routing
parameter M_TAG_WIDTH = S_TAG_WIDTH+$clog2(PORTS),
// arbitration type: "PRIORITY" or "ROUND_ROBIN"
parameter ARB_TYPE = "PRIORITY",
// LSB priority: "LOW", "HIGH"
parameter LSB_PRIORITY = "HIGH"
)
(
input wire clk,
input wire rst,
/*
* Descriptor output (to AXI CDMA core)
*/
output wire [AXI_ADDR_WIDTH-1:0] m_axis_desc_read_addr,
output wire [AXI_ADDR_WIDTH-1:0] m_axis_desc_write_addr,
output wire [LEN_WIDTH-1:0] m_axis_desc_len,
output wire [M_TAG_WIDTH-1:0] m_axis_desc_tag,
output wire m_axis_desc_valid,
input wire m_axis_desc_ready,
/*
* Descriptor status input (from AXI CDMA core)
*/
input wire [M_TAG_WIDTH-1:0] s_axis_desc_status_tag,
input wire s_axis_desc_status_valid,
/*
* Descriptor input
*/
input wire [PORTS*AXI_ADDR_WIDTH-1:0] s_axis_desc_read_addr,
input wire [PORTS*AXI_ADDR_WIDTH-1:0] s_axis_desc_write_addr,
input wire [PORTS*LEN_WIDTH-1:0] s_axis_desc_len,
input wire [PORTS*S_TAG_WIDTH-1:0] s_axis_desc_tag,
input wire [PORTS-1:0] s_axis_desc_valid,
output wire [PORTS-1:0] s_axis_desc_ready,
/*
* Descriptor status output
*/
output wire [PORTS*S_TAG_WIDTH-1:0] m_axis_desc_status_tag,
output wire [PORTS-1:0] m_axis_desc_status_valid
);
parameter CL_PORTS = $clog2(PORTS);
// check configuration
initial begin
if (M_TAG_WIDTH < S_TAG_WIDTH+$clog2(PORTS)) begin
$error("Error: M_TAG_WIDTH must be at least $clog2(PORTS) larger than S_TAG_WIDTH (instance %m)");
$finish;
end
end
// descriptor mux
wire [PORTS-1:0] request;
wire [PORTS-1:0] acknowledge;
wire [PORTS-1:0] grant;
wire grant_valid;
wire [CL_PORTS-1:0] grant_encoded;
// internal datapath
reg [AXI_ADDR_WIDTH-1:0] m_axis_desc_read_addr_int;
reg [AXI_ADDR_WIDTH-1:0] m_axis_desc_write_addr_int;
reg [LEN_WIDTH-1:0] m_axis_desc_len_int;
reg [M_TAG_WIDTH-1:0] m_axis_desc_tag_int;
reg m_axis_desc_valid_int;
reg m_axis_desc_ready_int_reg = 1'b0;
wire m_axis_desc_ready_int_early;
assign s_axis_desc_ready = (m_axis_desc_ready_int_reg && grant_valid) << grant_encoded;
// mux for incoming packet
wire [AXI_ADDR_WIDTH-1:0] current_s_desc_read_addr = s_axis_desc_read_addr[grant_encoded*AXI_ADDR_WIDTH +: AXI_ADDR_WIDTH];
wire [AXI_ADDR_WIDTH-1:0] current_s_desc_write_addr = s_axis_desc_write_addr[grant_encoded*AXI_ADDR_WIDTH +: AXI_ADDR_WIDTH];
wire [LEN_WIDTH-1:0] current_s_desc_len = s_axis_desc_len[grant_encoded*LEN_WIDTH +: LEN_WIDTH];
wire [S_TAG_WIDTH-1:0] current_s_desc_tag = s_axis_desc_tag[grant_encoded*S_TAG_WIDTH +: S_TAG_WIDTH];
wire current_s_desc_valid = s_axis_desc_valid[grant_encoded];
wire current_s_desc_ready = s_axis_desc_ready[grant_encoded];
// arbiter instance
arbiter #(
.PORTS(PORTS),
.TYPE(ARB_TYPE),
.BLOCK("ACKNOWLEDGE"),
.LSB_PRIORITY(LSB_PRIORITY)
)
arb_inst (
.clk(clk),
.rst(rst),
.request(request),
.acknowledge(acknowledge),
.grant(grant),
.grant_valid(grant_valid),
.grant_encoded(grant_encoded)
);
assign request = s_axis_desc_valid & ~grant;
assign acknowledge = grant & s_axis_desc_valid & s_axis_desc_ready;
always @* begin
m_axis_desc_read_addr_int = current_s_desc_read_addr;
m_axis_desc_write_addr_int = current_s_desc_write_addr;
m_axis_desc_len_int = current_s_desc_len;
m_axis_desc_tag_int = {grant_encoded, current_s_desc_tag};
m_axis_desc_valid_int = current_s_desc_valid && m_axis_desc_ready_int_reg && grant_valid;
end
// output datapath logic
reg [AXI_ADDR_WIDTH-1:0] m_axis_desc_read_addr_reg = {AXI_ADDR_WIDTH{1'b0}};
reg [AXI_ADDR_WIDTH-1:0] m_axis_desc_write_addr_reg = {AXI_ADDR_WIDTH{1'b0}};
reg [LEN_WIDTH-1:0] m_axis_desc_len_reg = {LEN_WIDTH{1'b0}};
reg [M_TAG_WIDTH-1:0] m_axis_desc_tag_reg = {M_TAG_WIDTH{1'b0}};
reg m_axis_desc_valid_reg = 1'b0, m_axis_desc_valid_next;
reg [AXI_ADDR_WIDTH-1:0] temp_m_axis_desc_read_addr_reg = {AXI_ADDR_WIDTH{1'b0}};
reg [AXI_ADDR_WIDTH-1:0] temp_m_axis_desc_write_addr_reg = {AXI_ADDR_WIDTH{1'b0}};
reg [LEN_WIDTH-1:0] temp_m_axis_desc_len_reg = {LEN_WIDTH{1'b0}};
reg [M_TAG_WIDTH-1:0] temp_m_axis_desc_tag_reg = {M_TAG_WIDTH{1'b0}};
reg temp_m_axis_desc_valid_reg = 1'b0, temp_m_axis_desc_valid_next;
// datapath control
reg store_axis_int_to_output;
reg store_axis_int_to_temp;
reg store_axis_temp_to_output;
assign m_axis_desc_read_addr = m_axis_desc_read_addr_reg;
assign m_axis_desc_write_addr = m_axis_desc_write_addr_reg;
assign m_axis_desc_len = m_axis_desc_len_reg;
assign m_axis_desc_tag = m_axis_desc_tag_reg;
assign m_axis_desc_valid = m_axis_desc_valid_reg;
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
assign m_axis_desc_ready_int_early = m_axis_desc_ready || (!temp_m_axis_desc_valid_reg && (!m_axis_desc_valid_reg || !m_axis_desc_valid_int));
always @* begin
// transfer sink ready state to source
m_axis_desc_valid_next = m_axis_desc_valid_reg;
temp_m_axis_desc_valid_next = temp_m_axis_desc_valid_reg;
store_axis_int_to_output = 1'b0;
store_axis_int_to_temp = 1'b0;
store_axis_temp_to_output = 1'b0;
if (m_axis_desc_ready_int_reg) begin
// input is ready
if (m_axis_desc_ready || !m_axis_desc_valid_reg) begin
// output is ready or currently not valid, transfer data to output
m_axis_desc_valid_next = m_axis_desc_valid_int;
store_axis_int_to_output = 1'b1;
end else begin
// output is not ready, store input in temp
temp_m_axis_desc_valid_next = m_axis_desc_valid_int;
store_axis_int_to_temp = 1'b1;
end
end else if (m_axis_desc_ready) begin
// input is not ready, but output is ready
m_axis_desc_valid_next = temp_m_axis_desc_valid_reg;
temp_m_axis_desc_valid_next = 1'b0;
store_axis_temp_to_output = 1'b1;
end
end
always @(posedge clk) begin
if (rst) begin
m_axis_desc_valid_reg <= 1'b0;
m_axis_desc_ready_int_reg <= 1'b0;
temp_m_axis_desc_valid_reg <= 1'b0;
end else begin
m_axis_desc_valid_reg <= m_axis_desc_valid_next;
m_axis_desc_ready_int_reg <= m_axis_desc_ready_int_early;
temp_m_axis_desc_valid_reg <= temp_m_axis_desc_valid_next;
end
// datapath
if (store_axis_int_to_output) begin
m_axis_desc_read_addr_reg <= m_axis_desc_read_addr_int;
