Commit 738c1fef authored by Antoine Kaufmann's avatar Antoine Kaufmann
Browse files

add corundum and verilator build files

parent 7f925101
/*
Copyright (c) 2014-2020 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* ARP block for IPv4, ethernet frame interface
*/
module arp #
(
// Width of AXI stream interfaces in bits
parameter DATA_WIDTH = 8,
// Propagate tkeep signal
// If disabled, tkeep assumed to be 1'b1
parameter KEEP_ENABLE = (DATA_WIDTH>8),
// tkeep signal width (words per cycle)
parameter KEEP_WIDTH = (DATA_WIDTH/8),
// Log2 of ARP cache size
parameter CACHE_ADDR_WIDTH = 9,
// ARP request retry count
parameter REQUEST_RETRY_COUNT = 4,
// ARP request retry interval (in cycles)
parameter REQUEST_RETRY_INTERVAL = 125000000*2,
// ARP request timeout (in cycles)
parameter REQUEST_TIMEOUT = 125000000*30
)
(
input wire clk,
input wire rst,
/*
* Ethernet frame input
*/
input wire s_eth_hdr_valid,
output wire s_eth_hdr_ready,
input wire [47:0] s_eth_dest_mac,
input wire [47:0] s_eth_src_mac,
input wire [15:0] s_eth_type,
input wire [DATA_WIDTH-1:0] s_eth_payload_axis_tdata,
input wire [KEEP_WIDTH-1:0] s_eth_payload_axis_tkeep,
input wire s_eth_payload_axis_tvalid,
output wire s_eth_payload_axis_tready,
input wire s_eth_payload_axis_tlast,
input wire s_eth_payload_axis_tuser,
/*
* Ethernet frame output
*/
output wire m_eth_hdr_valid,
input wire m_eth_hdr_ready,
output wire [47:0] m_eth_dest_mac,
output wire [47:0] m_eth_src_mac,
output wire [15:0] m_eth_type,
output wire [DATA_WIDTH-1:0] m_eth_payload_axis_tdata,
output wire [KEEP_WIDTH-1:0] m_eth_payload_axis_tkeep,
output wire m_eth_payload_axis_tvalid,
input wire m_eth_payload_axis_tready,
output wire m_eth_payload_axis_tlast,
output wire m_eth_payload_axis_tuser,
/*
* ARP requests
*/
input wire arp_request_valid,
output wire arp_request_ready,
input wire [31:0] arp_request_ip,
output wire arp_response_valid,
input wire arp_response_ready,
output wire arp_response_error,
output wire [47:0] arp_response_mac,
/*
* Configuration
*/
input wire [47:0] local_mac,
input wire [31:0] local_ip,
input wire [31:0] gateway_ip,
input wire [31:0] subnet_mask,
input wire clear_cache
);
localparam [15:0]
ARP_OPER_ARP_REQUEST = 16'h0001,
ARP_OPER_ARP_REPLY = 16'h0002,
ARP_OPER_INARP_REQUEST = 16'h0008,
ARP_OPER_INARP_REPLY = 16'h0009;
wire incoming_frame_valid;
reg incoming_frame_ready;
wire [47:0] incoming_eth_dest_mac;
wire [47:0] incoming_eth_src_mac;
wire [15:0] incoming_eth_type;
wire [15:0] incoming_arp_htype;
wire [15:0] incoming_arp_ptype;
wire [7:0] incoming_arp_hlen;
wire [7:0] incoming_arp_plen;
wire [15:0] incoming_arp_oper;
wire [47:0] incoming_arp_sha;
wire [31:0] incoming_arp_spa;
wire [47:0] incoming_arp_tha;
wire [31:0] incoming_arp_tpa;
/*
* ARP frame processing
*/
arp_eth_rx #(
.DATA_WIDTH(DATA_WIDTH),
.KEEP_ENABLE(KEEP_ENABLE),
.KEEP_WIDTH(KEEP_WIDTH)
)
arp_eth_rx_inst (
.clk(clk),
.rst(rst),
// Ethernet frame input
.s_eth_hdr_valid(s_eth_hdr_valid),
.s_eth_hdr_ready(s_eth_hdr_ready),
.s_eth_dest_mac(s_eth_dest_mac),
.s_eth_src_mac(s_eth_src_mac),
.s_eth_type(s_eth_type),
.s_eth_payload_axis_tdata(s_eth_payload_axis_tdata),
.s_eth_payload_axis_tkeep(s_eth_payload_axis_tkeep),
.s_eth_payload_axis_tvalid(s_eth_payload_axis_tvalid),
.s_eth_payload_axis_tready(s_eth_payload_axis_tready),
.s_eth_payload_axis_tlast(s_eth_payload_axis_tlast),
.s_eth_payload_axis_tuser(s_eth_payload_axis_tuser),
// ARP frame output
.m_frame_valid(incoming_frame_valid),
.m_frame_ready(incoming_frame_ready),
.m_eth_dest_mac(incoming_eth_dest_mac),
.m_eth_src_mac(incoming_eth_src_mac),
.m_eth_type(incoming_eth_type),
.m_arp_htype(incoming_arp_htype),
.m_arp_ptype(incoming_arp_ptype),
.m_arp_hlen(incoming_arp_hlen),
.m_arp_plen(incoming_arp_plen),
.m_arp_oper(incoming_arp_oper),
.m_arp_sha(incoming_arp_sha),
.m_arp_spa(incoming_arp_spa),
.m_arp_tha(incoming_arp_tha),
.m_arp_tpa(incoming_arp_tpa),
// Status signals
.busy(),
.error_header_early_termination(),
.error_invalid_header()
);
reg outgoing_frame_valid_reg = 1'b0, outgoing_frame_valid_next;
wire outgoing_frame_ready;
reg [47:0] outgoing_eth_dest_mac_reg = 48'd0, outgoing_eth_dest_mac_next;
reg [15:0] outgoing_arp_oper_reg = 16'd0, outgoing_arp_oper_next;
reg [47:0] outgoing_arp_tha_reg = 48'd0, outgoing_arp_tha_next;
reg [31:0] outgoing_arp_tpa_reg = 32'd0, outgoing_arp_tpa_next;
arp_eth_tx #(
.DATA_WIDTH(DATA_WIDTH),
.KEEP_ENABLE(KEEP_ENABLE),
.KEEP_WIDTH(KEEP_WIDTH)
)
arp_eth_tx_inst (
.clk(clk),
.rst(rst),
// ARP frame input
.s_frame_valid(outgoing_frame_valid_reg),
.s_frame_ready(outgoing_frame_ready),
.s_eth_dest_mac(outgoing_eth_dest_mac_reg),
.s_eth_src_mac(local_mac),
.s_eth_type(16'h0806),
.s_arp_htype(16'h0001),
.s_arp_ptype(16'h0800),
.s_arp_oper(outgoing_arp_oper_reg),
.s_arp_sha(local_mac),
.s_arp_spa(local_ip),
.s_arp_tha(outgoing_arp_tha_reg),
.s_arp_tpa(outgoing_arp_tpa_reg),
// Ethernet frame output
.m_eth_hdr_valid(m_eth_hdr_valid),
.m_eth_hdr_ready(m_eth_hdr_ready),
.m_eth_dest_mac(m_eth_dest_mac),
.m_eth_src_mac(m_eth_src_mac),
.m_eth_type(m_eth_type),
.m_eth_payload_axis_tdata(m_eth_payload_axis_tdata),
.m_eth_payload_axis_tkeep(m_eth_payload_axis_tkeep),
.m_eth_payload_axis_tvalid(m_eth_payload_axis_tvalid),
.m_eth_payload_axis_tready(m_eth_payload_axis_tready),
.m_eth_payload_axis_tlast(m_eth_payload_axis_tlast),
.m_eth_payload_axis_tuser(m_eth_payload_axis_tuser),
// Status signals
.busy()
);
reg cache_query_request_valid_reg = 1'b0, cache_query_request_valid_next;
reg [31:0] cache_query_request_ip_reg = 32'd0, cache_query_request_ip_next;
wire cache_query_response_valid;
wire cache_query_response_error;
wire [47:0] cache_query_response_mac;
reg cache_write_request_valid_reg = 1'b0, cache_write_request_valid_next;
reg [31:0] cache_write_request_ip_reg = 32'd0, cache_write_request_ip_next;
reg [47:0] cache_write_request_mac_reg = 48'd0, cache_write_request_mac_next;
/*
* ARP cache
*/
arp_cache #(
.CACHE_ADDR_WIDTH(CACHE_ADDR_WIDTH)
)
arp_cache_inst (
.clk(clk),
.rst(rst),
// Query cache
.query_request_valid(cache_query_request_valid_reg),
.query_request_ready(),
.query_request_ip(cache_query_request_ip_reg),
.query_response_valid(cache_query_response_valid),
.query_response_ready(1'b1),
.query_response_error(cache_query_response_error),
.query_response_mac(cache_query_response_mac),
// Write cache
.write_request_valid(cache_write_request_valid_reg),
.write_request_ready(),
.write_request_ip(cache_write_request_ip_reg),
.write_request_mac(cache_write_request_mac_reg),
// Configuration
.clear_cache(clear_cache)
);
reg arp_request_operation_reg = 1'b0, arp_request_operation_next;
reg arp_request_ready_reg = 1'b0, arp_request_ready_next;
reg [31:0] arp_request_ip_reg = 32'd0, arp_request_ip_next;
reg arp_response_valid_reg = 1'b0, arp_response_valid_next;
reg arp_response_error_reg = 1'b0, arp_response_error_next;
reg [47:0] arp_response_mac_reg = 48'd0, arp_response_mac_next;
reg [5:0] arp_request_retry_cnt_reg = 6'd0, arp_request_retry_cnt_next;
reg [35:0] arp_request_timer_reg = 36'd0, arp_request_timer_next;
assign arp_request_ready = arp_request_ready_reg;
assign arp_response_valid = arp_response_valid_reg;
assign arp_response_error = arp_response_error_reg;
assign arp_response_mac = arp_response_mac_reg;
always @* begin
incoming_frame_ready = 1'b0;
outgoing_frame_valid_next = outgoing_frame_valid_reg && !outgoing_frame_ready;
outgoing_eth_dest_mac_next = outgoing_eth_dest_mac_reg;
outgoing_arp_oper_next = outgoing_arp_oper_reg;
outgoing_arp_tha_next = outgoing_arp_tha_reg;
outgoing_arp_tpa_next = outgoing_arp_tpa_reg;
cache_query_request_valid_next = 1'b0;
cache_query_request_ip_next = cache_query_request_ip_reg;
cache_write_request_valid_next = 1'b0;
cache_write_request_mac_next = cache_write_request_mac_reg;
cache_write_request_ip_next = cache_write_request_ip_reg;
arp_request_ready_next = 1'b0;
arp_request_ip_next = arp_request_ip_reg;
arp_request_operation_next = arp_request_operation_reg;
arp_request_retry_cnt_next = arp_request_retry_cnt_reg;
arp_request_timer_next = arp_request_timer_reg;
arp_response_valid_next = arp_response_valid_reg && !arp_response_ready;
arp_response_error_next = 1'b0;
arp_response_mac_next = 48'd0;
// manage incoming frames
incoming_frame_ready = outgoing_frame_ready;
if (incoming_frame_valid && incoming_frame_ready) begin
if (incoming_eth_type == 16'h0806 && incoming_arp_htype == 16'h0001 && incoming_arp_ptype == 16'h0800) begin
// store sender addresses in cache
cache_write_request_valid_next = 1'b1;
cache_write_request_ip_next = incoming_arp_spa;
cache_write_request_mac_next = incoming_arp_sha;
if (incoming_arp_oper == ARP_OPER_ARP_REQUEST) begin
// ARP request
if (incoming_arp_tpa == local_ip) begin
// send reply frame to valid incoming request
outgoing_frame_valid_next = 1'b1;
outgoing_eth_dest_mac_next = incoming_eth_src_mac;
outgoing_arp_oper_next = ARP_OPER_ARP_REPLY;
outgoing_arp_tha_next = incoming_arp_sha;
outgoing_arp_tpa_next = incoming_arp_spa;
end
end else if (incoming_arp_oper == ARP_OPER_INARP_REQUEST) begin
// INARP request
if (incoming_arp_tha == local_mac) begin
// send reply frame to valid incoming request
outgoing_frame_valid_next = 1'b1;
outgoing_eth_dest_mac_next = incoming_eth_src_mac;
outgoing_arp_oper_next = ARP_OPER_INARP_REPLY;
outgoing_arp_tha_next = incoming_arp_sha;
outgoing_arp_tpa_next = incoming_arp_spa;
end
end
end
end
// manage ARP lookup requests
if (arp_request_operation_reg) begin
arp_request_ready_next = 1'b0;
cache_query_request_valid_next = 1'b1;
arp_request_timer_next = arp_request_timer_reg - 1;
// if we got a response, it will go in the cache, so when the query succeds, we're done
if (cache_query_response_valid && !cache_query_response_error) begin
arp_request_operation_next = 1'b0;
cache_query_request_valid_next = 1'b0;
arp_response_valid_next = 1'b1;
arp_response_error_next = 1'b0;
arp_response_mac_next = cache_query_response_mac;
end
// timer timeout
if (arp_request_timer_reg == 0) begin
if (arp_request_retry_cnt_reg > 0) begin
// have more retries
// send ARP request frame
outgoing_frame_valid_next = 1'b1;
outgoing_eth_dest_mac_next = 48'hffffffffffff;
outgoing_arp_oper_next = ARP_OPER_ARP_REQUEST;
outgoing_arp_tha_next = 48'h000000000000;
outgoing_arp_tpa_next = arp_request_ip_reg;
arp_request_retry_cnt_next = arp_request_retry_cnt_reg - 1;
if (arp_request_retry_cnt_reg > 1) begin
arp_request_timer_next = REQUEST_RETRY_INTERVAL;
end else begin
arp_request_timer_next = REQUEST_TIMEOUT;
end
end else begin
// out of retries
arp_request_operation_next = 1'b0;
arp_response_valid_next = 1'b1;
arp_response_error_next = 1'b1;
cache_query_request_valid_next = 1'b0;
end
end
end else begin
arp_request_ready_next = !arp_response_valid_next;
if (cache_query_request_valid_reg) begin
cache_query_request_valid_next = 1'b1;
if (cache_query_response_valid) begin
if (cache_query_response_error) begin
arp_request_operation_next = 1'b1;
// send ARP request frame
outgoing_frame_valid_next = 1'b1;
outgoing_eth_dest_mac_next = 48'hffffffffffff;
outgoing_arp_oper_next = ARP_OPER_ARP_REQUEST;
outgoing_arp_tha_next = 48'h000000000000;
outgoing_arp_tpa_next = arp_request_ip_reg;
arp_request_retry_cnt_next = REQUEST_RETRY_COUNT-1;
arp_request_timer_next = REQUEST_RETRY_INTERVAL;
end else begin
cache_query_request_valid_next = 1'b0;
arp_response_valid_next = 1'b1;
arp_response_error_next = 1'b0;
arp_response_mac_next = cache_query_response_mac;
end
end
end else if (arp_request_valid && arp_request_ready) begin
if (~(arp_request_ip | subnet_mask) == 0) begin
// broadcast address
// (all bits in request IP set where subnet mask is clear)
arp_response_valid_next = 1'b1;
arp_response_error_next = 1'b0;
arp_response_mac_next = 48'hffffffffffff;
end else if (((arp_request_ip ^ gateway_ip) & subnet_mask) == 0) begin
// within subnet, look up IP directly
// (no bits differ between request IP and gateway IP where subnet mask is set)
cache_query_request_valid_next = 1'b1;
cache_query_request_ip_next = arp_request_ip;
arp_request_ip_next = arp_request_ip;
end else begin
// outside of subnet, so look up gateway address
cache_query_request_valid_next = 1'b1;
cache_query_request_ip_next = gateway_ip;
arp_request_ip_next = gateway_ip;
end
end
end
end
always @(posedge clk) begin
if (rst) begin
outgoing_frame_valid_reg <= 1'b0;
cache_query_request_valid_reg <= 1'b0;
cache_write_request_valid_reg <= 1'b0;
arp_request_ready_reg <= 1'b0;
arp_request_operation_reg <= 1'b0;
arp_request_retry_cnt_reg <= 6'd0;
arp_request_timer_reg <= 36'd0;
arp_response_valid_reg <= 1'b0;
end else begin
outgoing_frame_valid_reg <= outgoing_frame_valid_next;
cache_query_request_valid_reg <= cache_query_request_valid_next;
cache_write_request_valid_reg <= cache_write_request_valid_next;
arp_request_ready_reg <= arp_request_ready_next;
arp_request_operation_reg <= arp_request_operation_next;
arp_request_retry_cnt_reg <= arp_request_retry_cnt_next;
arp_request_timer_reg <= arp_request_timer_next;
arp_response_valid_reg <= arp_response_valid_next;
end
cache_query_request_ip_reg <= cache_query_request_ip_next;
outgoing_eth_dest_mac_reg <= outgoing_eth_dest_mac_next;
outgoing_arp_oper_reg <= outgoing_arp_oper_next;
outgoing_arp_tha_reg <= outgoing_arp_tha_next;
outgoing_arp_tpa_reg <= outgoing_arp_tpa_next;
cache_write_request_mac_reg <= cache_write_request_mac_next;
cache_write_request_ip_reg <= cache_write_request_ip_next;
arp_request_ip_reg <= arp_request_ip_next;
arp_response_error_reg <= arp_response_error_next;
arp_response_mac_reg <= arp_response_mac_next;
end
endmodule
/*
Copyright (c) 2014-2018 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* ARP cache
*/
module arp_cache #(
parameter CACHE_ADDR_WIDTH = 9
)
(
input wire clk,
input wire rst,
/*
* Cache query
*/
input wire query_request_valid,
output wire query_request_ready,
input wire [31:0] query_request_ip,
output wire query_response_valid,
input wire query_response_ready,
output wire query_response_error,
output wire [47:0] query_response_mac,
/*
* Cache write
*/
input wire write_request_valid,
output wire write_request_ready,
input wire [31:0] write_request_ip,
input wire [47:0] write_request_mac,
/*
* Configuration
*/
input wire clear_cache
);
reg mem_write = 0;
reg store_query = 0;
reg store_write = 0;
reg query_ip_valid_reg = 0, query_ip_valid_next;
reg [31:0] query_ip_reg = 0;
reg write_ip_valid_reg = 0, write_ip_valid_next;
reg [31:0] write_ip_reg = 0;
reg [47:0] write_mac_reg = 0;
reg clear_cache_reg = 0, clear_cache_next;
reg [CACHE_ADDR_WIDTH-1:0] wr_ptr_reg = {CACHE_ADDR_WIDTH{1'b0}}, wr_ptr_next;
reg [CACHE_ADDR_WIDTH-1:0] rd_ptr_reg = {CACHE_ADDR_WIDTH{1'b0}}, rd_ptr_next;
reg valid_mem[(2**CACHE_ADDR_WIDTH)-1:0];
reg [31:0] ip_addr_mem[(2**CACHE_ADDR_WIDTH)-1:0];
reg [47:0] mac_addr_mem[(2**CACHE_ADDR_WIDTH)-1:0];
reg query_request_ready_reg = 0, query_request_ready_next;
reg query_response_valid_reg = 0, query_response_valid_next;
reg query_response_error_reg = 0, query_response_error_next;
reg [47:0] query_response_mac_reg = 0;
reg write_request_ready_reg = 0, write_request_ready_next;
wire [31:0] query_request_hash;
wire [31:0] write_request_hash;
assign query_request_ready = query_request_ready_reg;
assign query_response_valid = query_response_valid_reg;
assign query_response_error = query_response_error_reg;
assign query_response_mac = query_response_mac_reg;
assign write_request_ready = write_request_ready_reg;
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(32),
.STYLE("AUTO")
)
rd_hash (
.data_in(query_request_ip),
.state_in(32'hffffffff),
.data_out(),
.state_out(query_request_hash)
);
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(32),
.STYLE("AUTO")
)
wr_hash (
.data_in(write_request_ip),
.state_in(32'hffffffff),
.data_out(),
.state_out(write_request_hash)
);
integer i;
initial begin
for (i = 0; i < 2**CACHE_ADDR_WIDTH; i = i + 1) begin
valid_mem[i] = 1'b0;
ip_addr_mem[i] = 32'd0;
mac_addr_mem[i] = 48'd0;
end
end
always @* begin
mem_write = 1'b0;
store_query = 1'b0;
store_write = 1'b0;
wr_ptr_next = wr_ptr_reg;
rd_ptr_next = rd_ptr_reg;
clear_cache_next = clear_cache_reg | clear_cache;
query_ip_valid_next = query_ip_valid_reg;
query_request_ready_next = (~query_ip_valid_reg || ~query_request_valid || query_response_ready) && !clear_cache_next;
query_response_valid_next = query_response_valid_reg & ~query_response_ready;
query_response_error_next = query_response_error_reg;
if (query_ip_valid_reg && (~query_request_valid || query_response_ready)) begin
query_response_valid_next = 1;
query_ip_valid_next = 0;
if (valid_mem[rd_ptr_reg] && ip_addr_mem[rd_ptr_reg] == query_ip_reg) begin
query_response_error_next = 0;
end else begin
query_response_error_next = 1;
end
end
if (query_request_valid && query_request_ready && (~query_ip_valid_reg || ~query_request_valid || query_response_ready)) begin
store_query = 1;
query_ip_valid_next = 1;
rd_ptr_next = query_request_hash[CACHE_ADDR_WIDTH-1:0];
end
write_ip_valid_next = write_ip_valid_reg;
write_request_ready_next = !clear_cache_next;
if (write_ip_valid_reg) begin
write_ip_valid_next = 0;
mem_write = 1;
end
if (write_request_valid && write_request_ready) begin
store_write = 1;
write_ip_valid_next = 1;
wr_ptr_next = write_request_hash[CACHE_ADDR_WIDTH-1:0];
end
if (clear_cache) begin
clear_cache_next = 1'b1;
wr_ptr_next = 0;
end else if (clear_cache_reg) begin
wr_ptr_next = wr_ptr_reg + 1;
clear_cache_next = wr_ptr_next != 0;
mem_write = 1;
end
end
always @(posedge clk) begin
if (rst) begin
query_ip_valid_reg <= 1'b0;
query_request_ready_reg <= 1'b0;
query_response_valid_reg <= 1'b0;
write_ip_valid_reg <= 1'b0;
write_request_ready_reg <= 1'b0;
clear_cache_reg <= 1'b1;
wr_ptr_reg <= 0;
end else begin
query_ip_valid_reg <= query_ip_valid_next;
query_request_ready_reg <= query_request_ready_next;
query_response_valid_reg <= query_response_valid_next;
write_ip_valid_reg <= write_ip_valid_next;
write_request_ready_reg <= write_request_ready_next;
clear_cache_reg <= clear_cache_next;
wr_ptr_reg <= wr_ptr_next;
end
query_response_error_reg <= query_response_error_next;
if (store_query) begin
query_ip_reg <= query_request_ip;
end
if (store_write) begin
write_ip_reg <= write_request_ip;
write_mac_reg <= write_request_mac;
end
rd_ptr_reg <= rd_ptr_next;
query_response_mac_reg <= mac_addr_mem[rd_ptr_reg];
if (mem_write) begin
valid_mem[wr_ptr_reg] <= !clear_cache_reg;
ip_addr_mem[wr_ptr_reg] <= write_ip_reg;
mac_addr_mem[wr_ptr_reg] <= write_mac_reg;
end
end
endmodule
/*
Copyright (c) 2014-2020 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* ARP ethernet frame receiver (Ethernet frame in, ARP frame out)
*/
module arp_eth_rx #
(
// Width of AXI stream interfaces in bits
parameter DATA_WIDTH = 8,
// Propagate tkeep signal
// If disabled, tkeep assumed to be 1'b1
parameter KEEP_ENABLE = (DATA_WIDTH>8),
// tkeep signal width (words per cycle)
parameter KEEP_WIDTH = (DATA_WIDTH/8)
)
(
input wire clk,
input wire rst,
/*
* Ethernet frame input
*/
input wire s_eth_hdr_valid,
output wire s_eth_hdr_ready,
input wire [47:0] s_eth_dest_mac,
input wire [47:0] s_eth_src_mac,
input wire [15:0] s_eth_type,
input wire [DATA_WIDTH-1:0] s_eth_payload_axis_tdata,
input wire [KEEP_WIDTH-1:0] s_eth_payload_axis_tkeep,
input wire s_eth_payload_axis_tvalid,
output wire s_eth_payload_axis_tready,
input wire s_eth_payload_axis_tlast,
input wire s_eth_payload_axis_tuser,
/*
* ARP frame output
*/
output wire m_frame_valid,
input wire m_frame_ready,
output wire [47:0] m_eth_dest_mac,
output wire [47:0] m_eth_src_mac,
output wire [15:0] m_eth_type,
output wire [15:0] m_arp_htype,
output wire [15:0] m_arp_ptype,
output wire [7:0] m_arp_hlen,
output wire [7:0] m_arp_plen,
output wire [15:0] m_arp_oper,
output wire [47:0] m_arp_sha,
output wire [31:0] m_arp_spa,
output wire [47:0] m_arp_tha,
output wire [31:0] m_arp_tpa,
/*
* Status signals
*/
output wire busy,
output wire error_header_early_termination,
output wire error_invalid_header
);
parameter CYCLE_COUNT = (28+KEEP_WIDTH-1)/KEEP_WIDTH;
parameter PTR_WIDTH = $clog2(CYCLE_COUNT);
parameter OFFSET = 28 % KEEP_WIDTH;
// bus width assertions
initial begin
if (KEEP_WIDTH * 8 != DATA_WIDTH) begin
$error("Error: AXI stream interface requires byte (8-bit) granularity (instance %m)");
$finish;
end
end
/*
ARP Frame
Field Length
Destination MAC address 6 octets
Source MAC address 6 octets
Ethertype (0x0806) 2 octets
HTYPE (1) 2 octets
PTYPE (0x0800) 2 octets
HLEN (6) 1 octets
PLEN (4) 1 octets
OPER 2 octets
SHA Sender MAC 6 octets
SPA Sender IP 4 octets
THA Target MAC 6 octets
TPA Target IP 4 octets
This module receives an Ethernet frame with header fields in parallel and
payload on an AXI stream interface, decodes the ARP packet fields, and
produces the frame fields in parallel.
*/
// datapath control signals
reg store_eth_hdr;
reg read_eth_header_reg = 1'b1, read_eth_header_next;
reg read_arp_header_reg = 1'b0, read_arp_header_next;
reg [PTR_WIDTH-1:0] ptr_reg = 0, ptr_next;
reg s_eth_hdr_ready_reg = 1'b0, s_eth_hdr_ready_next;
reg s_eth_payload_axis_tready_reg = 1'b0, s_eth_payload_axis_tready_next;
reg m_frame_valid_reg = 1'b0, m_frame_valid_next;
reg [47:0] m_eth_dest_mac_reg = 48'd0;
reg [47:0] m_eth_src_mac_reg = 48'd0;
reg [15:0] m_eth_type_reg = 16'd0;
reg [15:0] m_arp_htype_reg = 16'd0, m_arp_htype_next;
reg [15:0] m_arp_ptype_reg = 16'd0, m_arp_ptype_next;
reg [7:0] m_arp_hlen_reg = 8'd0, m_arp_hlen_next;
reg [7:0] m_arp_plen_reg = 8'd0, m_arp_plen_next;
reg [15:0] m_arp_oper_reg = 16'd0, m_arp_oper_next;
reg [47:0] m_arp_sha_reg = 48'd0, m_arp_sha_next;
reg [31:0] m_arp_spa_reg = 32'd0, m_arp_spa_next;
reg [47:0] m_arp_tha_reg = 48'd0, m_arp_tha_next;
reg [31:0] m_arp_tpa_reg = 32'd0, m_arp_tpa_next;
reg busy_reg = 1'b0;
reg error_header_early_termination_reg = 1'b0, error_header_early_termination_next;
reg error_invalid_header_reg = 1'b0, error_invalid_header_next;
assign s_eth_hdr_ready = s_eth_hdr_ready_reg;
assign s_eth_payload_axis_tready = s_eth_payload_axis_tready_reg;
assign m_frame_valid = m_frame_valid_reg;
assign m_eth_dest_mac = m_eth_dest_mac_reg;
assign m_eth_src_mac = m_eth_src_mac_reg;
assign m_eth_type = m_eth_type_reg;
assign m_arp_htype = m_arp_htype_reg;
assign m_arp_ptype = m_arp_ptype_reg;
assign m_arp_hlen = m_arp_hlen_reg;
assign m_arp_plen = m_arp_plen_reg;
assign m_arp_oper = m_arp_oper_reg;
assign m_arp_sha = m_arp_sha_reg;
assign m_arp_spa = m_arp_spa_reg;
assign m_arp_tha = m_arp_tha_reg;
assign m_arp_tpa = m_arp_tpa_reg;
assign busy = busy_reg;
assign error_header_early_termination = error_header_early_termination_reg;
assign error_invalid_header = error_invalid_header_reg;
always @* begin
read_eth_header_next = read_eth_header_reg;
read_arp_header_next = read_arp_header_reg;
ptr_next = ptr_reg;
s_eth_hdr_ready_next = 1'b0;
s_eth_payload_axis_tready_next = 1'b0;
store_eth_hdr = 1'b0;
m_frame_valid_next = m_frame_valid_reg && !m_frame_ready;
m_arp_htype_next = m_arp_htype_reg;
m_arp_ptype_next = m_arp_ptype_reg;
m_arp_hlen_next = m_arp_hlen_reg;
m_arp_plen_next = m_arp_plen_reg;
m_arp_oper_next = m_arp_oper_reg;
m_arp_sha_next = m_arp_sha_reg;
m_arp_spa_next = m_arp_spa_reg;
m_arp_tha_next = m_arp_tha_reg;
m_arp_tpa_next = m_arp_tpa_reg;
error_header_early_termination_next = 1'b0;
error_invalid_header_next = 1'b0;
if (s_eth_hdr_ready && s_eth_hdr_valid) begin
if (read_eth_header_reg) begin
store_eth_hdr = 1'b1;
ptr_next = 0;
read_eth_header_next = 1'b0;
read_arp_header_next = 1'b1;
end
end
if (s_eth_payload_axis_tready && s_eth_payload_axis_tvalid) begin
if (read_arp_header_reg) begin
// word transfer in - store it
ptr_next = ptr_reg + 1;
`define _HEADER_FIELD_(offset, field) \
if (ptr_reg == offset/KEEP_WIDTH && (!KEEP_ENABLE || s_eth_payload_axis_tkeep[offset%KEEP_WIDTH])) begin \
field = s_eth_payload_axis_tdata[(offset%KEEP_WIDTH)*8 +: 8]; \
end
`_HEADER_FIELD_(0, m_arp_htype_next[1*8 +: 8])
`_HEADER_FIELD_(1, m_arp_htype_next[0*8 +: 8])
`_HEADER_FIELD_(2, m_arp_ptype_next[1*8 +: 8])
`_HEADER_FIELD_(3, m_arp_ptype_next[0*8 +: 8])
`_HEADER_FIELD_(4, m_arp_hlen_next[0*8 +: 8])
`_HEADER_FIELD_(5, m_arp_plen_next[0*8 +: 8])
`_HEADER_FIELD_(6, m_arp_oper_next[1*8 +: 8])
`_HEADER_FIELD_(7, m_arp_oper_next[0*8 +: 8])
`_HEADER_FIELD_(8, m_arp_sha_next[5*8 +: 8])
`_HEADER_FIELD_(9, m_arp_sha_next[4*8 +: 8])
`_HEADER_FIELD_(10, m_arp_sha_next[3*8 +: 8])
`_HEADER_FIELD_(11, m_arp_sha_next[2*8 +: 8])
`_HEADER_FIELD_(12, m_arp_sha_next[1*8 +: 8])
`_HEADER_FIELD_(13, m_arp_sha_next[0*8 +: 8])
`_HEADER_FIELD_(14, m_arp_spa_next[3*8 +: 8])
`_HEADER_FIELD_(15, m_arp_spa_next[2*8 +: 8])
`_HEADER_FIELD_(16, m_arp_spa_next[1*8 +: 8])
`_HEADER_FIELD_(17, m_arp_spa_next[0*8 +: 8])
`_HEADER_FIELD_(18, m_arp_tha_next[5*8 +: 8])
`_HEADER_FIELD_(19, m_arp_tha_next[4*8 +: 8])
`_HEADER_FIELD_(20, m_arp_tha_next[3*8 +: 8])
`_HEADER_FIELD_(21, m_arp_tha_next[2*8 +: 8])
`_HEADER_FIELD_(22, m_arp_tha_next[1*8 +: 8])
`_HEADER_FIELD_(23, m_arp_tha_next[0*8 +: 8])
`_HEADER_FIELD_(24, m_arp_tpa_next[3*8 +: 8])
`_HEADER_FIELD_(25, m_arp_tpa_next[2*8 +: 8])
`_HEADER_FIELD_(26, m_arp_tpa_next[1*8 +: 8])
`_HEADER_FIELD_(27, m_arp_tpa_next[0*8 +: 8])
if (ptr_reg == 27/KEEP_WIDTH && (!KEEP_ENABLE || s_eth_payload_axis_tkeep[27%KEEP_WIDTH])) begin
read_arp_header_next = 1'b0;
end
`undef _HEADER_FIELD_
end
if (s_eth_payload_axis_tlast) begin
if (read_arp_header_next) begin
// don't have the whole header
error_header_early_termination_next = 1'b1;
end else if (m_arp_hlen_next != 4'd6 || m_arp_plen_next != 4'd4) begin
// lengths not valid
error_invalid_header_next = 1'b1;
end else begin
// otherwise, transfer tuser
m_frame_valid_next = !s_eth_payload_axis_tuser;
end
ptr_next = 1'b0;
read_eth_header_next = 1'b1;
read_arp_header_next = 1'b0;
end
end
if (read_eth_header_next) begin
s_eth_hdr_ready_next = !m_frame_valid_next;
end else begin
s_eth_payload_axis_tready_next = 1'b1;
end
end
always @(posedge clk) begin
read_eth_header_reg <= read_eth_header_next;
read_arp_header_reg <= read_arp_header_next;
ptr_reg <= ptr_next;
s_eth_hdr_ready_reg <= s_eth_hdr_ready_next;
s_eth_payload_axis_tready_reg <= s_eth_payload_axis_tready_next;
m_frame_valid_reg <= m_frame_valid_next;
m_arp_htype_reg <= m_arp_htype_next;
m_arp_ptype_reg <= m_arp_ptype_next;
m_arp_hlen_reg <= m_arp_hlen_next;
m_arp_plen_reg <= m_arp_plen_next;
m_arp_oper_reg <= m_arp_oper_next;
m_arp_sha_reg <= m_arp_sha_next;
m_arp_spa_reg <= m_arp_spa_next;
m_arp_tha_reg <= m_arp_tha_next;
m_arp_tpa_reg <= m_arp_tpa_next;
error_header_early_termination_reg <= error_header_early_termination_next;
error_invalid_header_reg <= error_invalid_header_next;
busy_reg <= read_arp_header_next;
// datapath
if (store_eth_hdr) begin
m_eth_dest_mac_reg <= s_eth_dest_mac;
m_eth_src_mac_reg <= s_eth_src_mac;
m_eth_type_reg <= s_eth_type;
end
if (rst) begin
read_eth_header_reg <= 1'b1;
read_arp_header_reg <= 1'b0;
ptr_reg <= 0;
s_eth_payload_axis_tready_reg <= 1'b0;
m_frame_valid_reg <= 1'b0;
busy_reg <= 1'b0;
error_header_early_termination_reg <= 1'b0;
error_invalid_header_reg <= 1'b0;
end
end
endmodule
/*
Copyright (c) 2014-2020 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* ARP ethernet frame transmitter (ARP frame in, Ethernet frame out)
*/
module arp_eth_tx #
(
// Width of AXI stream interfaces in bits
parameter DATA_WIDTH = 8,
// Propagate tkeep signal
// If disabled, tkeep assumed to be 1'b1
parameter KEEP_ENABLE = (DATA_WIDTH>8),
// tkeep signal width (words per cycle)
parameter KEEP_WIDTH = (DATA_WIDTH/8)
)
(
input wire clk,
input wire rst,
/*
* ARP frame input
*/
input wire s_frame_valid,
output wire s_frame_ready,
input wire [47:0] s_eth_dest_mac,
input wire [47:0] s_eth_src_mac,
input wire [15:0] s_eth_type,
input wire [15:0] s_arp_htype,
input wire [15:0] s_arp_ptype,
input wire [15:0] s_arp_oper,
input wire [47:0] s_arp_sha,
input wire [31:0] s_arp_spa,
input wire [47:0] s_arp_tha,
input wire [31:0] s_arp_tpa,
/*
* Ethernet frame output
*/
output wire m_eth_hdr_valid,
input wire m_eth_hdr_ready,
output wire [47:0] m_eth_dest_mac,
output wire [47:0] m_eth_src_mac,
output wire [15:0] m_eth_type,
output wire [DATA_WIDTH-1:0] m_eth_payload_axis_tdata,
output wire [KEEP_WIDTH-1:0] m_eth_payload_axis_tkeep,
output wire m_eth_payload_axis_tvalid,
input wire m_eth_payload_axis_tready,
output wire m_eth_payload_axis_tlast,
output wire m_eth_payload_axis_tuser,
/*
* Status signals
*/
output wire busy
);
parameter CYCLE_COUNT = (28+KEEP_WIDTH-1)/KEEP_WIDTH;
parameter PTR_WIDTH = $clog2(CYCLE_COUNT);
parameter OFFSET = 28 % KEEP_WIDTH;
// bus width assertions
initial begin
if (KEEP_WIDTH * 8 != DATA_WIDTH) begin
$error("Error: AXI stream interface requires byte (8-bit) granularity (instance %m)");
$finish;
end
end
/*
ARP Frame
Field Length
Destination MAC address 6 octets
Source MAC address 6 octets
Ethertype (0x0806) 2 octets
HTYPE (1) 2 octets
PTYPE (0x0800) 2 octets
HLEN (6) 1 octets
PLEN (4) 1 octets
OPER 2 octets
SHA Sender MAC 6 octets
SPA Sender IP 4 octets
THA Target MAC 6 octets
TPA Target IP 4 octets
This module receives an ARP frame with header fields in parallel and
transmits the complete Ethernet payload on an AXI interface.