m_axis_desc_write_addr_reg <= m_axis_desc_write_addr_int;
m_axis_desc_len_reg <= m_axis_desc_len_int;
m_axis_desc_tag_reg <= m_axis_desc_tag_int;
end else if (store_axis_temp_to_output) begin
m_axis_desc_read_addr_reg <= temp_m_axis_desc_read_addr_reg;
m_axis_desc_write_addr_reg <= temp_m_axis_desc_write_addr_reg;
m_axis_desc_len_reg <= temp_m_axis_desc_len_reg;
m_axis_desc_tag_reg <= temp_m_axis_desc_tag_reg;
end
if (store_axis_int_to_temp) begin
temp_m_axis_desc_read_addr_reg <= m_axis_desc_read_addr_int;
temp_m_axis_desc_write_addr_reg <= m_axis_desc_write_addr_int;
temp_m_axis_desc_len_reg <= m_axis_desc_len_int;
temp_m_axis_desc_tag_reg <= m_axis_desc_tag_int;
end
end
// descriptor status demux
reg [S_TAG_WIDTH-1:0] m_axis_desc_status_tag_reg = {S_TAG_WIDTH{1'b0}};
reg [PORTS-1:0] m_axis_desc_status_valid_reg = {PORTS{1'b0}};
assign m_axis_desc_status_tag = {PORTS{m_axis_desc_status_tag_reg}};
assign m_axis_desc_status_valid = m_axis_desc_status_valid_reg;
always @(posedge clk) begin
if (rst) begin
m_axis_desc_status_valid_reg <= {PORTS{1'b0}};
end else begin
m_axis_desc_status_valid_reg <= s_axis_desc_status_valid << (PORTS > 1 ? s_axis_desc_status_tag[S_TAG_WIDTH+CL_PORTS-1:S_TAG_WIDTH] : 0);
end
m_axis_desc_status_tag_reg <= s_axis_desc_status_tag;
end
endmodule
/*
Copyright (c) 2018 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* AXI4 crossbar
*/
module axi_crossbar #
(
// Number of AXI inputs (slave interfaces)
parameter S_COUNT = 4,
// Number of AXI outputs (master interfaces)
parameter M_COUNT = 4,
// Width of data bus in bits
parameter DATA_WIDTH = 32,
// Width of address bus in bits
parameter ADDR_WIDTH = 32,
// Width of wstrb (width of data bus in words)
parameter STRB_WIDTH = (DATA_WIDTH/8),
// Input ID field width (from AXI masters)
parameter S_ID_WIDTH = 8,
// Output ID field width (towards AXI slaves)
// Additional bits required for response routing
parameter M_ID_WIDTH = S_ID_WIDTH+$clog2(S_COUNT),
// Propagate awuser signal
parameter AWUSER_ENABLE = 0,
// Width of awuser signal
parameter AWUSER_WIDTH = 1,
// Propagate wuser signal
parameter WUSER_ENABLE = 0,
// Width of wuser signal
parameter WUSER_WIDTH = 1,
// Propagate buser signal
parameter BUSER_ENABLE = 0,
// Width of buser signal
parameter BUSER_WIDTH = 1,
// Propagate aruser signal
parameter ARUSER_ENABLE = 0,
// Width of aruser signal
parameter ARUSER_WIDTH = 1,
// Propagate ruser signal
parameter RUSER_ENABLE = 0,
// Width of ruser signal
parameter RUSER_WIDTH = 1,
// Number of concurrent unique IDs for each slave interface
// S_COUNT concatenated fields of 32 bits
parameter S_THREADS = {S_COUNT{32'd2}},
// Number of concurrent operations for each slave interface
// S_COUNT concatenated fields of 32 bits
parameter S_ACCEPT = {S_COUNT{32'd16}},
// Number of regions per master interface
parameter M_REGIONS = 1,
// Master interface base addresses
// M_COUNT concatenated fields of M_REGIONS concatenated fields of ADDR_WIDTH bits
// set to zero for default addressing based on M_ADDR_WIDTH
parameter M_BASE_ADDR = 0,
// Master interface address widths
// M_COUNT concatenated fields of M_REGIONS concatenated fields of 32 bits
parameter M_ADDR_WIDTH = {M_COUNT{{M_REGIONS{32'd24}}}},
// Read connections between interfaces
// M_COUNT concatenated fields of S_COUNT bits
parameter M_CONNECT_READ = {M_COUNT{{S_COUNT{1'b1}}}},
// Write connections between interfaces
// M_COUNT concatenated fields of S_COUNT bits
parameter M_CONNECT_WRITE = {M_COUNT{{S_COUNT{1'b1}}}},
// Number of concurrent operations for each master interface
// M_COUNT concatenated fields of 32 bits
parameter M_ISSUE = {M_COUNT{32'd4}},
// Secure master (fail operations based on awprot/arprot)
// M_COUNT bits
parameter M_SECURE = {M_COUNT{1'b0}},
// Slave interface AW channel register type (input)
// 0 to bypass, 1 for simple buffer, 2 for skid buffer
parameter S_AW_REG_TYPE = {S_COUNT{2'd0}},
// Slave interface W channel register type (input)
// 0 to bypass, 1 for simple buffer, 2 for skid buffer
parameter S_W_REG_TYPE = {S_COUNT{2'd0}},
// Slave interface B channel register type (output)
// 0 to bypass, 1 for simple buffer, 2 for skid buffer
parameter S_B_REG_TYPE = {S_COUNT{2'd1}},
// Slave interface AR channel register type (input)
// 0 to bypass, 1 for simple buffer, 2 for skid buffer
parameter S_AR_REG_TYPE = {S_COUNT{2'd0}},
// Slave interface R channel register type (output)
// 0 to bypass, 1 for simple buffer, 2 for skid buffer
parameter S_R_REG_TYPE = {S_COUNT{2'd2}},
// Master interface AW channel register type (output)
// 0 to bypass, 1 for simple buffer, 2 for skid buffer
parameter M_AW_REG_TYPE = {M_COUNT{2'd1}},
// Master interface W channel register type (output)
// 0 to bypass, 1 for simple buffer, 2 for skid buffer
parameter M_W_REG_TYPE = {M_COUNT{2'd2}},
// Master interface B channel register type (input)
// 0 to bypass, 1 for simple buffer, 2 for skid buffer
parameter M_B_REG_TYPE = {M_COUNT{2'd0}},
// Master interface AR channel register type (output)
// 0 to bypass, 1 for simple buffer, 2 for skid buffer
parameter M_AR_REG_TYPE = {M_COUNT{2'd1}},
// Master interface R channel register type (input)
// 0 to bypass, 1 for simple buffer, 2 for skid buffer
parameter M_R_REG_TYPE = {M_COUNT{2'd0}}
)
(
input wire clk,
input wire rst,
/*
* AXI slave interfaces
*/
input wire [S_COUNT*S_ID_WIDTH-1:0] s_axi_awid,
input wire [S_COUNT*ADDR_WIDTH-1:0] s_axi_awaddr,
input wire [S_COUNT*8-1:0] s_axi_awlen,
input wire [S_COUNT*3-1:0] s_axi_awsize,
input wire [S_COUNT*2-1:0] s_axi_awburst,
input wire [S_COUNT-1:0] s_axi_awlock,
input wire [S_COUNT*4-1:0] s_axi_awcache,
input wire [S_COUNT*3-1:0] s_axi_awprot,
input wire [S_COUNT*4-1:0] s_axi_awqos,
input wire [S_COUNT*AWUSER_WIDTH-1:0] s_axi_awuser,
input wire [S_COUNT-1:0] s_axi_awvalid,
output wire [S_COUNT-1:0] s_axi_awready,
input wire [S_COUNT*DATA_WIDTH-1:0] s_axi_wdata,
input wire [S_COUNT*STRB_WIDTH-1:0] s_axi_wstrb,
input wire [S_COUNT-1:0] s_axi_wlast,
input wire [S_COUNT*WUSER_WIDTH-1:0] s_axi_wuser,
input wire [S_COUNT-1:0] s_axi_wvalid,
output wire [S_COUNT-1:0] s_axi_wready,
output wire [S_COUNT*S_ID_WIDTH-1:0] s_axi_bid,
output wire [S_COUNT*2-1:0] s_axi_bresp,
output wire [S_COUNT*BUSER_WIDTH-1:0] s_axi_buser,
output wire [S_COUNT-1:0] s_axi_bvalid,
input wire [S_COUNT-1:0] s_axi_bready,
input wire [S_COUNT*S_ID_WIDTH-1:0] s_axi_arid,
input wire [S_COUNT*ADDR_WIDTH-1:0] s_axi_araddr,
input wire [S_COUNT*8-1:0] s_axi_arlen,
input wire [S_COUNT*3-1:0] s_axi_arsize,
input wire [S_COUNT*2-1:0] s_axi_arburst,
input wire [S_COUNT-1:0] s_axi_arlock,
input wire [S_COUNT*4-1:0] s_axi_arcache,
input wire [S_COUNT*3-1:0] s_axi_arprot,
input wire [S_COUNT*4-1:0] s_axi_arqos,
input wire [S_COUNT*ARUSER_WIDTH-1:0] s_axi_aruser,
input wire [S_COUNT-1:0] s_axi_arvalid,
output wire [S_COUNT-1:0] s_axi_arready,
output wire [S_COUNT*S_ID_WIDTH-1:0] s_axi_rid,
output wire [S_COUNT*DATA_WIDTH-1:0] s_axi_rdata,
output wire [S_COUNT*2-1:0] s_axi_rresp,
output wire [S_COUNT-1:0] s_axi_rlast,
output wire [S_COUNT*RUSER_WIDTH-1:0] s_axi_ruser,
output wire [S_COUNT-1:0] s_axi_rvalid,
input wire [S_COUNT-1:0] s_axi_rready,
/*
* AXI master interfaces
*/
output wire [M_COUNT*M_ID_WIDTH-1:0] m_axi_awid,
output wire [M_COUNT*ADDR_WIDTH-1:0] m_axi_awaddr,
output wire [M_COUNT*8-1:0] m_axi_awlen,
output wire [M_COUNT*3-1:0] m_axi_awsize,
output wire [M_COUNT*2-1:0] m_axi_awburst,
output wire [M_COUNT-1:0] m_axi_awlock,
output wire [M_COUNT*4-1:0] m_axi_awcache,
output wire [M_COUNT*3-1:0] m_axi_awprot,
output wire [M_COUNT*4-1:0] m_axi_awqos,
output wire [M_COUNT*4-1:0] m_axi_awregion,
output wire [M_COUNT*AWUSER_WIDTH-1:0] m_axi_awuser,
output wire [M_COUNT-1:0] m_axi_awvalid,
input wire [M_COUNT-1:0] m_axi_awready,
output wire [M_COUNT*DATA_WIDTH-1:0] m_axi_wdata,
output wire [M_COUNT*STRB_WIDTH-1:0] m_axi_wstrb,
output wire [M_COUNT-1:0] m_axi_wlast,
output wire [M_COUNT*WUSER_WIDTH-1:0] m_axi_wuser,
output wire [M_COUNT-1:0] m_axi_wvalid,
input wire [M_COUNT-1:0] m_axi_wready,
input wire [M_COUNT*M_ID_WIDTH-1:0] m_axi_bid,
input wire [M_COUNT*2-1:0] m_axi_bresp,
input wire [M_COUNT*BUSER_WIDTH-1:0] m_axi_buser,
input wire [M_COUNT-1:0] m_axi_bvalid,
output wire [M_COUNT-1:0] m_axi_bready,
output wire [M_COUNT*M_ID_WIDTH-1:0] m_axi_arid,
output wire [M_COUNT*ADDR_WIDTH-1:0] m_axi_araddr,
output wire [M_COUNT*8-1:0] m_axi_arlen,
output wire [M_COUNT*3-1:0] m_axi_arsize,
output wire [M_COUNT*2-1:0] m_axi_arburst,
output wire [M_COUNT-1:0] m_axi_arlock,
output wire [M_COUNT*4-1:0] m_axi_arcache,
output wire [M_COUNT*3-1:0] m_axi_arprot,
output wire [M_COUNT*4-1:0] m_axi_arqos,
output wire [M_COUNT*4-1:0] m_axi_arregion,
output wire [M_COUNT*ARUSER_WIDTH-1:0] m_axi_aruser,
output wire [M_COUNT-1:0] m_axi_arvalid,
input wire [M_COUNT-1:0] m_axi_arready,
input wire [M_COUNT*M_ID_WIDTH-1:0] m_axi_rid,
input wire [M_COUNT*DATA_WIDTH-1:0] m_axi_rdata,
input wire [M_COUNT*2-1:0] m_axi_rresp,
input wire [M_COUNT-1:0] m_axi_rlast,
input wire [M_COUNT*RUSER_WIDTH-1:0] m_axi_ruser,
input wire [M_COUNT-1:0] m_axi_rvalid,
output wire [M_COUNT-1:0] m_axi_rready
);
axi_crossbar_wr #(
.S_COUNT(S_COUNT),
.M_COUNT(M_COUNT),
.DATA_WIDTH(DATA_WIDTH),
.ADDR_WIDTH(ADDR_WIDTH),
.STRB_WIDTH(STRB_WIDTH),
.S_ID_WIDTH(S_ID_WIDTH),
.M_ID_WIDTH(M_ID_WIDTH),
.AWUSER_ENABLE(AWUSER_ENABLE),
.AWUSER_WIDTH(AWUSER_WIDTH),
.WUSER_ENABLE(WUSER_ENABLE),
.WUSER_WIDTH(WUSER_WIDTH),
.BUSER_ENABLE(BUSER_ENABLE),
.BUSER_WIDTH(BUSER_WIDTH),
.S_THREADS(S_THREADS),
.S_ACCEPT(S_ACCEPT),
.M_REGIONS(M_REGIONS),
.M_BASE_ADDR(M_BASE_ADDR),
.M_ADDR_WIDTH(M_ADDR_WIDTH),
.M_CONNECT(M_CONNECT_WRITE),
.M_ISSUE(M_ISSUE),
.M_SECURE(M_SECURE),
.S_AW_REG_TYPE(S_AW_REG_TYPE),
.S_W_REG_TYPE (S_W_REG_TYPE),
.S_B_REG_TYPE (S_B_REG_TYPE)
)
axi_crossbar_wr_inst (
.clk(clk),
.rst(rst),
/*
* AXI slave interfaces
*/
.s_axi_awid(s_axi_awid),
.s_axi_awaddr(s_axi_awaddr),
.s_axi_awlen(s_axi_awlen),
.s_axi_awsize(s_axi_awsize),
.s_axi_awburst(s_axi_awburst),
.s_axi_awlock(s_axi_awlock),
.s_axi_awcache(s_axi_awcache),
.s_axi_awprot(s_axi_awprot),
.s_axi_awqos(s_axi_awqos),
.s_axi_awuser(s_axi_awuser),
.s_axi_awvalid(s_axi_awvalid),
.s_axi_awready(s_axi_awready),
.s_axi_wdata(s_axi_wdata),
.s_axi_wstrb(s_axi_wstrb),
.s_axi_wlast(s_axi_wlast),
.s_axi_wuser(s_axi_wuser),
.s_axi_wvalid(s_axi_wvalid),
.s_axi_wready(s_axi_wready),
.s_axi_bid(s_axi_bid),
.s_axi_bresp(s_axi_bresp),
.s_axi_buser(s_axi_buser),
.s_axi_bvalid(s_axi_bvalid),
.s_axi_bready(s_axi_bready),
/*
* AXI master interfaces
*/
.m_axi_awid(m_axi_awid),
.m_axi_awaddr(m_axi_awaddr),
.m_axi_awlen(m_axi_awlen),
.m_axi_awsize(m_axi_awsize),
.m_axi_awburst(m_axi_awburst),
.m_axi_awlock(m_axi_awlock),
.m_axi_awcache(m_axi_awcache),
.m_axi_awprot(m_axi_awprot),
.m_axi_awqos(m_axi_awqos),
.m_axi_awregion(m_axi_awregion),
.m_axi_awuser(m_axi_awuser),
.m_axi_awvalid(m_axi_awvalid),
.m_axi_awready(m_axi_awready),
.m_axi_wdata(m_axi_wdata),
.m_axi_wstrb(m_axi_wstrb),
.m_axi_wlast(m_axi_wlast),
.m_axi_wuser(m_axi_wuser),
.m_axi_wvalid(m_axi_wvalid),
.m_axi_wready(m_axi_wready),
.m_axi_bid(m_axi_bid),
.m_axi_bresp(m_axi_bresp),
.m_axi_buser(m_axi_buser),
.m_axi_bvalid(m_axi_bvalid),
.m_axi_bready(m_axi_bready)
);
axi_crossbar_rd #(
.S_COUNT(S_COUNT),
.M_COUNT(M_COUNT),
.DATA_WIDTH(DATA_WIDTH),
.ADDR_WIDTH(ADDR_WIDTH),
.STRB_WIDTH(STRB_WIDTH),
.S_ID_WIDTH(S_ID_WIDTH),
.M_ID_WIDTH(M_ID_WIDTH),
.ARUSER_ENABLE(ARUSER_ENABLE),
.ARUSER_WIDTH(ARUSER_WIDTH),
.RUSER_ENABLE(RUSER_ENABLE),
.RUSER_WIDTH(RUSER_WIDTH),
.S_THREADS(S_THREADS),
.S_ACCEPT(S_ACCEPT),
.M_REGIONS(M_REGIONS),
.M_BASE_ADDR(M_BASE_ADDR),
.M_ADDR_WIDTH(M_ADDR_WIDTH),
.M_CONNECT(M_CONNECT_READ),
.M_ISSUE(M_ISSUE),
.M_SECURE(M_SECURE),
.S_AR_REG_TYPE(S_AR_REG_TYPE),
.S_R_REG_TYPE (S_R_REG_TYPE)
)
axi_crossbar_rd_inst (
.clk(clk),