*/
// datapath control signals
reg store_frame;
reg send_arp_header_reg = 1'b0, send_arp_header_next;
reg [PTR_WIDTH-1:0] ptr_reg = 0, ptr_next;
reg [15:0] arp_htype_reg = 16'd0;
reg [15:0] arp_ptype_reg = 16'd0;
reg [15:0] arp_oper_reg = 16'd0;
reg [47:0] arp_sha_reg = 48'd0;
reg [31:0] arp_spa_reg = 32'd0;
reg [47:0] arp_tha_reg = 48'd0;
reg [31:0] arp_tpa_reg = 32'd0;
reg s_frame_ready_reg = 1'b0, s_frame_ready_next;
reg m_eth_hdr_valid_reg = 1'b0, m_eth_hdr_valid_next;
reg [47:0] m_eth_dest_mac_reg = 48'd0;
reg [47:0] m_eth_src_mac_reg = 48'd0;
reg [15:0] m_eth_type_reg = 16'd0;
reg busy_reg = 1'b0;
// internal datapath
reg [DATA_WIDTH-1:0] m_eth_payload_axis_tdata_int;
reg [KEEP_WIDTH-1:0] m_eth_payload_axis_tkeep_int;
reg m_eth_payload_axis_tvalid_int;
reg m_eth_payload_axis_tready_int_reg = 1'b0;
reg m_eth_payload_axis_tlast_int;
reg m_eth_payload_axis_tuser_int;
wire m_eth_payload_axis_tready_int_early;
assign s_frame_ready = s_frame_ready_reg;
assign m_eth_hdr_valid = m_eth_hdr_valid_reg;
assign m_eth_dest_mac = m_eth_dest_mac_reg;
assign m_eth_src_mac = m_eth_src_mac_reg;
assign m_eth_type = m_eth_type_reg;
assign busy = busy_reg;
always @* begin
send_arp_header_next = send_arp_header_reg;
ptr_next = ptr_reg;
s_frame_ready_next = 1'b0;
store_frame = 1'b0;
m_eth_hdr_valid_next = m_eth_hdr_valid_reg && !m_eth_hdr_ready;
m_eth_payload_axis_tdata_int = {DATA_WIDTH{1'b0}};
m_eth_payload_axis_tkeep_int = {KEEP_WIDTH{1'b0}};
m_eth_payload_axis_tvalid_int = 1'b0;
m_eth_payload_axis_tlast_int = 1'b0;
m_eth_payload_axis_tuser_int = 1'b0;
if (s_frame_ready && s_frame_valid) begin
store_frame = 1'b1;
m_eth_hdr_valid_next = 1'b1;
ptr_next = 0;
send_arp_header_next = 1'b1;
end
if (m_eth_payload_axis_tready_int_reg) begin
if (send_arp_header_reg) begin
ptr_next = ptr_reg + 1;
m_eth_payload_axis_tdata_int = {DATA_WIDTH{1'b0}};
m_eth_payload_axis_tkeep_int = {KEEP_WIDTH{1'b0}};
m_eth_payload_axis_tvalid_int = 1'b1;
m_eth_payload_axis_tlast_int = 1'b0;
m_eth_payload_axis_tuser_int = 1'b0;
`define _HEADER_FIELD_(offset, field) \
if (ptr_reg == offset/KEEP_WIDTH) begin \
m_eth_payload_axis_tdata_int[(offset%KEEP_WIDTH)*8 +: 8] = field; \
m_eth_payload_axis_tkeep_int[offset%KEEP_WIDTH] = 1'b1; \
end
`_HEADER_FIELD_(0, arp_htype_reg[1*8 +: 8])
`_HEADER_FIELD_(1, arp_htype_reg[0*8 +: 8])
`_HEADER_FIELD_(2, arp_ptype_reg[1*8 +: 8])
`_HEADER_FIELD_(3, arp_ptype_reg[0*8 +: 8])
`_HEADER_FIELD_(4, 8'd6)
`_HEADER_FIELD_(5, 8'd4)
`_HEADER_FIELD_(6, arp_oper_reg[1*8 +: 8])
`_HEADER_FIELD_(7, arp_oper_reg[0*8 +: 8])
`_HEADER_FIELD_(8, arp_sha_reg[5*8 +: 8])
`_HEADER_FIELD_(9, arp_sha_reg[4*8 +: 8])
`_HEADER_FIELD_(10, arp_sha_reg[3*8 +: 8])
`_HEADER_FIELD_(11, arp_sha_reg[2*8 +: 8])
`_HEADER_FIELD_(12, arp_sha_reg[1*8 +: 8])
`_HEADER_FIELD_(13, arp_sha_reg[0*8 +: 8])
`_HEADER_FIELD_(14, arp_spa_reg[3*8 +: 8])
`_HEADER_FIELD_(15, arp_spa_reg[2*8 +: 8])
`_HEADER_FIELD_(16, arp_spa_reg[1*8 +: 8])
`_HEADER_FIELD_(17, arp_spa_reg[0*8 +: 8])
`_HEADER_FIELD_(18, arp_tha_reg[5*8 +: 8])
`_HEADER_FIELD_(19, arp_tha_reg[4*8 +: 8])
`_HEADER_FIELD_(20, arp_tha_reg[3*8 +: 8])
`_HEADER_FIELD_(21, arp_tha_reg[2*8 +: 8])
`_HEADER_FIELD_(22, arp_tha_reg[1*8 +: 8])
`_HEADER_FIELD_(23, arp_tha_reg[0*8 +: 8])
`_HEADER_FIELD_(24, arp_tpa_reg[3*8 +: 8])
`_HEADER_FIELD_(25, arp_tpa_reg[2*8 +: 8])
`_HEADER_FIELD_(26, arp_tpa_reg[1*8 +: 8])
`_HEADER_FIELD_(27, arp_tpa_reg[0*8 +: 8])
if (ptr_reg == 27/KEEP_WIDTH) begin
m_eth_payload_axis_tlast_int = 1'b1;
send_arp_header_next = 1'b0;
end
`undef _HEADER_FIELD_
end
end
s_frame_ready_next = !m_eth_hdr_valid_next && !send_arp_header_next;
end
always @(posedge clk) begin
send_arp_header_reg <= send_arp_header_next;
ptr_reg <= ptr_next;
s_frame_ready_reg <= s_frame_ready_next;
m_eth_hdr_valid_reg <= m_eth_hdr_valid_next;
busy_reg <= send_arp_header_next;
if (store_frame) begin
m_eth_dest_mac_reg <= s_eth_dest_mac;
m_eth_src_mac_reg <= s_eth_src_mac;
m_eth_type_reg <= s_eth_type;
arp_htype_reg <= s_arp_htype;
arp_ptype_reg <= s_arp_ptype;
arp_oper_reg <= s_arp_oper;
arp_sha_reg <= s_arp_sha;
arp_spa_reg <= s_arp_spa;
arp_tha_reg <= s_arp_tha;
arp_tpa_reg <= s_arp_tpa;
end
if (rst) begin
send_arp_header_reg <= 1'b0;
ptr_reg <= 0;
s_frame_ready_reg <= 1'b0;
m_eth_hdr_valid_reg <= 1'b0;
busy_reg <= 1'b0;
end
end
// output datapath logic
reg [DATA_WIDTH-1:0] m_eth_payload_axis_tdata_reg = {DATA_WIDTH{1'b0}};
reg [KEEP_WIDTH-1:0] m_eth_payload_axis_tkeep_reg = {KEEP_WIDTH{1'b0}};
reg m_eth_payload_axis_tvalid_reg = 1'b0, m_eth_payload_axis_tvalid_next;
reg m_eth_payload_axis_tlast_reg = 1'b0;
reg m_eth_payload_axis_tuser_reg = 1'b0;
reg [DATA_WIDTH-1:0] temp_m_eth_payload_axis_tdata_reg = {DATA_WIDTH{1'b0}};
reg [KEEP_WIDTH-1:0] temp_m_eth_payload_axis_tkeep_reg = {KEEP_WIDTH{1'b0}};
reg temp_m_eth_payload_axis_tvalid_reg = 1'b0, temp_m_eth_payload_axis_tvalid_next;
reg temp_m_eth_payload_axis_tlast_reg = 1'b0;
reg temp_m_eth_payload_axis_tuser_reg = 1'b0;
// datapath control
reg store_eth_payload_int_to_output;
reg store_eth_payload_int_to_temp;
reg store_eth_payload_axis_temp_to_output;
assign m_eth_payload_axis_tdata = m_eth_payload_axis_tdata_reg;
assign m_eth_payload_axis_tkeep = KEEP_ENABLE ? m_eth_payload_axis_tkeep_reg : {KEEP_WIDTH{1'b1}};
assign m_eth_payload_axis_tvalid = m_eth_payload_axis_tvalid_reg;
assign m_eth_payload_axis_tlast = m_eth_payload_axis_tlast_reg;
assign m_eth_payload_axis_tuser = m_eth_payload_axis_tuser_reg;
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
assign m_eth_payload_axis_tready_int_early = m_eth_payload_axis_tready || (!temp_m_eth_payload_axis_tvalid_reg && (!m_eth_payload_axis_tvalid_reg || !m_eth_payload_axis_tvalid_int));
always @* begin
// transfer sink ready state to source
m_eth_payload_axis_tvalid_next = m_eth_payload_axis_tvalid_reg;
temp_m_eth_payload_axis_tvalid_next = temp_m_eth_payload_axis_tvalid_reg;
store_eth_payload_int_to_output = 1'b0;
store_eth_payload_int_to_temp = 1'b0;
store_eth_payload_axis_temp_to_output = 1'b0;
if (m_eth_payload_axis_tready_int_reg) begin
// input is ready
if (m_eth_payload_axis_tready || !m_eth_payload_axis_tvalid_reg) begin
// output is ready or currently not valid, transfer data to output
m_eth_payload_axis_tvalid_next = m_eth_payload_axis_tvalid_int;
store_eth_payload_int_to_output = 1'b1;
end else begin
// output is not ready, store input in temp
temp_m_eth_payload_axis_tvalid_next = m_eth_payload_axis_tvalid_int;
store_eth_payload_int_to_temp = 1'b1;
end
end else if (m_eth_payload_axis_tready) begin
// input is not ready, but output is ready
m_eth_payload_axis_tvalid_next = temp_m_eth_payload_axis_tvalid_reg;
temp_m_eth_payload_axis_tvalid_next = 1'b0;
store_eth_payload_axis_temp_to_output = 1'b1;
end
end
always @(posedge clk) begin
if (rst) begin
m_eth_payload_axis_tvalid_reg <= 1'b0;
m_eth_payload_axis_tready_int_reg <= 1'b0;
temp_m_eth_payload_axis_tvalid_reg <= 1'b0;
end else begin
m_eth_payload_axis_tvalid_reg <= m_eth_payload_axis_tvalid_next;
m_eth_payload_axis_tready_int_reg <= m_eth_payload_axis_tready_int_early;
temp_m_eth_payload_axis_tvalid_reg <= temp_m_eth_payload_axis_tvalid_next;
end
// datapath
if (store_eth_payload_int_to_output) begin
m_eth_payload_axis_tdata_reg <= m_eth_payload_axis_tdata_int;
m_eth_payload_axis_tkeep_reg <= m_eth_payload_axis_tkeep_int;
m_eth_payload_axis_tlast_reg <= m_eth_payload_axis_tlast_int;
m_eth_payload_axis_tuser_reg <= m_eth_payload_axis_tuser_int;
end else if (store_eth_payload_axis_temp_to_output) begin
m_eth_payload_axis_tdata_reg <= temp_m_eth_payload_axis_tdata_reg;
m_eth_payload_axis_tkeep_reg <= temp_m_eth_payload_axis_tkeep_reg;
m_eth_payload_axis_tlast_reg <= temp_m_eth_payload_axis_tlast_reg;
m_eth_payload_axis_tuser_reg <= temp_m_eth_payload_axis_tuser_reg;
end
if (store_eth_payload_int_to_temp) begin
temp_m_eth_payload_axis_tdata_reg <= m_eth_payload_axis_tdata_int;
temp_m_eth_payload_axis_tkeep_reg <= m_eth_payload_axis_tkeep_int;
temp_m_eth_payload_axis_tlast_reg <= m_eth_payload_axis_tlast_int;
temp_m_eth_payload_axis_tuser_reg <= m_eth_payload_axis_tuser_int;
end
end
endmodule
/*
Copyright (c) 2019 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* AXI4-Stream 10GBASE-R frame receiver (10GBASE-R in, AXI out)
*/
module axis_baser_rx_64 #
(
parameter DATA_WIDTH = 64,
parameter KEEP_WIDTH = (DATA_WIDTH/8),
parameter HDR_WIDTH = 2,
parameter PTP_PERIOD_NS = 4'h6,
parameter PTP_PERIOD_FNS = 16'h6666,
parameter PTP_TS_ENABLE = 0,
parameter PTP_TS_WIDTH = 96,
parameter USER_WIDTH = (PTP_TS_ENABLE ? PTP_TS_WIDTH : 0) + 1
)
(
input wire clk,
input wire rst,
/*
* 10GBASE-R encoded input
*/
input wire [DATA_WIDTH-1:0] encoded_rx_data,
input wire [HDR_WIDTH-1:0] encoded_rx_hdr,
/*
* AXI output
*/
output wire [DATA_WIDTH-1:0] m_axis_tdata,
output wire [KEEP_WIDTH-1:0] m_axis_tkeep,
output wire m_axis_tvalid,
output wire m_axis_tlast,
output wire [USER_WIDTH-1:0] m_axis_tuser,
/*
* PTP
*/
input wire [PTP_TS_WIDTH-1:0] ptp_ts,
/*
* Status
*/
output wire [1:0] start_packet,
output wire error_bad_frame,
output wire error_bad_fcs,
output wire rx_bad_block
);
// bus width assertions
initial begin
if (DATA_WIDTH != 64) begin
$error("Error: Interface width must be 64");
$finish;
end
if (KEEP_WIDTH * 8 != DATA_WIDTH) begin
$error("Error: Interface requires byte (8-bit) granularity");
$finish;
end
if (HDR_WIDTH != 2) begin
$error("Error: HDR_WIDTH must be 2");
$finish;
end
end
localparam [7:0]
ETH_PRE = 8'h55,
ETH_SFD = 8'hD5;
localparam [7:0]
XGMII_IDLE = 8'h07,
XGMII_START = 8'hfb,
XGMII_TERM = 8'hfd,
XGMII_ERROR = 8'hfe;
localparam [6:0]
CTRL_IDLE = 7'h00,
CTRL_LPI = 7'h06,
CTRL_ERROR = 7'h1e,
CTRL_RES_0 = 7'h2d,
CTRL_RES_1 = 7'h33,
CTRL_RES_2 = 7'h4b,
CTRL_RES_3 = 7'h55,
CTRL_RES_4 = 7'h66,
CTRL_RES_5 = 7'h78;
localparam [3:0]
O_SEQ_OS = 4'h0,
O_SIG_OS = 4'hf;
localparam [1:0]
SYNC_DATA = 2'b10,
SYNC_CTRL = 2'b01;
localparam [7:0]
BLOCK_TYPE_CTRL = 8'h1e, // C7 C6 C5 C4 C3 C2 C1 C0 BT
BLOCK_TYPE_OS_4 = 8'h2d, // D7 D6 D5 O4 C3 C2 C1 C0 BT
BLOCK_TYPE_START_4 = 8'h33, // D7 D6 D5 C3 C2 C1 C0 BT
BLOCK_TYPE_OS_START = 8'h66, // D7 D6 D5 O0 D3 D2 D1 BT
BLOCK_TYPE_OS_04 = 8'h55, // D7 D6 D5 O4 O0 D3 D2 D1 BT
BLOCK_TYPE_START_0 = 8'h78, // D7 D6 D5 D4 D3 D2 D1 BT
BLOCK_TYPE_OS_0 = 8'h4b, // C7 C6 C5 C4 O0 D3 D2 D1 BT
BLOCK_TYPE_TERM_0 = 8'h87, // C7 C6 C5 C4 C3 C2 C1 BT
BLOCK_TYPE_TERM_1 = 8'h99, // C7 C6 C5 C4 C3 C2 D0 BT
BLOCK_TYPE_TERM_2 = 8'haa, // C7 C6 C5 C4 C3 D1 D0 BT
BLOCK_TYPE_TERM_3 = 8'hb4, // C7 C6 C5 C4 D2 D1 D0 BT
BLOCK_TYPE_TERM_4 = 8'hcc, // C7 C6 C5 D3 D2 D1 D0 BT
BLOCK_TYPE_TERM_5 = 8'hd2, // C7 C6 D4 D3 D2 D1 D0 BT
BLOCK_TYPE_TERM_6 = 8'he1, // C7 D5 D4 D3 D2 D1 D0 BT
BLOCK_TYPE_TERM_7 = 8'hff; // D6 D5 D4 D3 D2 D1 D0 BT
localparam [3:0]
INPUT_TYPE_IDLE = 4'd0,
INPUT_TYPE_ERROR = 4'd1,
INPUT_TYPE_START_0 = 4'd2,
INPUT_TYPE_START_4 = 4'd3,
INPUT_TYPE_DATA = 4'd4,
INPUT_TYPE_TERM_0 = 4'd8,
INPUT_TYPE_TERM_1 = 4'd9,
INPUT_TYPE_TERM_2 = 4'd10,
INPUT_TYPE_TERM_3 = 4'd11,
INPUT_TYPE_TERM_4 = 4'd12,
INPUT_TYPE_TERM_5 = 4'd13,
INPUT_TYPE_TERM_6 = 4'd14,
INPUT_TYPE_TERM_7 = 4'd15;
localparam [1:0]
STATE_IDLE = 2'd0,
STATE_PAYLOAD = 2'd1,
STATE_LAST = 2'd2;
reg [1:0] state_reg = STATE_IDLE, state_next;
// datapath control signals
reg reset_crc;
reg update_crc_last;
reg lanes_swapped = 1'b0;
reg [31:0] swap_data = 32'd0;
reg delay_type_valid = 1'b0;
reg [3:0] delay_type = INPUT_TYPE_IDLE;
reg [DATA_WIDTH-1:0] input_data_d0 = {DATA_WIDTH{1'b0}};
reg [DATA_WIDTH-1:0] input_data_d1 = {DATA_WIDTH{1'b0}};
reg [DATA_WIDTH-1:0] input_data_crc = {DATA_WIDTH{1'b0}};
reg [3:0] input_type_d0 = INPUT_TYPE_IDLE;
reg [3:0] input_type_d1 = INPUT_TYPE_IDLE;
reg [DATA_WIDTH-1:0] m_axis_tdata_reg = {DATA_WIDTH{1'b0}}, m_axis_tdata_next;
reg [KEEP_WIDTH-1:0] m_axis_tkeep_reg = {KEEP_WIDTH{1'b0}}, m_axis_tkeep_next;
reg m_axis_tvalid_reg = 1'b0, m_axis_tvalid_next;
reg m_axis_tlast_reg = 1'b0, m_axis_tlast_next;
reg m_axis_tuser_reg = 1'b0, m_axis_tuser_next;
reg [1:0] start_packet_reg = 2'b00;
reg error_bad_frame_reg = 1'b0, error_bad_frame_next;
reg error_bad_fcs_reg = 1'b0, error_bad_fcs_next;
reg rx_bad_block_reg = 1'b0;
reg [PTP_TS_WIDTH-1:0] ptp_ts_reg = 0;
reg [31:0] crc_state = 32'hFFFFFFFF;
reg [31:0] crc_state3 = 32'hFFFFFFFF;
wire [31:0] crc_next0;
wire [31:0] crc_next1;
wire [31:0] crc_next2;
wire [31:0] crc_next3;
wire [31:0] crc_next7;
wire crc_valid0 = crc_next0 == ~32'h2144df1c;
wire crc_valid1 = crc_next1 == ~32'h2144df1c;
wire crc_valid2 = crc_next2 == ~32'h2144df1c;
wire crc_valid3 = crc_next3 == ~32'h2144df1c;
wire crc_valid7 = crc_next7 == ~32'h2144df1c;
reg crc_valid7_save = 1'b0;
assign m_axis_tdata = m_axis_tdata_reg;
assign m_axis_tkeep = m_axis_tkeep_reg;
assign m_axis_tvalid = m_axis_tvalid_reg;
assign m_axis_tlast = m_axis_tlast_reg;
assign m_axis_tuser = PTP_TS_ENABLE ? {ptp_ts_reg, m_axis_tuser_reg} : m_axis_tuser_reg;
assign start_packet = start_packet_reg;
assign error_bad_frame = error_bad_frame_reg;
assign error_bad_fcs = error_bad_fcs_reg;
assign rx_bad_block = rx_bad_block_reg;
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(8),
.STYLE("AUTO")
)
eth_crc_8 (
.data_in(input_data_crc[7:0]),
.state_in(crc_state3),
.data_out(),
.state_out(crc_next0)
);
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(16),
.STYLE("AUTO")
)
eth_crc_16 (
.data_in(input_data_crc[15:0]),
.state_in(crc_state3),
.data_out(),
.state_out(crc_next1)
);
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(24),
.STYLE("AUTO")
)
eth_crc_24 (
.data_in(input_data_crc[23:0]),
.state_in(crc_state3),
.data_out(),
.state_out(crc_next2)
);
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(32),
.STYLE("AUTO")
)
eth_crc_32 (
.data_in(input_data_crc[31:0]),
.state_in(crc_state3),
.data_out(),
.state_out(crc_next3)
);
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(64),
.STYLE("AUTO")
)
eth_crc_64 (
.data_in(input_data_d0[63:0]),
.state_in(crc_state),
.data_out(),
.state_out(crc_next7)
);
always @* begin
state_next = STATE_IDLE;
reset_crc = 1'b0;
update_crc_last = 1'b0;
m_axis_tdata_next = input_data_d1;
m_axis_tkeep_next = 8'd0;
m_axis_tvalid_next = 1'b0;
m_axis_tlast_next = 1'b0;
m_axis_tuser_next = 1'b0;
error_bad_frame_next = 1'b0;
error_bad_fcs_next = 1'b0;
case (state_reg)
STATE_IDLE: begin
// idle state - wait for packet
reset_crc = 1'b1;
if (input_type_d1 == INPUT_TYPE_START_0) begin
// start condition
reset_crc = 1'b0;
state_next = STATE_PAYLOAD;
end else begin
state_next = STATE_IDLE;
end
end
STATE_PAYLOAD: begin
// read payload
m_axis_tdata_next = input_data_d1;
m_axis_tkeep_next = 8'hff;
m_axis_tvalid_next = 1'b1;
m_axis_tlast_next = 1'b0;
m_axis_tuser_next = 1'b0;
if (input_type_d0 == INPUT_TYPE_DATA) begin
state_next = STATE_PAYLOAD;
end else if (input_type_d0[3]) begin
// INPUT_TYPE_TERM_*
if (input_type_d0 <= INPUT_TYPE_TERM_4) begin
// end this cycle
reset_crc = 1'b1;
case (input_type_d0)
INPUT_TYPE_TERM_0: m_axis_tkeep_next = 8'b00001111;
INPUT_TYPE_TERM_1: m_axis_tkeep_next = 8'b00011111;
INPUT_TYPE_TERM_2: m_axis_tkeep_next = 8'b00111111;
INPUT_TYPE_TERM_3: m_axis_tkeep_next = 8'b01111111;
INPUT_TYPE_TERM_4: m_axis_tkeep_next = 8'b11111111;
endcase
m_axis_tlast_next = 1'b1;
if ((input_type_d0 == INPUT_TYPE_TERM_0 && crc_valid7_save) ||
(input_type_d0 == INPUT_TYPE_TERM_1 && crc_valid0) ||
(input_type_d0 == INPUT_TYPE_TERM_2 && crc_valid1) ||
(input_type_d0 == INPUT_TYPE_TERM_3 && crc_valid2) ||
(input_type_d0 == INPUT_TYPE_TERM_4 && crc_valid3)) begin
// CRC valid
end else begin
m_axis_tuser_next = 1'b1;
error_bad_frame_next = 1'b1;
error_bad_fcs_next = 1'b1;
end
state_next = STATE_IDLE;
end else begin
// need extra cycle
update_crc_last = 1'b1;
state_next = STATE_LAST;
end
end else begin
// control or error characters in packet
m_axis_tlast_next = 1'b1;
m_axis_tuser_next = 1'b1;
error_bad_frame_next = 1'b1;
reset_crc = 1'b1;
state_next = STATE_IDLE;
end
end
STATE_LAST: begin
// last cycle of packet
m_axis_tdata_next = input_data_d1;
m_axis_tkeep_next = 8'hff;
m_axis_tvalid_next = 1'b1;
m_axis_tlast_next = 1'b1;
m_axis_tuser_next = 1'b0;
reset_crc = 1'b1;
case (input_type_d1)
INPUT_TYPE_TERM_5: m_axis_tkeep_next = 8'b00000001;
INPUT_TYPE_TERM_6: m_axis_tkeep_next = 8'b00000011;
INPUT_TYPE_TERM_7: m_axis_tkeep_next = 8'b00000111;
endcase
if ((input_type_d1 == INPUT_TYPE_TERM_5 && crc_valid0) ||
(input_type_d1 == INPUT_TYPE_TERM_6 && crc_valid1) ||
(input_type_d1 == INPUT_TYPE_TERM_7 && crc_valid2)) begin
// CRC valid
end else begin
m_axis_tuser_next = 1'b1;
error_bad_frame_next = 1'b1;
error_bad_fcs_next = 1'b1;
end
state_next = STATE_IDLE;
end
endcase
end
always @(posedge clk) begin
if (rst) begin
state_reg <= STATE_IDLE;
m_axis_tvalid_reg <= 1'b0;
start_packet_reg <= 2'b00;
error_bad_frame_reg <= 1'b0;
error_bad_fcs_reg <= 1'b0;
rx_bad_block_reg <= 1'b0;
crc_state <= 32'hFFFFFFFF;
crc_state3 <= 32'hFFFFFFFF;
input_type_d0 <= INPUT_TYPE_IDLE;
input_type_d1 <= INPUT_TYPE_IDLE;
lanes_swapped <= 1'b0;
delay_type_valid <= 1'b0;
delay_type <= INPUT_TYPE_IDLE;
end else begin
state_reg <= state_next;
m_axis_tvalid_reg <= m_axis_tvalid_next;
start_packet_reg <= 2'b00;
error_bad_frame_reg <= error_bad_frame_next;
error_bad_fcs_reg <= error_bad_fcs_next;
rx_bad_block_reg <= 1'b0;
delay_type_valid <= 1'b0;
if (encoded_rx_hdr == SYNC_CTRL && encoded_rx_data[7:0] == BLOCK_TYPE_START_0) begin
lanes_swapped <= 1'b0;
start_packet_reg <= 2'b01;
input_type_d0 <= INPUT_TYPE_START_0;
end else if (encoded_rx_hdr == SYNC_CTRL && (encoded_rx_data[7:0] == BLOCK_TYPE_START_4 || encoded_rx_data[7:0] == BLOCK_TYPE_OS_START)) begin
lanes_swapped <= 1'b1;
start_packet_reg <= 2'b10;
delay_type_valid <= 1'b1;
if (delay_type_valid) begin
input_type_d0 <= delay_type;
end else begin
input_type_d0 <= INPUT_TYPE_IDLE;
end
end else if (lanes_swapped) begin
if (delay_type_valid) begin
input_type_d0 <= delay_type;
end else if (encoded_rx_hdr == SYNC_DATA) begin
input_type_d0 <= INPUT_TYPE_DATA;
end else if (encoded_rx_hdr == SYNC_CTRL) begin
case (encoded_rx_data[7:0])
BLOCK_TYPE_TERM_0: input_type_d0 <= INPUT_TYPE_TERM_4;
BLOCK_TYPE_TERM_1: input_type_d0 <= INPUT_TYPE_TERM_5;
BLOCK_TYPE_TERM_2: input_type_d0 <= INPUT_TYPE_TERM_6;
BLOCK_TYPE_TERM_3: input_type_d0 <= INPUT_TYPE_TERM_7;
BLOCK_TYPE_TERM_4: begin
delay_type_valid <= 1'b1;
input_type_d0 <= INPUT_TYPE_DATA;
end
BLOCK_TYPE_TERM_5: begin
delay_type_valid <= 1'b1;
input_type_d0 <= INPUT_TYPE_DATA;
end
BLOCK_TYPE_TERM_6: begin
delay_type_valid <= 1'b1;
input_type_d0 <= INPUT_TYPE_DATA;
end
BLOCK_TYPE_TERM_7: begin
delay_type_valid <= 1'b1;
input_type_d0 <= INPUT_TYPE_DATA;
end
default: begin
rx_bad_block_reg <= 1'b1;
input_type_d0 <= INPUT_TYPE_ERROR;
end
endcase
end else begin
rx_bad_block_reg <= 1'b1;
input_type_d0 <= INPUT_TYPE_ERROR;
end
end else begin
if (encoded_rx_hdr == SYNC_DATA) begin
input_type_d0 <= INPUT_TYPE_DATA;
end else if (encoded_rx_hdr == SYNC_CTRL) begin
case (encoded_rx_data[7:0])
BLOCK_TYPE_TERM_0: input_type_d0 <= INPUT_TYPE_TERM_0;
BLOCK_TYPE_TERM_1: input_type_d0 <= INPUT_TYPE_TERM_1;
BLOCK_TYPE_TERM_2: input_type_d0 <= INPUT_TYPE_TERM_2;
BLOCK_TYPE_TERM_3: input_type_d0 <= INPUT_TYPE_TERM_3;
BLOCK_TYPE_TERM_4: input_type_d0 <= INPUT_TYPE_TERM_4;
BLOCK_TYPE_TERM_5: input_type_d0 <= INPUT_TYPE_TERM_5;
BLOCK_TYPE_TERM_6: input_type_d0 <= INPUT_TYPE_TERM_6;
BLOCK_TYPE_TERM_7: input_type_d0 <= INPUT_TYPE_TERM_7;
default: begin
rx_bad_block_reg <= 1'b1;
input_type_d0 <= INPUT_TYPE_ERROR;
end
endcase
end else begin
rx_bad_block_reg <= 1'b1;
input_type_d0 <= INPUT_TYPE_ERROR;
end
end
input_type_d1 <= input_type_d0;
// datapath
if (reset_crc) begin
crc_state <= 32'hFFFFFFFF;
end else begin
crc_state <= crc_next7;
end
if (update_crc_last) begin
crc_state3 <= crc_next3;
end else begin
crc_state3 <= crc_next7;
end
end
if (PTP_TS_WIDTH == 96 && $signed({1'b0, ptp_ts_reg[45:16]}) - $signed(31'd1000000000) > 0) begin
// ns field rollover
ptp_ts_reg[45:16] <= $signed({1'b0, ptp_ts_reg[45:16]}) - $signed(31'd1000000000);
ptp_ts_reg[95:48] <= ptp_ts_reg[95:48] + 1;
end
if (encoded_rx_hdr == SYNC_CTRL && encoded_rx_data[7:0] == BLOCK_TYPE_START_0) begin
if (PTP_TS_WIDTH == 96) begin
ptp_ts_reg[45:0] <= ptp_ts[45:0] + (PTP_PERIOD_NS * 2**16 + PTP_PERIOD_FNS);
ptp_ts_reg[95:48] <= ptp_ts[95:48];
end else begin
ptp_ts_reg <= ptp_ts + (PTP_PERIOD_NS * 2**16 + PTP_PERIOD_FNS);
end
end else if (encoded_rx_hdr == SYNC_CTRL && (encoded_rx_data[7:0] == BLOCK_TYPE_START_4 || encoded_rx_data[7:0] == BLOCK_TYPE_OS_START)) begin
if (PTP_TS_WIDTH == 96) begin
ptp_ts_reg[45:0] <= ptp_ts[45:0] + (((PTP_PERIOD_NS * 2**16 + PTP_PERIOD_FNS) * 3) >> 1);
ptp_ts_reg[95:48] <= ptp_ts[95:48];
end else begin
ptp_ts_reg <= ptp_ts + (((PTP_PERIOD_NS * 2**16 + PTP_PERIOD_FNS) * 3) >> 1);
end
end
m_axis_tdata_reg <= m_axis_tdata_next;
m_axis_tkeep_reg <= m_axis_tkeep_next;
m_axis_tlast_reg <= m_axis_tlast_next;
m_axis_tuser_reg <= m_axis_tuser_next;
if (encoded_rx_hdr == SYNC_DATA) begin
swap_data <= encoded_rx_data[63:32];
end else begin
swap_data <= {8'd0, encoded_rx_data[63:40]};
end
if (encoded_rx_hdr == SYNC_CTRL && encoded_rx_data[7:0] == BLOCK_TYPE_START_0) begin
input_data_d0 <= encoded_rx_data;
input_data_crc <= encoded_rx_data;
end else if (encoded_rx_hdr == SYNC_CTRL && (encoded_rx_data[7:0] == BLOCK_TYPE_START_4 || encoded_rx_data[7:0] == BLOCK_TYPE_OS_START)) begin
input_data_d0 <= {encoded_rx_data[31:0], swap_data};
input_data_crc <= {encoded_rx_data[31:0], swap_data};
end else if (lanes_swapped) begin
if (encoded_rx_hdr == SYNC_DATA) begin
input_data_d0 <= {encoded_rx_data[31:0], swap_data};
input_data_crc <= {encoded_rx_data[31:0], swap_data};
end else begin
input_data_d0 <= {encoded_rx_data[39:8], swap_data};
input_data_crc <= {encoded_rx_data[39:8], swap_data};
end
end else begin
if (encoded_rx_hdr == SYNC_DATA) begin
input_data_d0 <= encoded_rx_data;
input_data_crc <= encoded_rx_data;
end else begin
input_data_d0 <= {8'd0, encoded_rx_data[63:8]};
input_data_crc <= {8'd0, encoded_rx_data[63:8]};
end
end
crc_valid7_save <= crc_valid7;
if (state_next == STATE_LAST) begin
input_data_crc[31:0] <= input_data_crc[63:32];
end
input_data_d1 <= input_data_d0;
if (encoded_rx_hdr == SYNC_DATA) begin
delay_type <= INPUT_TYPE_DATA;
end else if (encoded_rx_hdr == SYNC_CTRL) begin
case (encoded_rx_data[7:0])
BLOCK_TYPE_START_4: delay_type <= INPUT_TYPE_START_0;
BLOCK_TYPE_TERM_0: delay_type <= INPUT_TYPE_TERM_4;
BLOCK_TYPE_TERM_1: delay_type <= INPUT_TYPE_TERM_5;
BLOCK_TYPE_TERM_2: delay_type <= INPUT_TYPE_TERM_6;
BLOCK_TYPE_TERM_3: delay_type <= INPUT_TYPE_TERM_7;
BLOCK_TYPE_TERM_4: delay_type <= INPUT_TYPE_TERM_0;
BLOCK_TYPE_TERM_5: delay_type <= INPUT_TYPE_TERM_1;
BLOCK_TYPE_TERM_6: delay_type <= INPUT_TYPE_TERM_2;
BLOCK_TYPE_TERM_7: delay_type <= INPUT_TYPE_TERM_3;
default: delay_type <= INPUT_TYPE_ERROR;
endcase
end else begin
delay_type <= INPUT_TYPE_ERROR;
end
end
endmodule
/*
Copyright (c) 2019 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* AXI4-Stream 10GBASE-R frame transmitter (AXI in, 10GBASE-R out)
*/
module axis_baser_tx_64 #
(
parameter DATA_WIDTH = 64,
parameter KEEP_WIDTH = (DATA_WIDTH/8),
parameter HDR_WIDTH = 2,
parameter ENABLE_PADDING = 1,
parameter ENABLE_DIC = 1,
parameter MIN_FRAME_LENGTH = 64,
parameter PTP_PERIOD_NS = 4'h6,
parameter PTP_PERIOD_FNS = 16'h6666,
parameter PTP_TS_ENABLE = 0,
parameter PTP_TS_WIDTH = 96,
parameter PTP_TAG_ENABLE = PTP_TS_ENABLE,
parameter PTP_TAG_WIDTH = 16,
parameter USER_WIDTH = (PTP_TAG_ENABLE ? PTP_TAG_WIDTH : 0) + 1
)
(
input wire clk,
input wire rst,
/*
* AXI input
*/
input wire [DATA_WIDTH-1:0] s_axis_tdata,
input wire [KEEP_WIDTH-1:0] s_axis_tkeep,
input wire s_axis_tvalid,
output wire s_axis_tready,
input wire s_axis_tlast,
input wire [USER_WIDTH-1:0] s_axis_tuser,
/*
* 10GBASE-R encoded interface
*/
output wire [DATA_WIDTH-1:0] encoded_tx_data,
output wire [HDR_WIDTH-1:0] encoded_tx_hdr,
/*
* PTP
*/
input wire [PTP_TS_WIDTH-1:0] ptp_ts,
output wire [PTP_TS_WIDTH-1:0] m_axis_ptp_ts,
output wire [PTP_TAG_WIDTH-1:0] m_axis_ptp_ts_tag,
output wire m_axis_ptp_ts_valid,
/*
* Configuration
*/
input wire [7:0] ifg_delay,
/*
* Status
*/
output wire [1:0] start_packet,
output wire error_underflow
);
// bus width assertions
initial begin
if (DATA_WIDTH != 64) begin
$error("Error: Interface width must be 64");
$finish;
end
if (KEEP_WIDTH * 8 != DATA_WIDTH) begin
$error("Error: Interface requires byte (8-bit) granularity");
$finish;
end
if (HDR_WIDTH != 2) begin
$error("Error: HDR_WIDTH must be 2");
$finish;
end
end
localparam MIN_FL_NOCRC = MIN_FRAME_LENGTH-4;
localparam MIN_FL_NOCRC_MS = MIN_FL_NOCRC & 16'hfff8;
localparam MIN_FL_NOCRC_LS = MIN_FL_NOCRC & 16'h0007;
localparam [7:0]
ETH_PRE = 8'h55,
ETH_SFD = 8'hD5;
localparam [6:0]
CTRL_IDLE = 7'h00,
CTRL_LPI = 7'h06,
CTRL_ERROR = 7'h1e,
CTRL_RES_0 = 7'h2d,
CTRL_RES_1 = 7'h33,
CTRL_RES_2 = 7'h4b,
CTRL_RES_3 = 7'h55,
CTRL_RES_4 = 7'h66,
CTRL_RES_5 = 7'h78;
localparam [3:0]
O_SEQ_OS = 4'h0,
O_SIG_OS = 4'hf;
localparam [1:0]
SYNC_DATA = 2'b10,
SYNC_CTRL = 2'b01;
localparam [7:0]
BLOCK_TYPE_CTRL = 8'h1e, // C7 C6 C5 C4 C3 C2 C1 C0 BT
BLOCK_TYPE_OS_4 = 8'h2d, // D7 D6 D5 O4 C3 C2 C1 C0 BT
BLOCK_TYPE_START_4 = 8'h33, // D7 D6 D5 C3 C2 C1 C0 BT
BLOCK_TYPE_OS_START = 8'h66, // D7 D6 D5 O0 D3 D2 D1 BT
BLOCK_TYPE_OS_04 = 8'h55, // D7 D6 D5 O4 O0 D3 D2 D1 BT
BLOCK_TYPE_START_0 = 8'h78, // D7 D6 D5 D4 D3 D2 D1 BT
BLOCK_TYPE_OS_0 = 8'h4b, // C7 C6 C5 C4 O0 D3 D2 D1 BT
BLOCK_TYPE_TERM_0 = 8'h87, // C7 C6 C5 C4 C3 C2 C1 BT
BLOCK_TYPE_TERM_1 = 8'h99, // C7 C6 C5 C4 C3 C2 D0 BT
BLOCK_TYPE_TERM_2 = 8'haa, // C7 C6 C5 C4 C3 D1 D0 BT
BLOCK_TYPE_TERM_3 = 8'hb4, // C7 C6 C5 C4 D2 D1 D0 BT
BLOCK_TYPE_TERM_4 = 8'hcc, // C7 C6 C5 D3 D2 D1 D0 BT
BLOCK_TYPE_TERM_5 = 8'hd2, // C7 C6 D4 D3 D2 D1 D0 BT
BLOCK_TYPE_TERM_6 = 8'he1, // C7 D5 D4 D3 D2 D1 D0 BT
BLOCK_TYPE_TERM_7 = 8'hff; // D6 D5 D4 D3 D2 D1 D0 BT
localparam [3:0]
OUTPUT_TYPE_IDLE = 4'd0,
OUTPUT_TYPE_ERROR = 4'd1,
OUTPUT_TYPE_START_0 = 4'd2,
OUTPUT_TYPE_START_4 = 4'd3,
OUTPUT_TYPE_DATA = 4'd4,
OUTPUT_TYPE_TERM_0 = 4'd8,
OUTPUT_TYPE_TERM_1 = 4'd9,
OUTPUT_TYPE_TERM_2 = 4'd10,
OUTPUT_TYPE_TERM_3 = 4'd11,
OUTPUT_TYPE_TERM_4 = 4'd12,
OUTPUT_TYPE_TERM_5 = 4'd13,
OUTPUT_TYPE_TERM_6 = 4'd14,
OUTPUT_TYPE_TERM_7 = 4'd15;
localparam [2:0]
STATE_IDLE = 3'd0,
STATE_PAYLOAD = 3'd1,
STATE_PAD = 3'd2,
STATE_FCS_1 = 3'd3,
STATE_FCS_2 = 3'd4,
STATE_IFG = 3'd5,
STATE_WAIT_END = 3'd6;
reg [2:0] state_reg = STATE_IDLE, state_next;
// datapath control signals
reg reset_crc;
reg update_crc;
reg swap_lanes;
reg unswap_lanes;
reg lanes_swapped = 1'b0;
reg [31:0] swap_data = 32'd0;
reg delay_type_valid = 1'b0;
reg [3:0] delay_type = OUTPUT_TYPE_IDLE;
reg [DATA_WIDTH-1:0] s_axis_tdata_masked;
reg [DATA_WIDTH-1:0] s_tdata_reg = {DATA_WIDTH{1'b0}}, s_tdata_next;
reg [7:0] s_tkeep_reg = 8'd0, s_tkeep_next;
reg [DATA_WIDTH-1:0] fcs_output_data_0;
reg [DATA_WIDTH-1:0] fcs_output_data_1;
reg [3:0] fcs_output_type_0;
reg [3:0] fcs_output_type_1;
reg [7:0] ifg_offset;
reg extra_cycle;
reg [15:0] frame_ptr_reg = 16'd0, frame_ptr_next;
reg [7:0] ifg_count_reg = 8'd0, ifg_count_next;
reg [1:0] deficit_idle_count_reg = 2'd0, deficit_idle_count_next;
reg s_axis_tready_reg = 1'b0, s_axis_tready_next;
reg [PTP_TS_WIDTH-1:0] m_axis_ptp_ts_reg = 0, m_axis_ptp_ts_next;
reg [PTP_TAG_WIDTH-1:0] m_axis_ptp_ts_tag_reg = 0, m_axis_ptp_ts_tag_next;
reg m_axis_ptp_ts_valid_reg = 1'b0, m_axis_ptp_ts_valid_next;
reg m_axis_ptp_ts_valid_int_reg = 1'b0, m_axis_ptp_ts_valid_int_next;
reg [31:0] crc_state = 32'hFFFFFFFF;
wire [31:0] crc_next0;
wire [31:0] crc_next1;
wire [31:0] crc_next2;
wire [31:0] crc_next3;
wire [31:0] crc_next4;
wire [31:0] crc_next5;
wire [31:0] crc_next6;