.rst(rst),
/*
* AXI slave interfaces
*/
.s_axi_arid(s_axi_arid),
.s_axi_araddr(s_axi_araddr),
.s_axi_arlen(s_axi_arlen),
.s_axi_arsize(s_axi_arsize),
.s_axi_arburst(s_axi_arburst),
.s_axi_arlock(s_axi_arlock),
.s_axi_arcache(s_axi_arcache),
.s_axi_arprot(s_axi_arprot),
.s_axi_arqos(s_axi_arqos),
.s_axi_aruser(s_axi_aruser),
.s_axi_arvalid(s_axi_arvalid),
.s_axi_arready(s_axi_arready),
.s_axi_rid(s_axi_rid),
.s_axi_rdata(s_axi_rdata),
.s_axi_rresp(s_axi_rresp),
.s_axi_rlast(s_axi_rlast),
.s_axi_ruser(s_axi_ruser),
.s_axi_rvalid(s_axi_rvalid),
.s_axi_rready(s_axi_rready),
/*
* AXI master interfaces
*/
.m_axi_arid(m_axi_arid),
.m_axi_araddr(m_axi_araddr),
.m_axi_arlen(m_axi_arlen),
.m_axi_arsize(m_axi_arsize),
.m_axi_arburst(m_axi_arburst),
.m_axi_arlock(m_axi_arlock),
.m_axi_arcache(m_axi_arcache),
.m_axi_arprot(m_axi_arprot),
.m_axi_arqos(m_axi_arqos),
.m_axi_arregion(m_axi_arregion),
.m_axi_aruser(m_axi_aruser),
.m_axi_arvalid(m_axi_arvalid),
.m_axi_arready(m_axi_arready),
.m_axi_rid(m_axi_rid),
.m_axi_rdata(m_axi_rdata),
.m_axi_rresp(m_axi_rresp),
.m_axi_rlast(m_axi_rlast),
.m_axi_ruser(m_axi_ruser),
.m_axi_rvalid(m_axi_rvalid),
.m_axi_rready(m_axi_rready)
);
endmodule
/*
Copyright (c) 2018 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* AXI4 crossbar address decode and admission control
*/
module axi_crossbar_addr #
(
// Slave interface index
parameter S = 0,
// Number of AXI inputs (slave interfaces)
parameter S_COUNT = 4,
// Number of AXI outputs (master interfaces)
parameter M_COUNT = 4,
// Width of address bus in bits
parameter ADDR_WIDTH = 32,
// ID field width
parameter ID_WIDTH = 8,
// Number of concurrent unique IDs
parameter S_THREADS = 32'd2,
// Number of concurrent operations
parameter S_ACCEPT = 32'd16,
// Number of regions per master interface
parameter M_REGIONS = 1,
// Master interface base addresses
// M_COUNT concatenated fields of M_REGIONS concatenated fields of ADDR_WIDTH bits
// set to zero for default addressing based on M_ADDR_WIDTH
parameter M_BASE_ADDR = 0,
// Master interface address widths
// M_COUNT concatenated fields of M_REGIONS concatenated fields of 32 bits
parameter M_ADDR_WIDTH = {M_COUNT{{M_REGIONS{32'd24}}}},
// Connections between interfaces
// M_COUNT concatenated fields of S_COUNT bits
parameter M_CONNECT = {M_COUNT{{S_COUNT{1'b1}}}},
// Secure master (fail operations based on awprot/arprot)
// M_COUNT bits
parameter M_SECURE = {M_COUNT{1'b0}},
// Enable write command output
parameter WC_OUTPUT = 0
)
(
input wire clk,
input wire rst,
/*
* Address input
*/
input wire [ID_WIDTH-1:0] s_axi_aid,
input wire [ADDR_WIDTH-1:0] s_axi_aaddr,
input wire [2:0] s_axi_aprot,
input wire [3:0] s_axi_aqos,
input wire s_axi_avalid,
output wire s_axi_aready,
/*
* Address output
*/
output wire [3:0] m_axi_aregion,
output wire [$clog2(M_COUNT)-1:0] m_select,
output wire m_axi_avalid,
input wire m_axi_aready,
/*
* Write command output
*/
output wire [$clog2(M_COUNT)-1:0] m_wc_select,
output wire m_wc_decerr,
output wire m_wc_valid,
input wire m_wc_ready,
/*
* Reply command output
*/
output wire m_rc_decerr,
output wire m_rc_valid,
input wire m_rc_ready,
/*
* Completion input
*/
input wire [ID_WIDTH-1:0] s_cpl_id,
input wire s_cpl_valid
);
parameter CL_S_COUNT = $clog2(S_COUNT);
parameter CL_M_COUNT = $clog2(M_COUNT);
parameter S_INT_THREADS = S_THREADS > S_ACCEPT ? S_ACCEPT : S_THREADS;
parameter CL_S_INT_THREADS = $clog2(S_INT_THREADS);
parameter CL_S_ACCEPT = $clog2(S_ACCEPT);
// default address computation
function [M_COUNT*M_REGIONS*ADDR_WIDTH-1:0] calcBaseAddrs(input [31:0] dummy);
integer i;
reg [ADDR_WIDTH-1:0] base;
begin
calcBaseAddrs = {M_COUNT*M_REGIONS*ADDR_WIDTH{1'b0}};
base = 0;
for (i = 1; i < M_COUNT*M_REGIONS; i = i + 1) begin
if (M_ADDR_WIDTH[i*32 +: 32]) begin
base = base + 2**M_ADDR_WIDTH[(i-1)*32 +: 32]; // increment
base = base - (base % 2**M_ADDR_WIDTH[i*32 +: 32]); // align
calcBaseAddrs[i * ADDR_WIDTH +: ADDR_WIDTH] = base;
end
end
end
endfunction
parameter M_BASE_ADDR_INT = M_BASE_ADDR ? M_BASE_ADDR : calcBaseAddrs(0);
integer i, j;
// check configuration
initial begin
if (S_ACCEPT < 1) begin
$error("Error: need at least 1 accept (instance %m)");
$finish;
end
if (S_THREADS < 1) begin
$error("Error: need at least 1 thread (instance %m)");
$finish;
end
if (S_THREADS > S_ACCEPT) begin
$warning("Warning: requested thread count larger than accept count; limiting thread count to accept count (instance %m)");
end
if (M_REGIONS < 1) begin
$error("Error: need at least 1 region (instance %m)");
$finish;
end
for (i = 0; i < M_COUNT*M_REGIONS; i = i + 1) begin
if (M_ADDR_WIDTH[i*32 +: 32] && (M_ADDR_WIDTH[i*32 +: 32] < 12 || M_ADDR_WIDTH[i*32 +: 32] > ADDR_WIDTH)) begin
$error("Error: address width out of range (instance %m)");
$finish;
end
end
$display("Addressing configuration for axi_crossbar_addr instance %m");
for (i = 0; i < M_COUNT*M_REGIONS; i = i + 1) begin
if (M_ADDR_WIDTH[i*32 +: 32]) begin
$display("%2d (%2d): %x / %02d -- %x-%x", i/M_REGIONS, i%M_REGIONS, M_BASE_ADDR_INT[i*ADDR_WIDTH +: ADDR_WIDTH], M_ADDR_WIDTH[i*32 +: 32], M_BASE_ADDR_INT[i*ADDR_WIDTH +: ADDR_WIDTH] & ({ADDR_WIDTH{1'b1}} << M_ADDR_WIDTH[i*32 +: 32]), M_BASE_ADDR_INT[i*ADDR_WIDTH +: ADDR_WIDTH] | ({ADDR_WIDTH{1'b1}} >> (ADDR_WIDTH - M_ADDR_WIDTH[i*32 +: 32])));
end
end
for (i = 0; i < M_COUNT*M_REGIONS; i = i + 1) begin
for (j = i+1; j < M_COUNT*M_REGIONS; j = j + 1) begin
if (M_ADDR_WIDTH[i*32 +: 32] && M_ADDR_WIDTH[j*32 +: 32]) begin
if (((M_BASE_ADDR_INT[i*ADDR_WIDTH +: ADDR_WIDTH] & ({ADDR_WIDTH{1'b1}} << M_ADDR_WIDTH[i*32 +: 32])) <= (M_BASE_ADDR_INT[j*ADDR_WIDTH +: ADDR_WIDTH] | ({ADDR_WIDTH{1'b1}} >> (ADDR_WIDTH - M_ADDR_WIDTH[j*32 +: 32])))) && ((M_BASE_ADDR_INT[j*ADDR_WIDTH +: ADDR_WIDTH] & ({ADDR_WIDTH{1'b1}} << M_ADDR_WIDTH[j*32 +: 32])) <= (M_BASE_ADDR_INT[i*ADDR_WIDTH +: ADDR_WIDTH] | ({ADDR_WIDTH{1'b1}} >> (ADDR_WIDTH - M_ADDR_WIDTH[i*32 +: 32]))))) begin