wire [31:0] crc_next7;
reg [DATA_WIDTH-1:0] encoded_tx_data_reg = {{8{CTRL_IDLE}}, BLOCK_TYPE_CTRL};
reg [HDR_WIDTH-1:0] encoded_tx_hdr_reg = SYNC_CTRL;
reg [DATA_WIDTH-1:0] output_data_reg = {DATA_WIDTH{1'b0}}, output_data_next;
reg [3:0] output_type_reg = OUTPUT_TYPE_IDLE, output_type_next;
reg [1:0] start_packet_reg = 2'b00, start_packet_next;
reg error_underflow_reg = 1'b0, error_underflow_next;
assign s_axis_tready = s_axis_tready_reg;
assign encoded_tx_data = encoded_tx_data_reg;
assign encoded_tx_hdr = encoded_tx_hdr_reg;
assign m_axis_ptp_ts = PTP_TS_ENABLE ? m_axis_ptp_ts_reg : 0;
assign m_axis_ptp_ts_tag = PTP_TAG_ENABLE ? m_axis_ptp_ts_tag_reg : 0;
assign m_axis_ptp_ts_valid = PTP_TS_ENABLE || PTP_TAG_ENABLE ? m_axis_ptp_ts_valid_reg : 1'b0;
assign start_packet = start_packet_reg;
assign error_underflow = error_underflow_reg;
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(8),
.STYLE("AUTO")
)
eth_crc_8 (
.data_in(s_tdata_reg[7:0]),
.state_in(crc_state),
.data_out(),
.state_out(crc_next0)
);
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(16),
.STYLE("AUTO")
)
eth_crc_16 (
.data_in(s_tdata_reg[15:0]),
.state_in(crc_state),
.data_out(),
.state_out(crc_next1)
);
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(24),
.STYLE("AUTO")
)
eth_crc_24 (
.data_in(s_tdata_reg[23:0]),
.state_in(crc_state),
.data_out(),
.state_out(crc_next2)
);
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(32),
.STYLE("AUTO")
)
eth_crc_32 (
.data_in(s_tdata_reg[31:0]),
.state_in(crc_state),
.data_out(),
.state_out(crc_next3)
);
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(40),
.STYLE("AUTO")
)
eth_crc_40 (
.data_in(s_tdata_reg[39:0]),
.state_in(crc_state),
.data_out(),
.state_out(crc_next4)
);
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(48),
.STYLE("AUTO")
)
eth_crc_48 (
.data_in(s_tdata_reg[47:0]),
.state_in(crc_state),
.data_out(),
.state_out(crc_next5)
);
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(56),
.STYLE("AUTO")
)
eth_crc_56 (
.data_in(s_tdata_reg[55:0]),
.state_in(crc_state),
.data_out(),
.state_out(crc_next6)
);
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(64),
.STYLE("AUTO")
)
eth_crc_64 (
.data_in(s_tdata_reg[63:0]),
.state_in(crc_state),
.data_out(),
.state_out(crc_next7)
);
function [3:0] keep2count;
input [7:0] k;
casez (k)
8'bzzzzzzz0: keep2count = 4'd0;
8'bzzzzzz01: keep2count = 4'd1;
8'bzzzzz011: keep2count = 4'd2;
8'bzzzz0111: keep2count = 4'd3;
8'bzzz01111: keep2count = 4'd4;
8'bzz011111: keep2count = 4'd5;
8'bz0111111: keep2count = 4'd6;
8'b01111111: keep2count = 4'd7;
8'b11111111: keep2count = 4'd8;
endcase
endfunction
// Mask input data
integer j;
always @* begin
for (j = 0; j < 8; j = j + 1) begin
s_axis_tdata_masked[j*8 +: 8] = s_axis_tkeep[j] ? s_axis_tdata[j*8 +: 8] : 8'd0;
end
end
// FCS cycle calculation
always @* begin
casez (s_tkeep_reg)
8'bzzzzzz01: begin
fcs_output_data_0 = {24'd0, ~crc_next0[31:0], s_tdata_reg[7:0]};
fcs_output_data_1 = 64'd0;
fcs_output_type_0 = OUTPUT_TYPE_TERM_5;
fcs_output_type_1 = OUTPUT_TYPE_IDLE;
ifg_offset = 8'd3;
extra_cycle = 1'b0;
end
8'bzzzzz011: begin
fcs_output_data_0 = {16'd0, ~crc_next1[31:0], s_tdata_reg[15:0]};
fcs_output_data_1 = 64'd0;
fcs_output_type_0 = OUTPUT_TYPE_TERM_6;
fcs_output_type_1 = OUTPUT_TYPE_IDLE;
ifg_offset = 8'd2;
extra_cycle = 1'b0;
end
8'bzzzz0111: begin
fcs_output_data_0 = {8'd0, ~crc_next2[31:0], s_tdata_reg[23:0]};
fcs_output_data_1 = 64'd0;
fcs_output_type_0 = OUTPUT_TYPE_TERM_7;
fcs_output_type_1 = OUTPUT_TYPE_IDLE;
ifg_offset = 8'd1;
extra_cycle = 1'b0;
end
8'bzzz01111: begin
fcs_output_data_0 = {~crc_next3[31:0], s_tdata_reg[31:0]};
fcs_output_data_1 = 64'd0;
fcs_output_type_0 = OUTPUT_TYPE_DATA;
fcs_output_type_1 = OUTPUT_TYPE_TERM_0;
ifg_offset = 8'd8;
extra_cycle = 1'b1;
end
8'bzz011111: begin
fcs_output_data_0 = {~crc_next4[23:0], s_tdata_reg[39:0]};
fcs_output_data_1 = {56'd0, ~crc_next4[31:24]};
fcs_output_type_0 = OUTPUT_TYPE_DATA;
fcs_output_type_1 = OUTPUT_TYPE_TERM_1;
ifg_offset = 8'd7;
extra_cycle = 1'b1;
end
8'bz0111111: begin
fcs_output_data_0 = {~crc_next5[15:0], s_tdata_reg[47:0]};
fcs_output_data_1 = {48'd0, ~crc_next5[31:16]};
fcs_output_type_0 = OUTPUT_TYPE_DATA;
fcs_output_type_1 = OUTPUT_TYPE_TERM_2;
ifg_offset = 8'd6;
extra_cycle = 1'b1;
end
8'b01111111: begin
fcs_output_data_0 = {~crc_next6[7:0], s_tdata_reg[55:0]};
fcs_output_data_1 = {40'd0, ~crc_next6[31:8]};
fcs_output_type_0 = OUTPUT_TYPE_DATA;
fcs_output_type_1 = OUTPUT_TYPE_TERM_3;
ifg_offset = 8'd5;
extra_cycle = 1'b1;
end
8'b11111111: begin
fcs_output_data_0 = s_tdata_reg;
fcs_output_data_1 = {32'd0, ~crc_next7[31:0]};
fcs_output_type_0 = OUTPUT_TYPE_DATA;
fcs_output_type_1 = OUTPUT_TYPE_TERM_4;
ifg_offset = 8'd4;
extra_cycle = 1'b1;
end
default: begin
fcs_output_data_0 = 64'd0;
fcs_output_data_1 = 64'd0;
fcs_output_type_0 = OUTPUT_TYPE_ERROR;
fcs_output_type_1 = OUTPUT_TYPE_ERROR;
ifg_offset = 8'd0;
extra_cycle = 1'b1;
end
endcase
end
always @* begin
state_next = STATE_IDLE;
reset_crc = 1'b0;
update_crc = 1'b0;
swap_lanes = 1'b0;
unswap_lanes = 1'b0;
frame_ptr_next = frame_ptr_reg;
ifg_count_next = ifg_count_reg;
deficit_idle_count_next = deficit_idle_count_reg;
s_axis_tready_next = 1'b0;
s_tdata_next = s_tdata_reg;
s_tkeep_next = s_tkeep_reg;
m_axis_ptp_ts_next = m_axis_ptp_ts_reg;
m_axis_ptp_ts_tag_next = m_axis_ptp_ts_tag_reg;
m_axis_ptp_ts_valid_next = 1'b0;
m_axis_ptp_ts_valid_int_next = 1'b0;
output_data_next = s_tdata_reg;
output_type_next = OUTPUT_TYPE_IDLE;
start_packet_next = 2'b00;
error_underflow_next = 1'b0;
if (m_axis_ptp_ts_valid_int_reg) begin
m_axis_ptp_ts_valid_next = 1'b1;
if (PTP_TS_WIDTH == 96 && $signed({1'b0, m_axis_ptp_ts_reg[45:16]}) - $signed(31'd1000000000) > 0) begin
// ns field rollover
m_axis_ptp_ts_next[45:16] = $signed({1'b0, m_axis_ptp_ts_reg[45:16]}) - $signed(31'd1000000000);
m_axis_ptp_ts_next[95:48] = m_axis_ptp_ts_reg[95:48] + 1;
end
end
case (state_reg)
STATE_IDLE: begin
// idle state - wait for data
frame_ptr_next = 16'd8;
reset_crc = 1'b1;
s_axis_tready_next = 1'b1;
output_data_next = s_tdata_reg;
output_type_next = OUTPUT_TYPE_IDLE;
s_tdata_next = s_axis_tdata_masked;
s_tkeep_next = s_axis_tkeep;
if (s_axis_tvalid) begin
// XGMII start and preamble
if (ifg_count_reg > 8'd0) begin
// need to send more idles - swap lanes
swap_lanes = 1'b1;
if (PTP_TS_WIDTH == 96) begin
m_axis_ptp_ts_next[45:0] = ptp_ts[45:0] + (((PTP_PERIOD_NS * 2**16 + PTP_PERIOD_FNS) * 3) >> 1);
m_axis_ptp_ts_next[95:48] = ptp_ts[95:48];
end else begin
m_axis_ptp_ts_next = ptp_ts + (((PTP_PERIOD_NS * 2**16 + PTP_PERIOD_FNS) * 3) >> 1);
end
m_axis_ptp_ts_tag_next = s_axis_tuser >> 1;
m_axis_ptp_ts_valid_int_next = 1'b1;
start_packet_next = 2'b10;
end else begin
// no more idles - unswap
unswap_lanes = 1'b1;
if (PTP_TS_WIDTH == 96) begin
m_axis_ptp_ts_next[45:0] = ptp_ts[45:0] + (PTP_PERIOD_NS * 2**16 + PTP_PERIOD_FNS);
m_axis_ptp_ts_next[95:48] = ptp_ts[95:48];
end else begin
m_axis_ptp_ts_next = ptp_ts + (PTP_PERIOD_NS * 2**16 + PTP_PERIOD_FNS);
end
m_axis_ptp_ts_tag_next = s_axis_tuser >> 1;
m_axis_ptp_ts_valid_int_next = 1'b1;
start_packet_next = 2'b01;
end
output_data_next = {ETH_SFD, {7{ETH_PRE}}};
output_type_next = OUTPUT_TYPE_START_0;
s_axis_tready_next = 1'b1;
state_next = STATE_PAYLOAD;
end else begin
ifg_count_next = 8'd0;
deficit_idle_count_next = 2'd0;
unswap_lanes = 1'b1;
state_next = STATE_IDLE;
end
end
STATE_PAYLOAD: begin
// transfer payload
update_crc = 1'b1;
s_axis_tready_next = 1'b1;
frame_ptr_next = frame_ptr_reg + 16'd8;
output_data_next = s_tdata_reg;
output_type_next = OUTPUT_TYPE_DATA;
s_tdata_next = s_axis_tdata_masked;
s_tkeep_next = s_axis_tkeep;
if (s_axis_tvalid) begin
if (s_axis_tlast) begin
frame_ptr_next = frame_ptr_reg + keep2count(s_axis_tkeep);
s_axis_tready_next = 1'b0;
if (s_axis_tuser[0]) begin
output_type_next = OUTPUT_TYPE_ERROR;
frame_ptr_next = 16'd0;
ifg_count_next = 8'd8;
state_next = STATE_IFG;
end else begin
s_axis_tready_next = 1'b0;
if (ENABLE_PADDING && (frame_ptr_reg < MIN_FL_NOCRC_MS || (frame_ptr_reg == MIN_FL_NOCRC_MS && keep2count(s_axis_tkeep) < MIN_FL_NOCRC_LS))) begin
s_tkeep_next = 8'hff;
frame_ptr_next = frame_ptr_reg + 16'd8;
if (frame_ptr_reg < (MIN_FL_NOCRC_LS > 0 ? MIN_FL_NOCRC_MS : MIN_FL_NOCRC_MS-8)) begin
state_next = STATE_PAD;
end else begin
s_tkeep_next = 8'hff >> ((8-MIN_FL_NOCRC_LS) % 8);
state_next = STATE_FCS_1;
end
end else begin
state_next = STATE_FCS_1;
end
end
end else begin
state_next = STATE_PAYLOAD;
end
end else begin
// tvalid deassert, fail frame
output_type_next = OUTPUT_TYPE_ERROR;
frame_ptr_next = 16'd0;
ifg_count_next = 8'd8;
error_underflow_next = 1'b1;
state_next = STATE_WAIT_END;
end
end
STATE_PAD: begin
// pad frame to MIN_FRAME_LENGTH
s_axis_tready_next = 1'b0;
output_data_next = s_tdata_reg;
output_type_next = OUTPUT_TYPE_DATA;
s_tdata_next = 64'd0;
s_tkeep_next = 8'hff;
update_crc = 1'b1;
frame_ptr_next = frame_ptr_reg + 16'd8;
if (frame_ptr_reg < (MIN_FL_NOCRC_LS > 0 ? MIN_FL_NOCRC_MS : MIN_FL_NOCRC_MS-8)) begin
state_next = STATE_PAD;
end else begin
s_tkeep_next = 8'hff >> ((8-MIN_FL_NOCRC_LS) % 8);
state_next = STATE_FCS_1;
end
end
STATE_FCS_1: begin
// last cycle
s_axis_tready_next = 1'b0;
output_data_next = fcs_output_data_0;
output_type_next = fcs_output_type_0;
frame_ptr_next = 16'd0;
ifg_count_next = (ifg_delay > 8'd12 ? ifg_delay : 8'd12) - ifg_offset + (lanes_swapped ? 8'd4 : 8'd0) + deficit_idle_count_reg;
if (extra_cycle) begin
state_next = STATE_FCS_2;
end else begin
state_next = STATE_IFG;
end
end
STATE_FCS_2: begin
// last cycle
s_axis_tready_next = 1'b0;
output_data_next = fcs_output_data_1;
output_type_next = fcs_output_type_1;
reset_crc = 1'b1;
frame_ptr_next = 16'd0;
if (ENABLE_DIC) begin
if (ifg_count_next > 8'd7) begin
state_next = STATE_IFG;
end else begin
if (ifg_count_next >= 8'd4) begin
deficit_idle_count_next = ifg_count_next - 8'd4;
end else begin
deficit_idle_count_next = ifg_count_next;
ifg_count_next = 8'd0;
end
s_axis_tready_next = 1'b1;
state_next = STATE_IDLE;
end
end else begin
if (ifg_count_next > 8'd4) begin
state_next = STATE_IFG;
end else begin
s_axis_tready_next = 1'b1;
state_next = STATE_IDLE;
end
end
end
STATE_IFG: begin
// send IFG
if (ifg_count_reg > 8'd8) begin
ifg_count_next = ifg_count_reg - 8'd8;
end else begin
ifg_count_next = 8'd0;
end
reset_crc = 1'b1;
if (ENABLE_DIC) begin
if (ifg_count_next > 8'd7) begin
state_next = STATE_IFG;
end else begin
if (ifg_count_next >= 8'd4) begin
deficit_idle_count_next = ifg_count_next - 8'd4;
end else begin
deficit_idle_count_next = ifg_count_next;
ifg_count_next = 8'd0;
end
s_axis_tready_next = 1'b1;
state_next = STATE_IDLE;
end
end else begin
if (ifg_count_next > 8'd4) begin
state_next = STATE_IFG;
end else begin
s_axis_tready_next = 1'b1;
state_next = STATE_IDLE;
end
end
end
STATE_WAIT_END: begin
// wait for end of frame
s_axis_tready_next = 1'b1;
if (ifg_count_reg > 8'd4) begin
ifg_count_next = ifg_count_reg - 8'd4;
end else begin
ifg_count_next = 8'd0;
end
reset_crc = 1'b1;
if (s_axis_tvalid) begin
if (s_axis_tlast) begin
s_axis_tready_next = 1'b0;
if (ENABLE_DIC) begin
if (ifg_count_next > 8'd7) begin
state_next = STATE_IFG;
end else begin
if (ifg_count_next >= 8'd4) begin
deficit_idle_count_next = ifg_count_next - 8'd4;
end else begin
deficit_idle_count_next = ifg_count_next;
ifg_count_next = 8'd0;
end
s_axis_tready_next = 1'b1;
state_next = STATE_IDLE;
end
end else begin
if (ifg_count_next > 8'd4) begin
state_next = STATE_IFG;
end else begin
s_axis_tready_next = 1'b1;
state_next = STATE_IDLE;
end
end
end else begin
state_next = STATE_WAIT_END;
end
end else begin
state_next = STATE_WAIT_END;
end
end
endcase
end
always @(posedge clk) begin
if (rst) begin
state_reg <= STATE_IDLE;
frame_ptr_reg <= 16'd0;
ifg_count_reg <= 8'd0;
deficit_idle_count_reg <= 2'd0;
s_axis_tready_reg <= 1'b0;
m_axis_ptp_ts_valid_reg <= 1'b0;
m_axis_ptp_ts_valid_int_reg <= 1'b0;
encoded_tx_data_reg <= {{8{CTRL_IDLE}}, BLOCK_TYPE_CTRL};
encoded_tx_hdr_reg <= SYNC_CTRL;
output_data_reg <= {DATA_WIDTH{1'b0}};
output_type_reg <= OUTPUT_TYPE_IDLE;
start_packet_reg <= 2'b00;
error_underflow_reg <= 1'b0;
crc_state <= 32'hFFFFFFFF;
lanes_swapped <= 1'b0;
delay_type_valid <= 1'b0;
delay_type <= OUTPUT_TYPE_IDLE;
end else begin
state_reg <= state_next;
frame_ptr_reg <= frame_ptr_next;
ifg_count_reg <= ifg_count_next;
deficit_idle_count_reg <= deficit_idle_count_next;
s_axis_tready_reg <= s_axis_tready_next;
m_axis_ptp_ts_valid_reg <= m_axis_ptp_ts_valid_next;
m_axis_ptp_ts_valid_int_reg <= m_axis_ptp_ts_valid_int_next;
start_packet_reg <= start_packet_next;
error_underflow_reg <= error_underflow_next;
delay_type_valid <= 1'b0;
if (swap_lanes || (lanes_swapped && !unswap_lanes)) begin
lanes_swapped <= 1'b1;
output_data_reg <= {output_data_next[31:0], swap_data};
if (delay_type_valid) begin
output_type_reg <= delay_type;
end else if (output_type_next == OUTPUT_TYPE_START_0) begin
output_type_reg <= OUTPUT_TYPE_START_4;
end else if (output_type_next[3]) begin
// OUTPUT_TYPE_TERM_*
if (output_type_next[2]) begin
delay_type_valid <= 1'b1;
output_type_reg <= OUTPUT_TYPE_DATA;
end else begin
output_type_reg <= output_type_next ^ 4'd4;
end
end else begin
output_type_reg <= output_type_next;
end
end else begin
lanes_swapped <= 1'b0;
output_data_reg <= output_data_next;
output_type_reg <= output_type_next;
end
case (output_type_reg)
OUTPUT_TYPE_IDLE: begin
encoded_tx_data_reg <= {{8{CTRL_IDLE}}, BLOCK_TYPE_CTRL};
encoded_tx_hdr_reg <= SYNC_CTRL;
end
OUTPUT_TYPE_ERROR: begin
encoded_tx_data_reg <= {{8{CTRL_ERROR}}, BLOCK_TYPE_CTRL};
encoded_tx_hdr_reg <= SYNC_CTRL;
end
OUTPUT_TYPE_START_0: begin
encoded_tx_data_reg <= {output_data_reg[63:8], BLOCK_TYPE_START_0};
encoded_tx_hdr_reg <= SYNC_CTRL;
end
OUTPUT_TYPE_START_4: begin
encoded_tx_data_reg <= {output_data_reg[63:40], 4'd0, {4{CTRL_IDLE}}, BLOCK_TYPE_START_4};
encoded_tx_hdr_reg <= SYNC_CTRL;
end
OUTPUT_TYPE_DATA: begin
encoded_tx_data_reg <= output_data_reg;
encoded_tx_hdr_reg <= SYNC_DATA;
end
OUTPUT_TYPE_TERM_0: begin
encoded_tx_data_reg <= {{7{CTRL_IDLE}}, 7'd0, BLOCK_TYPE_TERM_0};
encoded_tx_hdr_reg <= SYNC_CTRL;
end
OUTPUT_TYPE_TERM_1: begin
encoded_tx_data_reg <= {{6{CTRL_IDLE}}, 6'd0, output_data_reg[7:0], BLOCK_TYPE_TERM_1};
encoded_tx_hdr_reg <= SYNC_CTRL;
end
OUTPUT_TYPE_TERM_2: begin
encoded_tx_data_reg <= {{5{CTRL_IDLE}}, 5'd0, output_data_reg[15:0], BLOCK_TYPE_TERM_2};
encoded_tx_hdr_reg <= SYNC_CTRL;
end
OUTPUT_TYPE_TERM_3: begin
encoded_tx_data_reg <= {{4{CTRL_IDLE}}, 4'd0, output_data_reg[23:0], BLOCK_TYPE_TERM_3};
encoded_tx_hdr_reg <= SYNC_CTRL;
end
OUTPUT_TYPE_TERM_4: begin
encoded_tx_data_reg <= {{3{CTRL_IDLE}}, 3'd0, output_data_reg[31:0], BLOCK_TYPE_TERM_4};
encoded_tx_hdr_reg <= SYNC_CTRL;
end
OUTPUT_TYPE_TERM_5: begin
encoded_tx_data_reg <= {{2{CTRL_IDLE}}, 2'd0, output_data_reg[39:0], BLOCK_TYPE_TERM_5};
encoded_tx_hdr_reg <= SYNC_CTRL;
end
OUTPUT_TYPE_TERM_6: begin
encoded_tx_data_reg <= {{1{CTRL_IDLE}}, 1'd0, output_data_reg[47:0], BLOCK_TYPE_TERM_6};
encoded_tx_hdr_reg <= SYNC_CTRL;
end
OUTPUT_TYPE_TERM_7: begin
encoded_tx_data_reg <= {output_data_reg[55:0], BLOCK_TYPE_TERM_7};
encoded_tx_hdr_reg <= SYNC_CTRL;
end
default: begin
encoded_tx_data_reg <= {{8{CTRL_ERROR}}, BLOCK_TYPE_CTRL};
encoded_tx_hdr_reg <= SYNC_CTRL;
end
endcase
// datapath
if (reset_crc) begin
crc_state <= 32'hFFFFFFFF;
end else if (update_crc) begin
crc_state <= crc_next7;
end
end
s_tdata_reg <= s_tdata_next;
s_tkeep_reg <= s_tkeep_next;
m_axis_ptp_ts_reg <= m_axis_ptp_ts_next;
m_axis_ptp_ts_tag_reg <= m_axis_ptp_ts_tag_next;
swap_data <= output_data_next[63:32];
delay_type <= output_type_next ^ 4'd4;
end
endmodule
/*
Copyright (c) 2015-2018 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* AXI4-Stream Ethernet FCS Generator
*/
module axis_eth_fcs
(
input wire clk,
input wire rst,
/*
* AXI input
*/
input wire [7:0] s_axis_tdata,
input wire s_axis_tvalid,
output wire s_axis_tready,
input wire s_axis_tlast,
input wire s_axis_tuser,
/*
* FCS output
*/
output wire [31:0] output_fcs,
output wire output_fcs_valid
);
reg [31:0] crc_state = 32'hFFFFFFFF;
reg [31:0] fcs_reg = 32'h00000000;
reg fcs_valid_reg = 1'b0;
wire [31:0] crc_next;
assign s_axis_tready = 1;
assign output_fcs = fcs_reg;
assign output_fcs_valid = fcs_valid_reg;
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(8),
.STYLE("AUTO")
)
eth_crc_8 (
.data_in(s_axis_tdata),
.state_in(crc_state),
.data_out(),
.state_out(crc_next)
);
always @(posedge clk) begin
if (rst) begin
crc_state <= 32'hFFFFFFFF;
fcs_reg <= 32'h00000000;
fcs_valid_reg <= 1'b0;
end else begin
fcs_valid_reg <= 1'b0;
if (s_axis_tvalid) begin
if (s_axis_tlast) begin
crc_state <= 32'hFFFFFFFF;
fcs_reg <= ~crc_next;
fcs_valid_reg <= 1'b1;
end else begin
crc_state <= crc_next;
end
end
end
end
endmodule
/*
Copyright (c) 2015-2018 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* AXI4-Stream Ethernet FCS Generator (64 bit datapath)
*/
module axis_eth_fcs_64
(
input wire clk,
input wire rst,
/*
* AXI input
*/
input wire [63:0] s_axis_tdata,
input wire [7:0] s_axis_tkeep,
input wire s_axis_tvalid,
output wire s_axis_tready,
input wire s_axis_tlast,
input wire s_axis_tuser,
/*
* FCS output
*/
output wire [31:0] output_fcs,
output wire output_fcs_valid
);
reg [31:0] crc_state = 32'hFFFFFFFF;
reg [31:0] fcs_reg = 32'h00000000;
reg fcs_valid_reg = 1'b0;
wire [31:0] crc_next0;
wire [31:0] crc_next1;
wire [31:0] crc_next2;
wire [31:0] crc_next3;
wire [31:0] crc_next4;
wire [31:0] crc_next5;
wire [31:0] crc_next6;
wire [31:0] crc_next7;
assign s_axis_tready = 1'b1;
assign output_fcs = fcs_reg;
assign output_fcs_valid = fcs_valid_reg;
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(8),
.STYLE("AUTO")
)
eth_crc_8 (
.data_in(s_axis_tdata[7:0]),
.state_in(crc_state),
.data_out(),
.state_out(crc_next0)
);
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(16),
.STYLE("AUTO")
)
eth_crc_16 (
.data_in(s_axis_tdata[15:0]),
.state_in(crc_state),
.data_out(),
.state_out(crc_next1)
);
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(24),
.STYLE("AUTO")
)
eth_crc_24 (
.data_in(s_axis_tdata[23:0]),
.state_in(crc_state),
.data_out(),
.state_out(crc_next2)
);
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(32),
.STYLE("AUTO")
)
eth_crc_32 (
.data_in(s_axis_tdata[31:0]),
.state_in(crc_state),
.data_out(),
.state_out(crc_next3)
);
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(40),
.STYLE("AUTO")
)
eth_crc_40 (
.data_in(s_axis_tdata[39:0]),
.state_in(crc_state),
.data_out(),
.state_out(crc_next4)
);
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(48),
.STYLE("AUTO")
)
eth_crc_48 (
.data_in(s_axis_tdata[47:0]),
.state_in(crc_state),
.data_out(),
.state_out(crc_next5)
);
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(56),
.STYLE("AUTO")
)
eth_crc_56 (
.data_in(s_axis_tdata[55:0]),
.state_in(crc_state),
.data_out(),
.state_out(crc_next6)
);
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(64),
.STYLE("AUTO")
)
eth_crc_64 (
.data_in(s_axis_tdata[63:0]),
.state_in(crc_state),
.data_out(),
.state_out(crc_next7)
);
always @(posedge clk) begin
if (rst) begin
crc_state <= 32'hFFFFFFFF;
fcs_reg <= 1'b0;
fcs_valid_reg <= 1'b0;
end else begin
fcs_valid_reg <= 1'b0;
if (s_axis_tvalid) begin
if (s_axis_tlast) begin
crc_state <= 32'hFFFFFFFF;
case (s_axis_tkeep)
8'b00000001: fcs_reg <= ~crc_next0;
8'b00000011: fcs_reg <= ~crc_next1;
8'b00000111: fcs_reg <= ~crc_next2;
8'b00001111: fcs_reg <= ~crc_next3;
8'b00011111: fcs_reg <= ~crc_next4;
8'b00111111: fcs_reg <= ~crc_next5;
8'b01111111: fcs_reg <= ~crc_next6;
8'b11111111: fcs_reg <= ~crc_next7;
endcase
fcs_valid_reg <= 1'b1;
end else begin
crc_state <= crc_next7;
end
end
end
end
endmodule
/*
Copyright (c) 2015-2018 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* AXI4-Stream Ethernet FCS checker
*/
module axis_eth_fcs_check
(
input wire clk,
input wire rst,
/*
* AXI input
*/
input wire [7:0] s_axis_tdata,
input wire s_axis_tvalid,
output wire s_axis_tready,
input wire s_axis_tlast,
input wire s_axis_tuser,
/*
* AXI output
*/
output wire [7:0] m_axis_tdata,
output wire m_axis_tvalid,
input wire m_axis_tready,
output wire m_axis_tlast,
output wire m_axis_tuser,
/*
* Status
*/
output wire busy,
output wire error_bad_fcs
);
localparam [1:0]
STATE_IDLE = 2'd0,
STATE_PAYLOAD = 2'd1;
reg [1:0] state_reg = STATE_IDLE, state_next;
// datapath control signals
reg reset_crc;
reg update_crc;
reg shift_in;
reg shift_reset;
reg [7:0] s_axis_tdata_d0 = 8'd0;
reg [7:0] s_axis_tdata_d1 = 8'd0;
reg [7:0] s_axis_tdata_d2 = 8'd0;
reg [7:0] s_axis_tdata_d3 = 8'd0;
reg s_axis_tvalid_d0 = 1'b0;
reg s_axis_tvalid_d1 = 1'b0;
reg s_axis_tvalid_d2 = 1'b0;
reg s_axis_tvalid_d3 = 1'b0;
reg busy_reg = 1'b0;
reg error_bad_fcs_reg = 1'b0, error_bad_fcs_next;
reg s_axis_tready_reg = 1'b0, s_axis_tready_next;
reg [31:0] crc_state = 32'hFFFFFFFF;
wire [31:0] crc_next;
// internal datapath
reg [7:0] m_axis_tdata_int;
reg m_axis_tvalid_int;
reg m_axis_tready_int_reg = 1'b0;
reg m_axis_tlast_int;
reg m_axis_tuser_int;
wire m_axis_tready_int_early;
assign s_axis_tready = s_axis_tready_reg;
assign busy = busy_reg;
assign error_bad_fcs = error_bad_fcs_reg;
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(8),
.STYLE("AUTO")
)
eth_crc_8 (
.data_in(s_axis_tdata_d3),
.state_in(crc_state),
.data_out(),
.state_out(crc_next)
);
always @* begin
state_next = STATE_IDLE;
reset_crc = 1'b0;
update_crc = 1'b0;
shift_in = 1'b0;
shift_reset = 1'b0;
s_axis_tready_next = 1'b0;
m_axis_tdata_int = 8'd0;
m_axis_tvalid_int = 1'b0;
m_axis_tlast_int = 1'b0;
m_axis_tuser_int = 1'b0;
error_bad_fcs_next = 1'b0;
case (state_reg)
STATE_IDLE: begin
// idle state - wait for data
s_axis_tready_next = m_axis_tready_int_early;
reset_crc = 1'b1;
m_axis_tdata_int = s_axis_tdata_d3;
m_axis_tvalid_int = s_axis_tvalid_d3 && s_axis_tvalid;
m_axis_tlast_int = 1'b0;
m_axis_tuser_int = 1'b0;
if (s_axis_tready && s_axis_tvalid) begin
shift_in = 1'b1;
if (s_axis_tvalid_d3) begin
reset_crc = 1'b0;
update_crc = 1'b1;
if (s_axis_tlast) begin
shift_reset = 1'b1;
reset_crc = 1'b1;
m_axis_tlast_int = 1'b1;
m_axis_tuser_int = s_axis_tuser;
if ({s_axis_tdata, s_axis_tdata_d0, s_axis_tdata_d1, s_axis_tdata_d2} != ~crc_next) begin
m_axis_tuser_int = 1'b1;
error_bad_fcs_next = 1'b1;
end
s_axis_tready_next = m_axis_tready_int_early;
state_next = STATE_IDLE;
end else begin
state_next = STATE_PAYLOAD;
end
end else begin
state_next = STATE_IDLE;
end
end else begin
state_next = STATE_IDLE;
end
end
STATE_PAYLOAD: begin
// transfer payload
s_axis_tready_next = m_axis_tready_int_early;
m_axis_tdata_int = s_axis_tdata_d3;
m_axis_tvalid_int = s_axis_tvalid_d3 && s_axis_tvalid;
m_axis_tlast_int = 1'b0;
m_axis_tuser_int = 1'b0;
if (s_axis_tready && s_axis_tvalid) begin
shift_in = 1'b1;
update_crc = 1'b1;
if (s_axis_tlast) begin
shift_reset = 1'b1;
reset_crc = 1'b1;
m_axis_tlast_int = 1'b1;
m_axis_tuser_int = s_axis_tuser;
if ({s_axis_tdata, s_axis_tdata_d0, s_axis_tdata_d1, s_axis_tdata_d2} != ~crc_next) begin
m_axis_tuser_int = 1'b1;
error_bad_fcs_next = 1'b1;
end
s_axis_tready_next = m_axis_tready_int_early;
state_next = STATE_IDLE;
end else begin
state_next = STATE_PAYLOAD;
end
end else begin
state_next = STATE_PAYLOAD;
end
end
endcase
end
always @(posedge clk) begin
if (rst) begin
state_reg <= STATE_IDLE;
s_axis_tready_reg <= 1'b0;
busy_reg <= 1'b0;
error_bad_fcs_reg <= 1'b0;
s_axis_tvalid_d0 <= 1'b0;
s_axis_tvalid_d1 <= 1'b0;
s_axis_tvalid_d2 <= 1'b0;
s_axis_tvalid_d3 <= 1'b0;
crc_state <= 32'hFFFFFFFF;
end else begin
state_reg <= state_next;
s_axis_tready_reg <= s_axis_tready_next;
busy_reg <= state_next != STATE_IDLE;
error_bad_fcs_reg <= error_bad_fcs_next;
// datapath
if (reset_crc) begin
crc_state <= 32'hFFFFFFFF;
end else if (update_crc) begin
crc_state <= crc_next;
end
if (shift_reset) begin
s_axis_tvalid_d0 <= 1'b0;
s_axis_tvalid_d1 <= 1'b0;
s_axis_tvalid_d2 <= 1'b0;
s_axis_tvalid_d3 <= 1'b0;
end else if (shift_in) begin
s_axis_tvalid_d0 <= s_axis_tvalid;
s_axis_tvalid_d1 <= s_axis_tvalid_d0;
s_axis_tvalid_d2 <= s_axis_tvalid_d1;
s_axis_tvalid_d3 <= s_axis_tvalid_d2;
end
end
if (shift_in) begin
s_axis_tdata_d0 <= s_axis_tdata;
s_axis_tdata_d1 <= s_axis_tdata_d0;
s_axis_tdata_d2 <= s_axis_tdata_d1;
s_axis_tdata_d3 <= s_axis_tdata_d2;
end
end
// output datapath logic
reg [7:0] m_axis_tdata_reg = 8'd0;
reg m_axis_tvalid_reg = 1'b0, m_axis_tvalid_next;
reg m_axis_tlast_reg = 1'b0;
reg m_axis_tuser_reg = 1'b0;
reg [7:0] temp_m_axis_tdata_reg = 8'd0;
reg temp_m_axis_tvalid_reg = 1'b0, temp_m_axis_tvalid_next;
reg temp_m_axis_tlast_reg = 1'b0;
reg temp_m_axis_tuser_reg = 1'b0;
// datapath control
reg store_axis_int_to_output;
reg store_axis_int_to_temp;
reg store_axis_temp_to_output;
assign m_axis_tdata = m_axis_tdata_reg;
assign m_axis_tvalid = m_axis_tvalid_reg;
assign m_axis_tlast = m_axis_tlast_reg;
assign m_axis_tuser = m_axis_tuser_reg;
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
assign m_axis_tready_int_early = m_axis_tready || (!temp_m_axis_tvalid_reg && (!m_axis_tvalid_reg || !m_axis_tvalid_int));
always @* begin
// transfer sink ready state to source
m_axis_tvalid_next = m_axis_tvalid_reg;
temp_m_axis_tvalid_next = temp_m_axis_tvalid_reg;
store_axis_int_to_output = 1'b0;
store_axis_int_to_temp = 1'b0;
store_axis_temp_to_output = 1'b0;
if (m_axis_tready_int_reg) begin
// input is ready
if (m_axis_tready || !m_axis_tvalid_reg) begin
// output is ready or currently not valid, transfer data to output
m_axis_tvalid_next = m_axis_tvalid_int;
store_axis_int_to_output = 1'b1;
end else begin
// output is not ready, store input in temp
temp_m_axis_tvalid_next = m_axis_tvalid_int;
store_axis_int_to_temp = 1'b1;
end
end else if (m_axis_tready) begin
// input is not ready, but output is ready
m_axis_tvalid_next = temp_m_axis_tvalid_reg;
temp_m_axis_tvalid_next = 1'b0;
store_axis_temp_to_output = 1'b1;
end
end
always @(posedge clk) begin
if (rst) begin
m_axis_tvalid_reg <= 1'b0;
m_axis_tready_int_reg <= 1'b0;
temp_m_axis_tvalid_reg <= 1'b0;
end else begin
m_axis_tvalid_reg <= m_axis_tvalid_next;
m_axis_tready_int_reg <= m_axis_tready_int_early;
temp_m_axis_tvalid_reg <= temp_m_axis_tvalid_next;
end
// datapath
if (store_axis_int_to_output) begin
m_axis_tdata_reg <= m_axis_tdata_int;
m_axis_tlast_reg <= m_axis_tlast_int;
m_axis_tuser_reg <= m_axis_tuser_int;
end else if (store_axis_temp_to_output) begin
m_axis_tdata_reg <= temp_m_axis_tdata_reg;
m_axis_tlast_reg <= temp_m_axis_tlast_reg;
m_axis_tuser_reg <= temp_m_axis_tuser_reg;
end
if (store_axis_int_to_temp) begin
temp_m_axis_tdata_reg <= m_axis_tdata_int;
temp_m_axis_tlast_reg <= m_axis_tlast_int;
temp_m_axis_tuser_reg <= m_axis_tuser_int;
end
end
endmodule
/*
Copyright (c) 2015-2018 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* AXI4-Stream Ethernet FCS checker (64 bit datapath)
*/
module axis_eth_fcs_check_64
(
input wire clk,
input wire rst,
/*
* AXI input
*/
input wire [63:0] s_axis_tdata,
input wire [7:0] s_axis_tkeep,
input wire s_axis_tvalid,
output wire s_axis_tready,
input wire s_axis_tlast,
input wire s_axis_tuser,
/*
* AXI output
*/
output wire [63:0] m_axis_tdata,
output wire [7:0] m_axis_tkeep,
output wire m_axis_tvalid,
input wire m_axis_tready,
output wire m_axis_tlast,
output wire m_axis_tuser,
/*
* Status
*/
output wire busy,
output wire error_bad_fcs
);
localparam [1:0]
STATE_IDLE = 2'd0,
STATE_PAYLOAD = 2'd1,
STATE_LAST = 2'd2;
reg [1:0] state_reg = STATE_IDLE, state_next;
// datapath control signals
reg reset_crc;
reg update_crc;
reg shift_in;
reg shift_reset;
reg [7:0] last_cycle_tkeep_reg = 8'd0, last_cycle_tkeep_next;
reg last_cycle_tuser_reg = 1'b0, last_cycle_tuser_next;
reg [63:0] s_axis_tdata_d0 = 64'd0;
reg [7:0] s_axis_tkeep_d0 = 8'd0;
reg s_axis_tvalid_d0 = 1'b0;
reg s_axis_tuser_d0 = 1'b0;
reg busy_reg = 1'b0;
reg error_bad_fcs_reg = 1'b0, error_bad_fcs_next;
reg s_axis_tready_reg = 1'b0, s_axis_tready_next;
reg [31:0] crc_state = 32'hFFFFFFFF;
reg [31:0] crc_state3 = 32'hFFFFFFFF;
wire [31:0] crc_next0;
wire [31:0] crc_next1;
wire [31:0] crc_next2;
wire [31:0] crc_next3;
wire [31:0] crc_next7;
wire crc_valid0 = crc_next0 == ~32'h2144df1c;
wire crc_valid1 = crc_next1 == ~32'h2144df1c;
wire crc_valid2 = crc_next2 == ~32'h2144df1c;
wire crc_valid3 = crc_next3 == ~32'h2144df1c;
// internal datapath
reg [63:0] m_axis_tdata_int;
reg [7:0] m_axis_tkeep_int;
reg m_axis_tvalid_int;
reg m_axis_tready_int_reg = 1'b0;
reg m_axis_tlast_int;
reg m_axis_tuser_int;
wire m_axis_tready_int_early;
assign s_axis_tready = s_axis_tready_reg;
assign busy = busy_reg;
assign error_bad_fcs = error_bad_fcs_reg;
wire last_cycle = state_reg == STATE_LAST;
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(8),
.STYLE("AUTO")
)
eth_crc_8 (
.data_in(last_cycle ? s_axis_tdata_d0[39:32] : s_axis_tdata[7:0]),
.state_in(last_cycle ? crc_state3 : crc_state),
.data_out(),
.state_out(crc_next0)
);
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(16),
.STYLE("AUTO")
)
eth_crc_16 (
.data_in(last_cycle ? s_axis_tdata_d0[47:32] : s_axis_tdata[15:0]),
.state_in(last_cycle ? crc_state3 : crc_state),
.data_out(),
.state_out(crc_next1)
);
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(24),
.STYLE("AUTO")
)
eth_crc_24 (
.data_in(last_cycle ? s_axis_tdata_d0[55:32] : s_axis_tdata[23:0]),
.state_in(last_cycle ? crc_state3 : crc_state),
.data_out(),
.state_out(crc_next2)
);
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(32),
.STYLE("AUTO")
)
eth_crc_32 (
.data_in(last_cycle ? s_axis_tdata_d0[63:32] : s_axis_tdata[31:0]),
.state_in(last_cycle ? crc_state3 : crc_state),
.data_out(),
.state_out(crc_next3)
);
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(64),
.STYLE("AUTO")
)
eth_crc_64 (
.data_in(s_axis_tdata[63:0]),
.state_in(crc_state),
.data_out(),
.state_out(crc_next7)
);
always @* begin
state_next = STATE_IDLE;
reset_crc = 1'b0;
update_crc = 1'b0;
shift_in = 1'b0;
shift_reset = 1'b0;
last_cycle_tkeep_next = last_cycle_tkeep_reg;
last_cycle_tuser_next = last_cycle_tuser_reg;
s_axis_tready_next = 1'b0;
m_axis_tdata_int = 64'd0;
m_axis_tkeep_int = 8'd0;
m_axis_tvalid_int = 1'b0;
m_axis_tlast_int = 1'b0;
m_axis_tuser_int = 1'b0;
error_bad_fcs_next = 1'b0;
case (state_reg)
STATE_IDLE: begin
// idle state - wait for data
s_axis_tready_next = m_axis_tready_int_early;
reset_crc = 1'b1;
m_axis_tdata_int = s_axis_tdata_d0;
m_axis_tkeep_int = s_axis_tkeep_d0;
m_axis_tvalid_int = s_axis_tvalid_d0 && s_axis_tvalid;
m_axis_tlast_int = 1'b0;
m_axis_tuser_int = 1'b0;
if (s_axis_tready && s_axis_tvalid) begin
shift_in = 1'b1;
reset_crc = 1'b0;
update_crc = 1'b1;
if (s_axis_tlast) begin
if (s_axis_tkeep[7:4] == 0) begin
shift_reset = 1'b1;
reset_crc = 1'b1;
m_axis_tlast_int = 1'b1;
m_axis_tuser_int = s_axis_tuser;
m_axis_tkeep_int = {s_axis_tkeep[3:0], 4'b1111};
if ((s_axis_tkeep[3:0] == 4'b0001 && crc_valid0) ||
(s_axis_tkeep[3:0] == 4'b0011 && crc_valid1) ||
(s_axis_tkeep[3:0] == 4'b0111 && crc_valid2) ||
(s_axis_tkeep[3:0] == 4'b1111 && crc_valid3)) begin
// CRC valid
end else begin
m_axis_tuser_int = 1'b1;
error_bad_fcs_next = 1'b1;
end
s_axis_tready_next = m_axis_tready_int_early;
state_next = STATE_IDLE;
end else begin
last_cycle_tkeep_next = {4'b0000, s_axis_tkeep[7:4]};
last_cycle_tuser_next = s_axis_tuser;
s_axis_tready_next = 1'b0;
state_next = STATE_LAST;
end
end else begin
state_next = STATE_PAYLOAD;
end
end else begin
state_next = STATE_IDLE;
end
end
STATE_PAYLOAD: begin
// transfer payload
s_axis_tready_next = m_axis_tready_int_early;
m_axis_tdata_int = s_axis_tdata_d0;
m_axis_tkeep_int = s_axis_tkeep_d0;
m_axis_tvalid_int = s_axis_tvalid_d0 && s_axis_tvalid;
m_axis_tlast_int = 1'b0;
m_axis_tuser_int = 1'b0;
if (s_axis_tready && s_axis_tvalid) begin
shift_in = 1'b1;
update_crc = 1'b1;
if (s_axis_tlast) begin
if (s_axis_tkeep[7:4] == 0) begin
shift_reset = 1'b1;
reset_crc = 1'b1;
m_axis_tlast_int = 1'b1;
m_axis_tuser_int = s_axis_tuser;
m_axis_tkeep_int = {s_axis_tkeep[3:0], 4'b1111};
if ((s_axis_tkeep[3:0] == 4'b0001 && crc_valid0) ||
(s_axis_tkeep[3:0] == 4'b0011 && crc_valid1) ||
(s_axis_tkeep[3:0] == 4'b0111 && crc_valid2) ||
(s_axis_tkeep[3:0] == 4'b1111 && crc_valid3)) begin
// CRC valid
end else begin
m_axis_tuser_int = 1'b1;
error_bad_fcs_next = 1'b1;
end
s_axis_tready_next = m_axis_tready_int_early;
state_next = STATE_IDLE;
end else begin
last_cycle_tkeep_next = {4'b0000, s_axis_tkeep[7:4]};
last_cycle_tuser_next = s_axis_tuser;
s_axis_tready_next = 1'b0;
state_next = STATE_LAST;
end
end else begin
state_next = STATE_PAYLOAD;
end
end else begin
state_next = STATE_PAYLOAD;
end
end
STATE_LAST: begin
// last cycle
s_axis_tready_next = 1'b0;
m_axis_tdata_int = s_axis_tdata_d0;
m_axis_tkeep_int = last_cycle_tkeep_reg;
m_axis_tvalid_int = s_axis_tvalid_d0;
m_axis_tlast_int = 1'b1;
m_axis_tuser_int = last_cycle_tuser_reg;
if ((s_axis_tkeep_d0[7:4] == 4'b0001 && crc_valid0) ||
(s_axis_tkeep_d0[7:4] == 4'b0011 && crc_valid1) ||
(s_axis_tkeep_d0[7:4] == 4'b0111 && crc_valid2) ||
(s_axis_tkeep_d0[7:4] == 4'b1111 && crc_valid3)) begin
// CRC valid
end else begin
m_axis_tuser_int = 1'b1;
error_bad_fcs_next = 1'b1;
end
if (m_axis_tready_int_reg) begin
shift_reset = 1'b1;
reset_crc = 1'b1;
s_axis_tready_next = m_axis_tready_int_early;
state_next = STATE_IDLE;
end else begin
state_next = STATE_LAST;
end
end
endcase
end
always @(posedge clk) begin
if (rst) begin
state_reg <= STATE_IDLE;
s_axis_tready_reg <= 1'b0;
busy_reg <= 1'b0;
error_bad_fcs_reg <= 1'b0;
s_axis_tvalid_d0 <= 1'b0;
crc_state <= 32'hFFFFFFFF;
crc_state3 <= 32'hFFFFFFFF;
end else begin
state_reg <= state_next;
s_axis_tready_reg <= s_axis_tready_next;
busy_reg <= state_next != STATE_IDLE;
error_bad_fcs_reg <= error_bad_fcs_next;
// datapath
if (reset_crc) begin
crc_state <= 32'hFFFFFFFF;
crc_state3 <= 32'hFFFFFFFF;
end else if (update_crc) begin
crc_state <= crc_next7;
crc_state3 <= crc_next3;
end
if (shift_reset) begin
s_axis_tvalid_d0 <= 1'b0;
end else if (shift_in) begin
s_axis_tvalid_d0 <= s_axis_tvalid;
end
end
last_cycle_tkeep_reg <= last_cycle_tkeep_next;
last_cycle_tuser_reg <= last_cycle_tuser_next;
if (shift_in) begin
s_axis_tdata_d0 <= s_axis_tdata;
s_axis_tkeep_d0 <= s_axis_tkeep;
s_axis_tuser_d0 <= s_axis_tuser;
end
end
// output datapath logic
reg [63:0] m_axis_tdata_reg = 64'd0;
reg [7:0] m_axis_tkeep_reg = 8'd0;
reg m_axis_tvalid_reg = 1'b0, m_axis_tvalid_next;
reg m_axis_tlast_reg = 1'b0;
reg m_axis_tuser_reg = 1'b0;
reg [63:0] temp_m_axis_tdata_reg = 64'd0;
reg [7:0] temp_m_axis_tkeep_reg = 8'd0;
reg temp_m_axis_tvalid_reg = 1'b0, temp_m_axis_tvalid_next;
reg temp_m_axis_tlast_reg = 1'b0;
reg temp_m_axis_tuser_reg = 1'b0;
// datapath control
reg store_axis_int_to_output;
reg store_axis_int_to_temp;
reg store_axis_temp_to_output;
assign m_axis_tdata = m_axis_tdata_reg;
assign m_axis_tkeep = m_axis_tkeep_reg;
assign m_axis_tvalid = m_axis_tvalid_reg;
assign m_axis_tlast = m_axis_tlast_reg;
assign m_axis_tuser = m_axis_tuser_reg;
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
assign m_axis_tready_int_early = m_axis_tready || (!temp_m_axis_tvalid_reg && (!m_axis_tvalid_reg || !m_axis_tvalid_int));
always @* begin
// transfer sink ready state to source
m_axis_tvalid_next = m_axis_tvalid_reg;
temp_m_axis_tvalid_next = temp_m_axis_tvalid_reg;
store_axis_int_to_output = 1'b0;
store_axis_int_to_temp = 1'b0;
store_axis_temp_to_output = 1'b0;
if (m_axis_tready_int_reg) begin
// input is ready
if (m_axis_tready || !m_axis_tvalid_reg) begin
// output is ready or currently not valid, transfer data to output
m_axis_tvalid_next = m_axis_tvalid_int;
store_axis_int_to_output = 1'b1;
end else begin
// output is not ready, store input in temp
temp_m_axis_tvalid_next = m_axis_tvalid_int;
store_axis_int_to_temp = 1'b1;
end
end else if (m_axis_tready) begin
// input is not ready, but output is ready
m_axis_tvalid_next = temp_m_axis_tvalid_reg;
temp_m_axis_tvalid_next = 1'b0;
store_axis_temp_to_output = 1'b1;
end
end
always @(posedge clk) begin
if (rst) begin
m_axis_tvalid_reg <= 1'b0;
m_axis_tready_int_reg <= 1'b0;
temp_m_axis_tvalid_reg <= 1'b0;
end else begin
m_axis_tvalid_reg <= m_axis_tvalid_next;
m_axis_tready_int_reg <= m_axis_tready_int_early;
temp_m_axis_tvalid_reg <= temp_m_axis_tvalid_next;
end
// datapath
if (store_axis_int_to_output) begin
m_axis_tdata_reg <= m_axis_tdata_int;
m_axis_tkeep_reg <= m_axis_tkeep_int;
m_axis_tlast_reg <= m_axis_tlast_int;
m_axis_tuser_reg <= m_axis_tuser_int;
end else if (store_axis_temp_to_output) begin
m_axis_tdata_reg <= temp_m_axis_tdata_reg;
m_axis_tkeep_reg <= temp_m_axis_tkeep_reg;
m_axis_tlast_reg <= temp_m_axis_tlast_reg;
m_axis_tuser_reg <= temp_m_axis_tuser_reg;
end
if (store_axis_int_to_temp) begin
temp_m_axis_tdata_reg <= m_axis_tdata_int;
temp_m_axis_tkeep_reg <= m_axis_tkeep_int;
temp_m_axis_tlast_reg <= m_axis_tlast_int;
temp_m_axis_tuser_reg <= m_axis_tuser_int;
end
end
endmodule
/*
Copyright (c) 2015-2018 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* AXI4-Stream Ethernet FCS inserter
*/
module axis_eth_fcs_insert #
(
parameter ENABLE_PADDING = 0,
parameter MIN_FRAME_LENGTH = 64
)
(
input wire clk,
input wire rst,
/*
* AXI input
*/
input wire [7:0] s_axis_tdata,
input wire s_axis_tvalid,
output wire s_axis_tready,
input wire s_axis_tlast,
input wire s_axis_tuser,
/*
* AXI output
*/
output wire [7:0] m_axis_tdata,
output wire m_axis_tvalid,
input wire m_axis_tready,
output wire m_axis_tlast,
output wire m_axis_tuser,
/*
* Status
*/
output wire busy
);
localparam [1:0]
STATE_IDLE = 2'd0,
STATE_PAYLOAD = 2'd1,
STATE_PAD = 2'd2,
STATE_FCS = 2'd3;
reg [1:0] state_reg = STATE_IDLE, state_next;
// datapath control signals
reg reset_crc;
reg update_crc;
reg [15:0] frame_ptr_reg = 16'd0, frame_ptr_next;
reg busy_reg = 1'b0;
reg s_axis_tready_reg = 1'b0, s_axis_tready_next;
reg [31:0] crc_state = 32'hFFFFFFFF;
wire [31:0] crc_next;
// internal datapath
reg [7:0] m_axis_tdata_int;
reg m_axis_tvalid_int;
reg m_axis_tready_int_reg = 1'b0;
reg m_axis_tlast_int;
reg m_axis_tuser_int;
wire m_axis_tready_int_early;
assign s_axis_tready = s_axis_tready_reg;
assign busy = busy_reg;
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(8),
.STYLE("AUTO")
)
eth_crc_8 (
.data_in(m_axis_tdata_int),
.state_in(crc_state),
.data_out(),
.state_out(crc_next)
);
always @* begin
state_next = STATE_IDLE;
reset_crc = 1'b0;
update_crc = 1'b0;
frame_ptr_next = frame_ptr_reg;
s_axis_tready_next = 1'b0;
m_axis_tdata_int = 8'd0;
m_axis_tvalid_int = 1'b0;
m_axis_tlast_int = 1'b0;
m_axis_tuser_int = 1'b0;
case (state_reg)
STATE_IDLE: begin
// idle state - wait for data
s_axis_tready_next = m_axis_tready_int_early;
frame_ptr_next = 16'd0;
reset_crc = 1'b1;
m_axis_tdata_int = s_axis_tdata;
m_axis_tvalid_int = s_axis_tvalid;
m_axis_tlast_int = 1'b0;
m_axis_tuser_int = 1'b0;
if (s_axis_tready && s_axis_tvalid) begin
frame_ptr_next = 16'd1;
reset_crc = 1'b0;
update_crc = 1'b1;
if (s_axis_tlast) begin
if (s_axis_tuser) begin
m_axis_tlast_int = 1'b1;
m_axis_tuser_int = 1'b1;
reset_crc = 1'b1;
frame_ptr_next = 16'd0;
state_next = STATE_IDLE;
end else begin
s_axis_tready_next = 1'b0;
if (ENABLE_PADDING && frame_ptr_reg < MIN_FRAME_LENGTH-5) begin
state_next = STATE_PAD;
end else begin
frame_ptr_next = 16'd0;
state_next = STATE_FCS;
end
end
end else begin
state_next = STATE_PAYLOAD;
end
end else begin
state_next = STATE_IDLE;
end
end
STATE_PAYLOAD: begin
// transfer payload
s_axis_tready_next = m_axis_tready_int_early;
m_axis_tdata_int = s_axis_tdata;
m_axis_tvalid_int = s_axis_tvalid;
m_axis_tlast_int = 1'b0;
m_axis_tuser_int = 1'b0;
if (s_axis_tready && s_axis_tvalid) begin
frame_ptr_next = frame_ptr_reg + 16'd1;
update_crc = 1'b1;
if (s_axis_tlast) begin
if (s_axis_tuser) begin
m_axis_tlast_int = 1'b1;
m_axis_tuser_int = 1'b1;
reset_crc = 1'b1;
frame_ptr_next = 16'd0;
state_next = STATE_IDLE;
end else begin
s_axis_tready_next = 1'b0;
if (ENABLE_PADDING && frame_ptr_reg < MIN_FRAME_LENGTH-5) begin
state_next = STATE_PAD;
end else begin
frame_ptr_next = 16'd0;
state_next = STATE_FCS;
end
end
end else begin
state_next = STATE_PAYLOAD;
end
end else begin
state_next = STATE_PAYLOAD;
end
end
STATE_PAD: begin
// insert padding
s_axis_tready_next = 1'b0;
m_axis_tdata_int = 8'd0;
m_axis_tvalid_int = 1'b1;
m_axis_tlast_int = 1'b0;
m_axis_tuser_int = 1'b0;
if (m_axis_tready_int_reg) begin
frame_ptr_next = frame_ptr_reg + 16'd1;
update_crc = 1'b1;
if (frame_ptr_reg < MIN_FRAME_LENGTH-5) begin
state_next = STATE_PAD;
end else begin
frame_ptr_next = 16'd0;
state_next = STATE_FCS;
end
end else begin
state_next = STATE_PAD;
end
end
STATE_FCS: begin
// send FCS
s_axis_tready_next = 1'b0;
case (frame_ptr_reg)
2'd0: m_axis_tdata_int = ~crc_state[7:0];
2'd1: m_axis_tdata_int = ~crc_state[15:8];
2'd2: m_axis_tdata_int = ~crc_state[23:16];
2'd3: m_axis_tdata_int = ~crc_state[31:24];
endcase
m_axis_tvalid_int = 1'b1;
m_axis_tlast_int = 1'b0;
m_axis_tuser_int = 1'b0;
if (m_axis_tready_int_reg) begin
frame_ptr_next = frame_ptr_reg + 16'd1;
if (frame_ptr_reg < 16'd3) begin
state_next = STATE_FCS;
end else begin
reset_crc = 1'b1;
frame_ptr_next = 16'd0;
m_axis_tlast_int = 1'b1;
s_axis_tready_next = m_axis_tready_int_early;
state_next = STATE_IDLE;
end
end else begin
state_next = STATE_FCS;
end
end
endcase
end
always @(posedge clk) begin
if (rst) begin
state_reg <= STATE_IDLE;
frame_ptr_reg <= 1'b0;
s_axis_tready_reg <= 1'b0;
busy_reg <= 1'b0;
crc_state <= 32'hFFFFFFFF;