$display("Overlapping regions:");
$display("%2d (%2d): %x / %2d -- %x-%x", i/M_REGIONS, i%M_REGIONS, M_BASE_ADDR_INT[i*ADDR_WIDTH +: ADDR_WIDTH], M_ADDR_WIDTH[i*32 +: 32], M_BASE_ADDR_INT[i*ADDR_WIDTH +: ADDR_WIDTH] & ({ADDR_WIDTH{1'b1}} << M_ADDR_WIDTH[i*32 +: 32]), M_BASE_ADDR_INT[i*ADDR_WIDTH +: ADDR_WIDTH] | ({ADDR_WIDTH{1'b1}} >> (ADDR_WIDTH - M_ADDR_WIDTH[i*32 +: 32])));
$display("%2d (%2d): %x / %2d -- %x-%x", j/M_REGIONS, j%M_REGIONS, M_BASE_ADDR_INT[j*ADDR_WIDTH +: ADDR_WIDTH], M_ADDR_WIDTH[j*32 +: 32], M_BASE_ADDR_INT[j*ADDR_WIDTH +: ADDR_WIDTH] & ({ADDR_WIDTH{1'b1}} << M_ADDR_WIDTH[j*32 +: 32]), M_BASE_ADDR_INT[j*ADDR_WIDTH +: ADDR_WIDTH] | ({ADDR_WIDTH{1'b1}} >> (ADDR_WIDTH - M_ADDR_WIDTH[j*32 +: 32])));
$error("Error: address ranges overlap (instance %m)");
$finish;
end
end
end
end
end
localparam [2:0]
STATE_IDLE = 3'd0,
STATE_DECODE = 3'd1;
reg [2:0] state_reg = STATE_IDLE, state_next;
reg s_axi_aready_reg = 0, s_axi_aready_next;
reg [3:0] m_axi_aregion_reg = 4'd0, m_axi_aregion_next;
reg [CL_M_COUNT-1:0] m_select_reg = 0, m_select_next;
reg m_axi_avalid_reg = 1'b0, m_axi_avalid_next;
reg m_decerr_reg = 1'b0, m_decerr_next;
reg m_wc_valid_reg = 1'b0, m_wc_valid_next;
reg m_rc_valid_reg = 1'b0, m_rc_valid_next;
assign s_axi_aready = s_axi_aready_reg;
assign m_axi_aregion = m_axi_aregion_reg;
assign m_select = m_select_reg;
assign m_axi_avalid = m_axi_avalid_reg;
assign m_wc_select = m_select_reg;
assign m_wc_decerr = m_decerr_reg;
assign m_wc_valid = m_wc_valid_reg;
assign m_rc_decerr = m_decerr_reg;
assign m_rc_valid = m_rc_valid_reg;
reg match;
reg trans_start;
reg trans_complete;
reg [$clog2(S_ACCEPT+1)-1:0] trans_count_reg = 0;
wire trans_limit = trans_count_reg >= S_ACCEPT && !trans_complete;
// transfer ID thread tracking
reg [ID_WIDTH-1:0] thread_id_reg[S_INT_THREADS-1:0];
reg [CL_M_COUNT-1:0] thread_m_reg[S_INT_THREADS-1:0];
reg [3:0] thread_region_reg[S_INT_THREADS-1:0];
reg [$clog2(S_ACCEPT+1)-1:0] thread_count_reg[S_INT_THREADS-1:0];
wire [S_INT_THREADS-1:0] thread_active;
wire [S_INT_THREADS-1:0] thread_match;
wire [S_INT_THREADS-1:0] thread_match_dest;
wire [S_INT_THREADS-1:0] thread_cpl_match;
wire [S_INT_THREADS-1:0] thread_trans_start;
wire [S_INT_THREADS-1:0] thread_trans_complete;
generate
genvar n;
for (n = 0; n < S_INT_THREADS; n = n + 1) begin
initial begin
thread_count_reg[n] <= 0;
end
assign thread_active[n] = thread_count_reg[n] != 0;
assign thread_match[n] = thread_active[n] && thread_id_reg[n] == s_axi_aid;
assign thread_match_dest[n] = thread_match[n] && thread_m_reg[n] == m_select_next && (M_REGIONS < 2 || thread_region_reg[n] == m_axi_aregion_next);
assign thread_cpl_match[n] = thread_active[n] && thread_id_reg[n] == s_cpl_id;
assign thread_trans_start[n] = (thread_match[n] || (!thread_active[n] && !thread_match && !(thread_trans_start & ({S_INT_THREADS{1'b1}} >> (S_INT_THREADS-n))))) && trans_start;
assign thread_trans_complete[n] = thread_cpl_match[n] && trans_complete;
always @(posedge clk) begin
if (rst) begin
thread_count_reg[n] <= 0;
end else begin
if (thread_trans_start[n] && !thread_trans_complete[n]) begin
thread_count_reg[n] <= thread_count_reg[n] + 1;
end else if (!thread_trans_start[n] && thread_trans_complete[n]) begin
thread_count_reg[n] <= thread_count_reg[n] - 1;
end
end
if (thread_trans_start[n]) begin
thread_id_reg[n] <= s_axi_aid;
thread_m_reg[n] <= m_select_next;
thread_region_reg[n] <= m_axi_aregion_next;
end
end
end
endgenerate
always @* begin
state_next = STATE_IDLE;
match = 1'b0;
trans_start = 1'b0;
trans_complete = 1'b0;
s_axi_aready_next = 1'b0;
m_axi_aregion_next = m_axi_aregion_reg;
m_select_next = m_select_reg;
m_select_next = m_select_reg;
m_axi_avalid_next = m_axi_avalid_reg && !m_axi_aready;
m_decerr_next = m_decerr_reg;
m_wc_valid_next = m_wc_valid_reg && !m_wc_ready;
m_rc_valid_next = m_rc_valid_reg && !m_rc_ready;
case (state_reg)
STATE_IDLE: begin
// idle state, store values
s_axi_aready_next = 1'b0;
if (s_axi_avalid && !s_axi_aready) begin
match = 1'b0;
for (i = 0; i < M_COUNT; i = i + 1) begin
for (j = 0; j < M_REGIONS; j = j + 1) begin
if (M_ADDR_WIDTH[(i*M_REGIONS+j)*32 +: 32] && (!M_SECURE[i] || !s_axi_aprot[1]) && (M_CONNECT & (1 << (S+i*S_COUNT))) && (s_axi_aaddr >> M_ADDR_WIDTH[(i*M_REGIONS+j)*32 +: 32]) == (M_BASE_ADDR_INT[(i*M_REGIONS+j)*ADDR_WIDTH +: ADDR_WIDTH] >> M_ADDR_WIDTH[(i*M_REGIONS+j)*32 +: 32])) begin
m_select_next = i;
m_axi_aregion_next = j;
match = 1'b1;
end
end
end
if (match) begin
// address decode successful
if (!trans_limit && (thread_match_dest || (!(&thread_active) && !thread_match))) begin
// transaction limit not reached
m_axi_avalid_next = 1'b1;
m_decerr_next = 1'b0;
m_wc_valid_next = WC_OUTPUT;
m_rc_valid_next = 1'b0;
trans_start = 1'b1;
state_next = STATE_DECODE;
end else begin
// transaction limit reached; block in idle
state_next = STATE_IDLE;
end
end else begin
// decode error
m_axi_avalid_next = 1'b0;
m_decerr_next = 1'b1;
m_wc_valid_next = WC_OUTPUT;
m_rc_valid_next = 1'b1;
state_next = STATE_DECODE;
end
end else begin
state_next = STATE_IDLE;
end
end
STATE_DECODE: begin
if (!m_axi_avalid_next && (!m_wc_valid_next || !WC_OUTPUT) && !m_rc_valid_next) begin
s_axi_aready_next = 1'b1;
state_next = STATE_IDLE;
end else begin
state_next = STATE_DECODE;
end
end
endcase
// manage completions
trans_complete = s_cpl_valid;
end
always @(posedge clk) begin
if (rst) begin
state_reg <= STATE_IDLE;
s_axi_aready_reg <= 1'b0;
m_axi_avalid_reg <= 1'b0;
m_wc_valid_reg <= 1'b0;
m_rc_valid_reg <= 1'b0;
trans_count_reg <= 0;
end else begin
state_reg <= state_next;
s_axi_aready_reg <= s_axi_aready_next;
m_axi_avalid_reg <= m_axi_avalid_next;
m_wc_valid_reg <= m_wc_valid_next;
m_rc_valid_reg <= m_rc_valid_next;
if (trans_start && !trans_complete) begin
trans_count_reg <= trans_count_reg + 1;
end else if (!trans_start && trans_complete) begin
trans_count_reg <= trans_count_reg - 1;
end
end
m_axi_aregion_reg <= m_axi_aregion_next;
m_select_reg <= m_select_next;
m_decerr_reg <= m_decerr_next;
end
endmodule
/*
Copyright (c) 2018 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* AXI4 crossbar (read)
*/
module axi_crossbar_rd #
(
// Number of AXI inputs (slave interfaces)
parameter S_COUNT = 4,
// Number of AXI outputs (master interfaces)
parameter M_COUNT = 4,
// Width of data bus in bits
parameter DATA_WIDTH = 32,
// Width of address bus in bits
parameter ADDR_WIDTH = 32,
// Width of wstrb (width of data bus in words)
parameter STRB_WIDTH = (DATA_WIDTH/8),
// Input ID field width (from AXI masters)
parameter S_ID_WIDTH = 8,
// Output ID field width (towards AXI slaves)
// Additional bits required for response routing
parameter M_ID_WIDTH = S_ID_WIDTH+$clog2(S_COUNT),
// Propagate aruser signal
parameter ARUSER_ENABLE = 0,
// Width of aruser signal
parameter ARUSER_WIDTH = 1,
// Propagate ruser signal
parameter RUSER_ENABLE = 0,
// Width of ruser signal
parameter RUSER_WIDTH = 1,
// Number of concurrent unique IDs for each slave interface
// S_COUNT concatenated fields of 32 bits
parameter S_THREADS = {S_COUNT{32'd2}},
// Number of concurrent operations for each slave interface
// S_COUNT concatenated fields of 32 bits
parameter S_ACCEPT = {S_COUNT{32'd16}},
// Number of regions per master interface
parameter M_REGIONS = 1,
// Master interface base addresses
// M_COUNT concatenated fields of M_REGIONS concatenated fields of ADDR_WIDTH bits
// set to zero for default addressing based on M_ADDR_WIDTH
parameter M_BASE_ADDR = 0,
// Master interface address widths
// M_COUNT concatenated fields of M_REGIONS concatenated fields of 32 bits
parameter M_ADDR_WIDTH = {M_COUNT{{M_REGIONS{32'd24}}}},
// Read connections between interfaces
// M_COUNT concatenated fields of S_COUNT bits
parameter M_CONNECT = {M_COUNT{{S_COUNT{1'b1}}}},
// Number of concurrent operations for each master interface
// M_COUNT concatenated fields of 32 bits
parameter M_ISSUE = {M_COUNT{32'd4}},
// Secure master (fail operations based on awprot/arprot)
// M_COUNT bits
parameter M_SECURE = {M_COUNT{1'b0}},
// Slave interface AR channel register type (input)
// 0 to bypass, 1 for simple buffer, 2 for skid buffer
parameter S_AR_REG_TYPE = {S_COUNT{2'd0}},
// Slave interface R channel register type (output)
// 0 to bypass, 1 for simple buffer, 2 for skid buffer
parameter S_R_REG_TYPE = {S_COUNT{2'd2}},
// Master interface AR channel register type (output)
// 0 to bypass, 1 for simple buffer, 2 for skid buffer
parameter M_AR_REG_TYPE = {M_COUNT{2'd1}},
// Master interface R channel register type (input)
// 0 to bypass, 1 for simple buffer, 2 for skid buffer
parameter M_R_REG_TYPE = {M_COUNT{2'd0}}
)
(
input wire clk,
input wire rst,
/*
* AXI slave interfaces
*/
input wire [S_COUNT*S_ID_WIDTH-1:0] s_axi_arid,
input wire [S_COUNT*ADDR_WIDTH-1:0] s_axi_araddr,
input wire [S_COUNT*8-1:0] s_axi_arlen,
input wire [S_COUNT*3-1:0] s_axi_arsize,
input wire [S_COUNT*2-1:0] s_axi_arburst,
input wire [S_COUNT-1:0] s_axi_arlock,
input wire [S_COUNT*4-1:0] s_axi_arcache,
input wire [S_COUNT*3-1:0] s_axi_arprot,
input wire [S_COUNT*4-1:0] s_axi_arqos,
input wire [S_COUNT*ARUSER_WIDTH-1:0] s_axi_aruser,
input wire [S_COUNT-1:0] s_axi_arvalid,
output wire [S_COUNT-1:0] s_axi_arready,
output wire [S_COUNT*S_ID_WIDTH-1:0] s_axi_rid,
output wire [S_COUNT*DATA_WIDTH-1:0] s_axi_rdata,
output wire [S_COUNT*2-1:0] s_axi_rresp,
output wire [S_COUNT-1:0] s_axi_rlast,
output wire [S_COUNT*RUSER_WIDTH-1:0] s_axi_ruser,
output wire [S_COUNT-1:0] s_axi_rvalid,
input wire [S_COUNT-1:0] s_axi_rready,
/*
* AXI master interfaces
*/
output wire [M_COUNT*M_ID_WIDTH-1:0] m_axi_arid,
output wire [M_COUNT*ADDR_WIDTH-1:0] m_axi_araddr,
output wire [M_COUNT*8-1:0] m_axi_arlen,
output wire [M_COUNT*3-1:0] m_axi_arsize,
output wire [M_COUNT*2-1:0] m_axi_arburst,
output wire [M_COUNT-1:0] m_axi_arlock,
output wire [M_COUNT*4-1:0] m_axi_arcache,
output wire [M_COUNT*3-1:0] m_axi_arprot,
output wire [M_COUNT*4-1:0] m_axi_arqos,
output wire [M_COUNT*4-1:0] m_axi_arregion,
output wire [M_COUNT*ARUSER_WIDTH-1:0] m_axi_aruser,
output wire [M_COUNT-1:0] m_axi_arvalid,
input wire [M_COUNT-1:0] m_axi_arready,
input wire [M_COUNT*M_ID_WIDTH-1:0] m_axi_rid,
input wire [M_COUNT*DATA_WIDTH-1:0] m_axi_rdata,
input wire [M_COUNT*2-1:0] m_axi_rresp,
input wire [M_COUNT-1:0] m_axi_rlast,
input wire [M_COUNT*RUSER_WIDTH-1:0] m_axi_ruser,
input wire [M_COUNT-1:0] m_axi_rvalid,
output wire [M_COUNT-1:0] m_axi_rready
);
parameter CL_S_COUNT = $clog2(S_COUNT);
parameter CL_M_COUNT = $clog2(M_COUNT);
parameter M_COUNT_P1 = M_COUNT+1;
parameter CL_M_COUNT_P1 = $clog2(M_COUNT_P1);
integer i;
// check configuration
initial begin
if (M_ID_WIDTH < S_ID_WIDTH+$clog2(S_COUNT)) begin
$error("Error: M_ID_WIDTH must be at least $clog2(S_COUNT) larger than S_ID_WIDTH (instance %m)");
$finish;
end
for (i = 0; i < M_COUNT*M_REGIONS; i = i + 1) begin
if (M_ADDR_WIDTH[i*32 +: 32] && (M_ADDR_WIDTH[i*32 +: 32] < 12 || M_ADDR_WIDTH[i*32 +: 32] > ADDR_WIDTH)) begin
$error("Error: value out of range (instance %m)");
$finish;
end
end
end
wire [S_COUNT*S_ID_WIDTH-1:0] int_s_axi_arid;
wire [S_COUNT*ADDR_WIDTH-1:0] int_s_axi_araddr;
wire [S_COUNT*8-1:0] int_s_axi_arlen;
wire [S_COUNT*3-1:0] int_s_axi_arsize;
wire [S_COUNT*2-1:0] int_s_axi_arburst;
wire [S_COUNT-1:0] int_s_axi_arlock;
wire [S_COUNT*4-1:0] int_s_axi_arcache;
wire [S_COUNT*3-1:0] int_s_axi_arprot;
wire [S_COUNT*4-1:0] int_s_axi_arqos;
wire [S_COUNT*4-1:0] int_s_axi_arregion;
wire [S_COUNT*ARUSER_WIDTH-1:0] int_s_axi_aruser;
wire [S_COUNT-1:0] int_s_axi_arvalid;
wire [S_COUNT-1:0] int_s_axi_arready;
wire [S_COUNT*M_COUNT-1:0] int_axi_arvalid;
wire [M_COUNT*S_COUNT-1:0] int_axi_arready;
wire [M_COUNT*M_ID_WIDTH-1:0] int_m_axi_rid;
wire [M_COUNT*DATA_WIDTH-1:0] int_m_axi_rdata;