end else begin
state_reg <= state_next;
frame_ptr_reg <= frame_ptr_next;
s_axis_tready_reg <= s_axis_tready_next;
busy_reg <= state_next != STATE_IDLE;
// datapath
if (reset_crc) begin
crc_state <= 32'hFFFFFFFF;
end else if (update_crc) begin
crc_state <= crc_next;
end
end
end
// output datapath logic
reg [7:0] m_axis_tdata_reg = 8'd0;
reg m_axis_tvalid_reg = 1'b0, m_axis_tvalid_next;
reg m_axis_tlast_reg = 1'b0;
reg m_axis_tuser_reg = 1'b0;
reg [7:0] temp_m_axis_tdata_reg = 8'd0;
reg temp_m_axis_tvalid_reg = 1'b0, temp_m_axis_tvalid_next;
reg temp_m_axis_tlast_reg = 1'b0;
reg temp_m_axis_tuser_reg = 1'b0;
// datapath control
reg store_axis_int_to_output;
reg store_axis_int_to_temp;
reg store_axis_temp_to_output;
assign m_axis_tdata = m_axis_tdata_reg;
assign m_axis_tvalid = m_axis_tvalid_reg;
assign m_axis_tlast = m_axis_tlast_reg;
assign m_axis_tuser = m_axis_tuser_reg;
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
assign m_axis_tready_int_early = m_axis_tready || (!temp_m_axis_tvalid_reg && (!m_axis_tvalid_reg || !m_axis_tvalid_int));
always @* begin
// transfer sink ready state to source
m_axis_tvalid_next = m_axis_tvalid_reg;
temp_m_axis_tvalid_next = temp_m_axis_tvalid_reg;
store_axis_int_to_output = 1'b0;
store_axis_int_to_temp = 1'b0;
store_axis_temp_to_output = 1'b0;
if (m_axis_tready_int_reg) begin
// input is ready
if (m_axis_tready || !m_axis_tvalid_reg) begin
// output is ready or currently not valid, transfer data to output
m_axis_tvalid_next = m_axis_tvalid_int;
store_axis_int_to_output = 1'b1;
end else begin
// output is not ready, store input in temp
temp_m_axis_tvalid_next = m_axis_tvalid_int;
store_axis_int_to_temp = 1'b1;
end
end else if (m_axis_tready) begin
// input is not ready, but output is ready
m_axis_tvalid_next = temp_m_axis_tvalid_reg;
temp_m_axis_tvalid_next = 1'b0;
store_axis_temp_to_output = 1'b1;
end
end
always @(posedge clk) begin
if (rst) begin
m_axis_tvalid_reg <= 1'b0;
m_axis_tready_int_reg <= 1'b0;
temp_m_axis_tvalid_reg <= 1'b0;
end else begin
m_axis_tvalid_reg <= m_axis_tvalid_next;
m_axis_tready_int_reg <= m_axis_tready_int_early;
temp_m_axis_tvalid_reg <= temp_m_axis_tvalid_next;
end
// datapath
if (store_axis_int_to_output) begin
m_axis_tdata_reg <= m_axis_tdata_int;
m_axis_tlast_reg <= m_axis_tlast_int;
m_axis_tuser_reg <= m_axis_tuser_int;
end else if (store_axis_temp_to_output) begin
m_axis_tdata_reg <= temp_m_axis_tdata_reg;
m_axis_tlast_reg <= temp_m_axis_tlast_reg;
m_axis_tuser_reg <= temp_m_axis_tuser_reg;
end
if (store_axis_int_to_temp) begin
temp_m_axis_tdata_reg <= m_axis_tdata_int;
temp_m_axis_tlast_reg <= m_axis_tlast_int;
temp_m_axis_tuser_reg <= m_axis_tuser_int;
end
end
endmodule
/*
Copyright (c) 2015-2018 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* AXI4-Stream Ethernet FCS inserter (64 bit datapath)
*/
module axis_eth_fcs_insert_64 #
(
parameter ENABLE_PADDING = 0,
parameter MIN_FRAME_LENGTH = 64
)
(
input wire clk,
input wire rst,
/*
* AXI input
*/
input wire [63:0] s_axis_tdata,
input wire [7:0] s_axis_tkeep,
input wire s_axis_tvalid,
output wire s_axis_tready,
input wire s_axis_tlast,
input wire s_axis_tuser,
/*
* AXI output
*/
output wire [63:0] m_axis_tdata,
output wire [7:0] m_axis_tkeep,
output wire m_axis_tvalid,
input wire m_axis_tready,
output wire m_axis_tlast,
output wire m_axis_tuser,
/*
* Status
*/
output wire busy
);
localparam [1:0]
STATE_IDLE = 2'd0,
STATE_PAYLOAD = 2'd1,
STATE_PAD = 2'd2,
STATE_FCS = 2'd3;
reg [1:0] state_reg = STATE_IDLE, state_next;
// datapath control signals
reg reset_crc;
reg update_crc;
reg [63:0] s_axis_tdata_masked;
reg [63:0] fcs_s_tdata;
reg [7:0] fcs_s_tkeep;
reg [63:0] fcs_m_tdata_0;
reg [63:0] fcs_m_tdata_1;
reg [7:0] fcs_m_tkeep_0;
reg [7:0] fcs_m_tkeep_1;
reg [15:0] frame_ptr_reg = 16'd0, frame_ptr_next;
reg [63:0] last_cycle_tdata_reg = 64'd0, last_cycle_tdata_next;
reg [7:0] last_cycle_tkeep_reg = 8'd0, last_cycle_tkeep_next;
reg busy_reg = 1'b0;
reg s_axis_tready_reg = 1'b0, s_axis_tready_next;
reg [31:0] crc_state = 32'hFFFFFFFF;
wire [31:0] crc_next0;
wire [31:0] crc_next1;
wire [31:0] crc_next2;
wire [31:0] crc_next3;
wire [31:0] crc_next4;
wire [31:0] crc_next5;
wire [31:0] crc_next6;
wire [31:0] crc_next7;
// internal datapath
reg [63:0] m_axis_tdata_int;
reg [7:0] m_axis_tkeep_int;
reg m_axis_tvalid_int;
reg m_axis_tready_int_reg = 1'b0;
reg m_axis_tlast_int;
reg m_axis_tuser_int;
wire m_axis_tready_int_early;
assign s_axis_tready = s_axis_tready_reg;
assign busy = busy_reg;
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(8),
.STYLE("AUTO")
)
eth_crc_8 (
.data_in(fcs_s_tdata[7:0]),
.state_in(crc_state),
.data_out(),
.state_out(crc_next0)
);
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(16),
.STYLE("AUTO")
)
eth_crc_16 (
.data_in(fcs_s_tdata[15:0]),
.state_in(crc_state),
.data_out(),
.state_out(crc_next1)
);
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(24),
.STYLE("AUTO")
)
eth_crc_24 (
.data_in(fcs_s_tdata[23:0]),
.state_in(crc_state),
.data_out(),
.state_out(crc_next2)
);
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(32),
.STYLE("AUTO")
)
eth_crc_32 (
.data_in(fcs_s_tdata[31:0]),
.state_in(crc_state),
.data_out(),
.state_out(crc_next3)
);
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(40),
.STYLE("AUTO")
)
eth_crc_40 (
.data_in(fcs_s_tdata[39:0]),
.state_in(crc_state),
.data_out(),
.state_out(crc_next4)
);
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(48),
.STYLE("AUTO")
)
eth_crc_48 (
.data_in(fcs_s_tdata[47:0]),
.state_in(crc_state),
.data_out(),
.state_out(crc_next5)
);
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(56),
.STYLE("AUTO")
)
eth_crc_56 (
.data_in(fcs_s_tdata[55:0]),
.state_in(crc_state),
.data_out(),
.state_out(crc_next6)
);
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(64),
.STYLE("AUTO")
)
eth_crc_64 (
.data_in(fcs_s_tdata[63:0]),
.state_in(crc_state),
.data_out(),
.state_out(crc_next7)
);
function [3:0] keep2count;
input [7:0] k;
casez (k)
8'bzzzzzzz0: keep2count = 4'd0;
8'bzzzzzz01: keep2count = 4'd1;
8'bzzzzz011: keep2count = 4'd2;
8'bzzzz0111: keep2count = 4'd3;
8'bzzz01111: keep2count = 4'd4;
8'bzz011111: keep2count = 4'd5;
8'bz0111111: keep2count = 4'd6;
8'b01111111: keep2count = 4'd7;
8'b11111111: keep2count = 4'd8;
endcase
endfunction
function [7:0] count2keep;
input [3:0] k;
case (k)
4'd0: count2keep = 8'b00000000;
4'd1: count2keep = 8'b00000001;
4'd2: count2keep = 8'b00000011;
4'd3: count2keep = 8'b00000111;
4'd4: count2keep = 8'b00001111;
4'd5: count2keep = 8'b00011111;
4'd6: count2keep = 8'b00111111;
4'd7: count2keep = 8'b01111111;
4'd8: count2keep = 8'b11111111;
endcase
endfunction
// Mask input data
integer j;
always @* begin
for (j = 0; j < 8; j = j + 1) begin
s_axis_tdata_masked[j*8 +: 8] = s_axis_tkeep[j] ? s_axis_tdata[j*8 +: 8] : 8'd0;
end
end
// FCS cycle calculation
always @* begin
casez (fcs_s_tkeep)
8'bzzzzzz01: begin
fcs_m_tdata_0 = {24'd0, ~crc_next0[31:0], fcs_s_tdata[7:0]};
fcs_m_tdata_1 = 64'd0;
fcs_m_tkeep_0 = 8'b00011111;
fcs_m_tkeep_1 = 8'b00000000;
end
8'bzzzzz011: begin
fcs_m_tdata_0 = {16'd0, ~crc_next1[31:0], fcs_s_tdata[15:0]};
fcs_m_tdata_1 = 64'd0;
fcs_m_tkeep_0 = 8'b00111111;
fcs_m_tkeep_1 = 8'b00000000;
end
8'bzzzz0111: begin
fcs_m_tdata_0 = {8'd0, ~crc_next2[31:0], fcs_s_tdata[23:0]};
fcs_m_tdata_1 = 64'd0;
fcs_m_tkeep_0 = 8'b01111111;
fcs_m_tkeep_1 = 8'b00000000;
end
8'bzzz01111: begin
fcs_m_tdata_0 = {~crc_next3[31:0], fcs_s_tdata[31:0]};
fcs_m_tdata_1 = 64'd0;
fcs_m_tkeep_0 = 8'b11111111;
fcs_m_tkeep_1 = 8'b00000000;
end
8'bzz011111: begin
fcs_m_tdata_0 = {~crc_next4[23:0], fcs_s_tdata[39:0]};
fcs_m_tdata_1 = {56'd0, ~crc_next4[31:24]};
fcs_m_tkeep_0 = 8'b11111111;
fcs_m_tkeep_1 = 8'b00000001;
end
8'bz0111111: begin
fcs_m_tdata_0 = {~crc_next5[15:0], fcs_s_tdata[47:0]};
fcs_m_tdata_1 = {48'd0, ~crc_next5[31:16]};
fcs_m_tkeep_0 = 8'b11111111;
fcs_m_tkeep_1 = 8'b00000011;
end
8'b01111111: begin
fcs_m_tdata_0 = {~crc_next6[7:0], fcs_s_tdata[55:0]};
fcs_m_tdata_1 = {40'd0, ~crc_next6[31:8]};
fcs_m_tkeep_0 = 8'b11111111;
fcs_m_tkeep_1 = 8'b00000111;
end
8'b11111111: begin
fcs_m_tdata_0 = fcs_s_tdata;
fcs_m_tdata_1 = {32'd0, ~crc_next7[31:0]};
fcs_m_tkeep_0 = 8'b11111111;
fcs_m_tkeep_1 = 8'b00001111;
end
default: begin
fcs_m_tdata_0 = 64'd0;
fcs_m_tdata_1 = 64'd0;
fcs_m_tkeep_0 = 8'd0;
fcs_m_tkeep_1 = 8'd0;
end
endcase
end
always @* begin
state_next = STATE_IDLE;
reset_crc = 1'b0;
update_crc = 1'b0;
frame_ptr_next = frame_ptr_reg;
last_cycle_tdata_next = last_cycle_tdata_reg;
last_cycle_tkeep_next = last_cycle_tkeep_reg;
s_axis_tready_next = 1'b0;
fcs_s_tdata = 64'd0;
fcs_s_tkeep = 8'd0;
m_axis_tdata_int = 64'd0;
m_axis_tkeep_int = 8'd0;
m_axis_tvalid_int = 1'b0;
m_axis_tlast_int = 1'b0;
m_axis_tuser_int = 1'b0;
case (state_reg)
STATE_IDLE: begin
// idle state - wait for data
s_axis_tready_next = m_axis_tready_int_early;
frame_ptr_next = 16'd0;
reset_crc = 1'b1;
m_axis_tdata_int = s_axis_tdata_masked;
m_axis_tkeep_int = s_axis_tkeep;
m_axis_tvalid_int = s_axis_tvalid;
m_axis_tlast_int = 1'b0;
m_axis_tuser_int = 1'b0;
fcs_s_tdata = s_axis_tdata_masked;
fcs_s_tkeep = s_axis_tkeep;
if (s_axis_tready && s_axis_tvalid) begin
reset_crc = 1'b0;
update_crc = 1'b1;
frame_ptr_next = keep2count(s_axis_tkeep);
if (s_axis_tlast) begin
if (s_axis_tuser) begin
m_axis_tlast_int = 1'b1;
m_axis_tuser_int = 1'b1;
reset_crc = 1'b1;
frame_ptr_next = 16'd0;
state_next = STATE_IDLE;
end else begin
if (ENABLE_PADDING && frame_ptr_next < MIN_FRAME_LENGTH-4) begin
m_axis_tkeep_int = 8'hff;
fcs_s_tkeep = 8'hff;
frame_ptr_next = frame_ptr_reg + 16'd8;
if (frame_ptr_next < MIN_FRAME_LENGTH-4) begin
s_axis_tready_next = 1'b0;
state_next = STATE_PAD;
end else begin
m_axis_tkeep_int = 8'hff >> (8-((MIN_FRAME_LENGTH-4) & 7));
fcs_s_tkeep = 8'hff >> (8-((MIN_FRAME_LENGTH-4) & 7));
m_axis_tdata_int = fcs_m_tdata_0;
last_cycle_tdata_next = fcs_m_tdata_1;
m_axis_tkeep_int = fcs_m_tkeep_0;
last_cycle_tkeep_next = fcs_m_tkeep_1;
reset_crc = 1'b1;
if (fcs_m_tkeep_1 == 8'd0) begin
m_axis_tlast_int = 1'b1;
s_axis_tready_next = m_axis_tready_int_early;
frame_ptr_next = 1'b0;
state_next = STATE_IDLE;
end else begin
s_axis_tready_next = 1'b0;
state_next = STATE_FCS;
end
end
end else begin
m_axis_tdata_int = fcs_m_tdata_0;
last_cycle_tdata_next = fcs_m_tdata_1;
m_axis_tkeep_int = fcs_m_tkeep_0;
last_cycle_tkeep_next = fcs_m_tkeep_1;
reset_crc = 1'b1;
if (fcs_m_tkeep_1 == 8'd0) begin
m_axis_tlast_int = 1'b1;
s_axis_tready_next = m_axis_tready_int_early;
frame_ptr_next = 16'd0;
state_next = STATE_IDLE;
end else begin
s_axis_tready_next = 1'b0;
state_next = STATE_FCS;
end
end
end
end else begin
state_next = STATE_PAYLOAD;
end
end else begin
state_next = STATE_IDLE;
end
end
STATE_PAYLOAD: begin
// transfer payload
s_axis_tready_next = m_axis_tready_int_early;
m_axis_tdata_int = s_axis_tdata_masked;
m_axis_tkeep_int = s_axis_tkeep;
m_axis_tvalid_int = s_axis_tvalid;
m_axis_tlast_int = 1'b0;
m_axis_tuser_int = 1'b0;
fcs_s_tdata = s_axis_tdata_masked;
fcs_s_tkeep = s_axis_tkeep;
if (s_axis_tready && s_axis_tvalid) begin
update_crc = 1'b1;
frame_ptr_next = frame_ptr_reg + keep2count(s_axis_tkeep);
if (s_axis_tlast) begin
if (s_axis_tuser) begin
m_axis_tlast_int = 1'b1;
m_axis_tuser_int = 1'b1;
reset_crc = 1'b1;
frame_ptr_next = 16'd0;
state_next = STATE_IDLE;
end else begin
if (ENABLE_PADDING && frame_ptr_next < MIN_FRAME_LENGTH-4) begin
m_axis_tkeep_int = 8'hff;
fcs_s_tkeep = 8'hff;
frame_ptr_next = frame_ptr_reg + 16'd8;
if (frame_ptr_next < MIN_FRAME_LENGTH-4) begin
s_axis_tready_next = 1'b0;
state_next = STATE_PAD;
end else begin
m_axis_tkeep_int = 8'hff >> (8-((MIN_FRAME_LENGTH-4) & 7));
fcs_s_tkeep = 8'hff >> (8-((MIN_FRAME_LENGTH-4) & 7));
m_axis_tdata_int = fcs_m_tdata_0;
last_cycle_tdata_next = fcs_m_tdata_1;
m_axis_tkeep_int = fcs_m_tkeep_0;
last_cycle_tkeep_next = fcs_m_tkeep_1;
reset_crc = 1'b1;
if (fcs_m_tkeep_1 == 8'd0) begin
m_axis_tlast_int = 1'b1;
s_axis_tready_next = m_axis_tready_int_early;
frame_ptr_next = 16'd0;
state_next = STATE_IDLE;
end else begin
s_axis_tready_next = 1'b0;
state_next = STATE_FCS;
end
end
end else begin
m_axis_tdata_int = fcs_m_tdata_0;
last_cycle_tdata_next = fcs_m_tdata_1;
m_axis_tkeep_int = fcs_m_tkeep_0;
last_cycle_tkeep_next = fcs_m_tkeep_1;
reset_crc = 1'b1;
if (fcs_m_tkeep_1 == 8'd0) begin
m_axis_tlast_int = 1'b1;
s_axis_tready_next = m_axis_tready_int_early;
frame_ptr_next = 16'd0;
state_next = STATE_IDLE;
end else begin
s_axis_tready_next = 1'b0;
state_next = STATE_FCS;
end
end
end
end else begin
state_next = STATE_PAYLOAD;
end
end else begin
state_next = STATE_PAYLOAD;
end
end
STATE_PAD: begin
s_axis_tready_next = 1'b0;
m_axis_tdata_int = 64'd0;
m_axis_tkeep_int = 8'hff;
m_axis_tvalid_int = 1'b1;
m_axis_tlast_int = 1'b0;
m_axis_tuser_int = 1'b0;
fcs_s_tdata = 64'd0;
fcs_s_tkeep = 8'hff;
if (m_axis_tready_int_reg) begin
update_crc = 1'b1;
frame_ptr_next = frame_ptr_reg + 16'd8;
if (frame_ptr_next < MIN_FRAME_LENGTH-4) begin
state_next = STATE_PAD;
end else begin
m_axis_tkeep_int = 8'hff >> (8-((MIN_FRAME_LENGTH-4) & 7));
fcs_s_tkeep = 8'hff >> (8-((MIN_FRAME_LENGTH-4) & 7));
m_axis_tdata_int = fcs_m_tdata_0;
last_cycle_tdata_next = fcs_m_tdata_1;
m_axis_tkeep_int = fcs_m_tkeep_0;
last_cycle_tkeep_next = fcs_m_tkeep_1;
reset_crc = 1'b1;
if (fcs_m_tkeep_1 == 8'd0) begin
m_axis_tlast_int = 1'b1;
s_axis_tready_next = m_axis_tready_int_early;
frame_ptr_next = 16'd0;
state_next = STATE_IDLE;
end else begin
s_axis_tready_next = 1'b0;
state_next = STATE_FCS;
end
end
end else begin
state_next = STATE_PAD;
end
end
STATE_FCS: begin
// last cycle
s_axis_tready_next = 1'b0;
m_axis_tdata_int = last_cycle_tdata_reg;
m_axis_tkeep_int = last_cycle_tkeep_reg;
m_axis_tvalid_int = 1'b1;
m_axis_tlast_int = 1'b1;
m_axis_tuser_int = 1'b0;
if (m_axis_tready_int_reg) begin
reset_crc = 1'b1;