wire [M_COUNT*2-1:0] int_m_axi_rresp;
wire [M_COUNT-1:0] int_m_axi_rlast;
wire [M_COUNT*RUSER_WIDTH-1:0] int_m_axi_ruser;
wire [M_COUNT-1:0] int_m_axi_rvalid;
wire [M_COUNT-1:0] int_m_axi_rready;
wire [M_COUNT*S_COUNT-1:0] int_axi_rvalid;
wire [S_COUNT*M_COUNT-1:0] int_axi_rready;
generate
genvar m, n;
for (m = 0; m < S_COUNT; m = m + 1) begin : s_ifaces
// address decode and admission control
wire [CL_M_COUNT-1:0] a_select;
wire m_axi_avalid;
wire m_axi_aready;
wire m_rc_decerr;
wire m_rc_valid;
wire m_rc_ready;
wire [S_ID_WIDTH-1:0] s_cpl_id;
wire s_cpl_valid;
axi_crossbar_addr #(
.S(m),
.S_COUNT(S_COUNT),
.M_COUNT(M_COUNT),
.ADDR_WIDTH(ADDR_WIDTH),
.ID_WIDTH(S_ID_WIDTH),
.S_THREADS(S_THREADS[m*32 +: 32]),
.S_ACCEPT(S_ACCEPT[m*32 +: 32]),
.M_REGIONS(M_REGIONS),
.M_BASE_ADDR(M_BASE_ADDR),
.M_ADDR_WIDTH(M_ADDR_WIDTH),
.M_CONNECT(M_CONNECT),
.M_SECURE(M_SECURE),
.WC_OUTPUT(0)
)
addr_inst (
.clk(clk),
.rst(rst),
/*
* Address input
*/
.s_axi_aid(int_s_axi_arid[m*S_ID_WIDTH +: S_ID_WIDTH]),
.s_axi_aaddr(int_s_axi_araddr[m*ADDR_WIDTH +: ADDR_WIDTH]),
.s_axi_aprot(int_s_axi_arprot[m*3 +: 3]),
.s_axi_aqos(int_s_axi_arqos[m*4 +: 4]),
.s_axi_avalid(int_s_axi_arvalid[m]),
.s_axi_aready(int_s_axi_arready[m]),
/*
* Address output
*/
.m_axi_aregion(int_s_axi_arregion[m*4 +: 4]),
.m_select(a_select),
.m_axi_avalid(m_axi_avalid),
.m_axi_aready(m_axi_aready),
/*
* Write command output
*/
.m_wc_select(),
.m_wc_decerr(),
.m_wc_valid(),
.m_wc_ready(1'b1),
/*
* Response command output
*/
.m_rc_decerr(m_rc_decerr),
.m_rc_valid(m_rc_valid),
.m_rc_ready(m_rc_ready),
/*
* Completion input
*/
.s_cpl_id(s_cpl_id),
.s_cpl_valid(s_cpl_valid)
);
assign int_axi_arvalid[m*M_COUNT +: M_COUNT] = m_axi_avalid << a_select;
assign m_axi_aready = int_axi_arready[a_select*S_COUNT+m];
// decode error handling
reg [S_ID_WIDTH-1:0] decerr_m_axi_rid_reg = {S_ID_WIDTH{1'b0}}, decerr_m_axi_rid_next;
reg decerr_m_axi_rlast_reg = 1'b0, decerr_m_axi_rlast_next;
reg decerr_m_axi_rvalid_reg = 1'b0, decerr_m_axi_rvalid_next;
wire decerr_m_axi_rready;
reg [7:0] decerr_len_reg = 8'd0, decerr_len_next;
assign m_rc_ready = !decerr_m_axi_rvalid_reg;
always @* begin
decerr_len_next = decerr_len_reg;
decerr_m_axi_rid_next = decerr_m_axi_rid_reg;
decerr_m_axi_rlast_next = decerr_m_axi_rlast_reg;
decerr_m_axi_rvalid_next = decerr_m_axi_rvalid_reg;
if (decerr_m_axi_rvalid_reg) begin
if (decerr_m_axi_rready) begin
if (decerr_len_reg > 0) begin
decerr_len_next = decerr_len_reg-1;
decerr_m_axi_rlast_next = (decerr_len_next == 0);
decerr_m_axi_rvalid_next = 1'b1;
end else begin
decerr_m_axi_rvalid_next = 1'b0;
end
end
end else if (m_rc_valid && m_rc_ready) begin
decerr_len_next = int_s_axi_arlen[m*8 +: 8];
decerr_m_axi_rid_next = int_s_axi_arid[m*S_ID_WIDTH +: S_ID_WIDTH];
decerr_m_axi_rlast_next = (decerr_len_next == 0);
decerr_m_axi_rvalid_next = 1'b1;
end
end
always @(posedge clk) begin
if (rst) begin
decerr_m_axi_rvalid_reg <= 1'b0;
end else begin
decerr_m_axi_rvalid_reg <= decerr_m_axi_rvalid_next;
end
decerr_m_axi_rid_reg <= decerr_m_axi_rid_next;
decerr_m_axi_rlast_reg <= decerr_m_axi_rlast_next;
decerr_len_reg <= decerr_len_next;
end
// read response arbitration
wire [M_COUNT_P1-1:0] r_request;
wire [M_COUNT_P1-1:0] r_acknowledge;
wire [M_COUNT_P1-1:0] r_grant;
wire r_grant_valid;
wire [CL_M_COUNT_P1-1:0] r_grant_encoded;
arbiter #(
.PORTS(M_COUNT_P1),
.TYPE("ROUND_ROBIN"),
.BLOCK("ACKNOWLEDGE"),
.LSB_PRIORITY("HIGH")
)
r_arb_inst (
.clk(clk),
.rst(rst),
.request(r_request),
.acknowledge(r_acknowledge),
.grant(r_grant),
.grant_valid(r_grant_valid),
.grant_encoded(r_grant_encoded)
);
// read response mux
wire [S_ID_WIDTH-1:0] m_axi_rid_mux = {decerr_m_axi_rid_reg, int_m_axi_rid} >> r_grant_encoded*M_ID_WIDTH;
wire [DATA_WIDTH-1:0] m_axi_rdata_mux = {{DATA_WIDTH{1'b0}}, int_m_axi_rdata} >> r_grant_encoded*DATA_WIDTH;
wire [1:0] m_axi_rresp_mux = {2'b11, int_m_axi_rresp} >> r_grant_encoded*2;
wire m_axi_rlast_mux = {decerr_m_axi_rlast_reg, int_m_axi_rlast} >> r_grant_encoded;
wire [RUSER_WIDTH-1:0] m_axi_ruser_mux = {{RUSER_WIDTH{1'b0}}, int_m_axi_ruser} >> r_grant_encoded*RUSER_WIDTH;
wire m_axi_rvalid_mux = ({decerr_m_axi_rvalid_reg, int_m_axi_rvalid} >> r_grant_encoded) & r_grant_valid;
wire m_axi_rready_mux;
assign int_axi_rready[m*M_COUNT +: M_COUNT] = (r_grant_valid && m_axi_rready_mux) << r_grant_encoded;
assign decerr_m_axi_rready = (r_grant_valid && m_axi_rready_mux) && (r_grant_encoded == M_COUNT_P1-1);
for (n = 0; n < M_COUNT; n = n + 1) begin
assign r_request[n] = int_axi_rvalid[n*S_COUNT+m] && !r_grant[n];
assign r_acknowledge[n] = r_grant[n] && int_axi_rvalid[n*S_COUNT+m] && m_axi_rlast_mux && m_axi_rready_mux;
end
assign r_request[M_COUNT_P1-1] = decerr_m_axi_rvalid_reg && !r_grant[M_COUNT_P1-1];
assign r_acknowledge[M_COUNT_P1-1] = r_grant[M_COUNT_P1-1] && decerr_m_axi_rvalid_reg && decerr_m_axi_rlast_reg && m_axi_rready_mux;
assign s_cpl_id = m_axi_rid_mux;
assign s_cpl_valid = m_axi_rvalid_mux && m_axi_rready_mux && m_axi_rlast_mux;
// S side register
axi_register_rd #(
.DATA_WIDTH(DATA_WIDTH),
.ADDR_WIDTH(ADDR_WIDTH),
.STRB_WIDTH(STRB_WIDTH),
.ID_WIDTH(S_ID_WIDTH),
.ARUSER_ENABLE(ARUSER_ENABLE),
.ARUSER_WIDTH(ARUSER_WIDTH),
.RUSER_ENABLE(RUSER_ENABLE),
.RUSER_WIDTH(RUSER_WIDTH),
.AR_REG_TYPE(S_AR_REG_TYPE[m*2 +: 2]),
.R_REG_TYPE(S_R_REG_TYPE[m*2 +: 2])
)
reg_inst (
.clk(clk),
.rst(rst),
.s_axi_arid(s_axi_arid[m*S_ID_WIDTH +: S_ID_WIDTH]),
.s_axi_araddr(s_axi_araddr[m*ADDR_WIDTH +: ADDR_WIDTH]),
.s_axi_arlen(s_axi_arlen[m*8 +: 8]),
.s_axi_arsize(s_axi_arsize[m*3 +: 3]),
.s_axi_arburst(s_axi_arburst[m*2 +: 2]),
.s_axi_arlock(s_axi_arlock[m]),
.s_axi_arcache(s_axi_arcache[m*4 +: 4]),
.s_axi_arprot(s_axi_arprot[m*3 +: 3]),
.s_axi_arqos(s_axi_arqos[m*4 +: 4]),
.s_axi_arregion(4'd0),
.s_axi_aruser(s_axi_aruser[m*ARUSER_WIDTH +: ARUSER_WIDTH]),
.s_axi_arvalid(s_axi_arvalid[m]),
.s_axi_arready(s_axi_arready[m]),
.s_axi_rid(s_axi_rid[m*S_ID_WIDTH +: S_ID_WIDTH]),
.s_axi_rdata(s_axi_rdata[m*DATA_WIDTH +: DATA_WIDTH]),
.s_axi_rresp(s_axi_rresp[m*2 +: 2]),
.s_axi_rlast(s_axi_rlast[m]),
.s_axi_ruser(s_axi_ruser[m*RUSER_WIDTH +: RUSER_WIDTH]),
.s_axi_rvalid(s_axi_rvalid[m]),
.s_axi_rready(s_axi_rready[m]),
.m_axi_arid(int_s_axi_arid[m*S_ID_WIDTH +: S_ID_WIDTH]),
.m_axi_araddr(int_s_axi_araddr[m*ADDR_WIDTH +: ADDR_WIDTH]),
.m_axi_arlen(int_s_axi_arlen[m*8 +: 8]),
.m_axi_arsize(int_s_axi_arsize[m*3 +: 3]),
.m_axi_arburst(int_s_axi_arburst[m*2 +: 2]),
.m_axi_arlock(int_s_axi_arlock[m]),
.m_axi_arcache(int_s_axi_arcache[m*4 +: 4]),
.m_axi_arprot(int_s_axi_arprot[m*3 +: 3]),
.m_axi_arqos(int_s_axi_arqos[m*4 +: 4]),
.m_axi_arregion(),
.m_axi_aruser(int_s_axi_aruser[m*ARUSER_WIDTH +: ARUSER_WIDTH]),
.m_axi_arvalid(int_s_axi_arvalid[m]),
.m_axi_arready(int_s_axi_arready[m]),
.m_axi_rid(m_axi_rid_mux),
.m_axi_rdata(m_axi_rdata_mux),
.m_axi_rresp(m_axi_rresp_mux),
.m_axi_rlast(m_axi_rlast_mux),
.m_axi_ruser(m_axi_ruser_mux),
.m_axi_rvalid(m_axi_rvalid_mux),
.m_axi_rready(m_axi_rready_mux)
);
end // s_ifaces
for (n = 0; n < M_COUNT; n = n + 1) begin : m_ifaces
// in-flight transaction count
wire trans_start;
wire trans_complete;
reg [$clog2(M_ISSUE[n*32 +: 32]+1)-1:0] trans_count_reg = 0;
wire trans_limit = trans_count_reg >= M_ISSUE[n*32 +: 32] && !trans_complete;
always @(posedge clk) begin
if (rst) begin
trans_count_reg <= 0;
end else begin
if (trans_start && !trans_complete) begin
trans_count_reg <= trans_count_reg + 1;
end else if (!trans_start && trans_complete) begin
trans_count_reg <= trans_count_reg - 1;
end
end
end
// address arbitration
wire [S_COUNT-1:0] a_request;
wire [S_COUNT-1:0] a_acknowledge;
wire [S_COUNT-1:0] a_grant;
wire a_grant_valid;
wire [CL_S_COUNT-1:0] a_grant_encoded;
arbiter #(
.PORTS(S_COUNT),
.TYPE("ROUND_ROBIN"),
.BLOCK("ACKNOWLEDGE"),
.LSB_PRIORITY("HIGH")
)
a_arb_inst (
.clk(clk),
.rst(rst),
.request(a_request),
.acknowledge(a_acknowledge),
.grant(a_grant),
.grant_valid(a_grant_valid),
.grant_encoded(a_grant_encoded)
);
// address mux
wire [M_ID_WIDTH-1:0] s_axi_arid_mux = int_s_axi_arid[a_grant_encoded*S_ID_WIDTH +: S_ID_WIDTH] | (a_grant_encoded << S_ID_WIDTH);
wire [ADDR_WIDTH-1:0] s_axi_araddr_mux = int_s_axi_araddr[a_grant_encoded*ADDR_WIDTH +: ADDR_WIDTH];
wire [7:0] s_axi_arlen_mux = int_s_axi_arlen[a_grant_encoded*8 +: 8];
wire [2:0] s_axi_arsize_mux = int_s_axi_arsize[a_grant_encoded*3 +: 3];
wire [1:0] s_axi_arburst_mux = int_s_axi_arburst[a_grant_encoded*2 +: 2];
wire s_axi_arlock_mux = int_s_axi_arlock[a_grant_encoded];
wire [3:0] s_axi_arcache_mux = int_s_axi_arcache[a_grant_encoded*4 +: 4];
wire [2:0] s_axi_arprot_mux = int_s_axi_arprot[a_grant_encoded*3 +: 3];
wire [3:0] s_axi_arqos_mux = int_s_axi_arqos[a_grant_encoded*4 +: 4];
wire [3:0] s_axi_arregion_mux = int_s_axi_arregion[a_grant_encoded*4 +: 4];
wire [ARUSER_WIDTH-1:0] s_axi_aruser_mux = int_s_axi_aruser[a_grant_encoded*ARUSER_WIDTH +: ARUSER_WIDTH];
wire s_axi_arvalid_mux = int_axi_arvalid[a_grant_encoded*M_COUNT+n] && a_grant_valid;
wire s_axi_arready_mux;
assign int_axi_arready[n*S_COUNT +: S_COUNT] = (a_grant_valid && s_axi_arready_mux) << a_grant_encoded;
for (m = 0; m < S_COUNT; m = m + 1) begin
assign a_request[m] = int_axi_arvalid[m*M_COUNT+n] && !a_grant[m] && !trans_limit;
assign a_acknowledge[m] = a_grant[m] && int_axi_arvalid[m*M_COUNT+n] && s_axi_arready_mux;
end
assign trans_start = s_axi_arvalid_mux && s_axi_arready_mux && a_grant_valid;
// read response forwarding
wire [CL_S_COUNT-1:0] r_select = m_axi_rid[n*M_ID_WIDTH +: M_ID_WIDTH] >> S_ID_WIDTH;
assign int_axi_rvalid[n*S_COUNT +: S_COUNT] = int_m_axi_rvalid[n] << r_select;
assign int_m_axi_rready[n] = int_axi_rready[r_select*M_COUNT+n];
assign trans_complete = int_m_axi_rvalid[n] && int_m_axi_rready[n] && int_m_axi_rlast[n];
// M side register
axi_register_rd #(
.DATA_WIDTH(DATA_WIDTH),
.ADDR_WIDTH(ADDR_WIDTH),
.STRB_WIDTH(STRB_WIDTH),
.ID_WIDTH(M_ID_WIDTH),
.ARUSER_ENABLE(ARUSER_ENABLE),
.ARUSER_WIDTH(ARUSER_WIDTH),
.RUSER_ENABLE(RUSER_ENABLE),
.RUSER_WIDTH(RUSER_WIDTH),
.AR_REG_TYPE(M_AR_REG_TYPE[n*2 +: 2]),
.R_REG_TYPE(M_R_REG_TYPE[n*2 +: 2])
)
reg_inst (
.clk(clk),
.rst(rst),
.s_axi_arid(s_axi_arid_mux),
.s_axi_araddr(s_axi_araddr_mux),
.s_axi_arlen(s_axi_arlen_mux),
.s_axi_arsize(s_axi_arsize_mux),
.s_axi_arburst(s_axi_arburst_mux),
.s_axi_arlock(s_axi_arlock_mux),
.s_axi_arcache(s_axi_arcache_mux),
.s_axi_arprot(s_axi_arprot_mux),
.s_axi_arqos(s_axi_arqos_mux),
.s_axi_arregion(s_axi_arregion_mux),
.s_axi_aruser(s_axi_aruser_mux),
.s_axi_arvalid(s_axi_arvalid_mux),
.s_axi_arready(s_axi_arready_mux),
.s_axi_rid(int_m_axi_rid[n*M_ID_WIDTH +: M_ID_WIDTH]),
.s_axi_rdata(int_m_axi_rdata[n*DATA_WIDTH +: DATA_WIDTH]),
.s_axi_rresp(int_m_axi_rresp[n*2 +: 2]),
.s_axi_rlast(int_m_axi_rlast[n]),
.s_axi_ruser(int_m_axi_ruser[n*RUSER_WIDTH +: RUSER_WIDTH]),
.s_axi_rvalid(int_m_axi_rvalid[n]),
.s_axi_rready(int_m_axi_rready[n]),
.m_axi_arid(m_axi_arid[n*M_ID_WIDTH +: M_ID_WIDTH]),
.m_axi_araddr(m_axi_araddr[n*ADDR_WIDTH +: ADDR_WIDTH]),
.m_axi_arlen(m_axi_arlen[n*8 +: 8]),
.m_axi_arsize(m_axi_arsize[n*3 +: 3]),
.m_axi_arburst(m_axi_arburst[n*2 +: 2]),
.m_axi_arlock(m_axi_arlock[n]),
.m_axi_arcache(m_axi_arcache[n*4 +: 4]),
.m_axi_arprot(m_axi_arprot[n*3 +: 3]),
.m_axi_arqos(m_axi_arqos[n*4 +: 4]),
.m_axi_arregion(m_axi_arregion[n*4 +: 4]),
.m_axi_aruser(m_axi_aruser[n*ARUSER_WIDTH +: ARUSER_WIDTH]),
.m_axi_arvalid(m_axi_arvalid[n]),
.m_axi_arready(m_axi_arready[n]),
.m_axi_rid(m_axi_rid[n*M_ID_WIDTH +: M_ID_WIDTH]),
.m_axi_rdata(m_axi_rdata[n*DATA_WIDTH +: DATA_WIDTH]),
.m_axi_rresp(m_axi_rresp[n*2 +: 2]),
.m_axi_rlast(m_axi_rlast[n]),
.m_axi_ruser(m_axi_ruser[n*RUSER_WIDTH +: RUSER_WIDTH]),
.m_axi_rvalid(m_axi_rvalid[n]),
.m_axi_rready(m_axi_rready[n])
);
end // m_ifaces
endgenerate
endmodule
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment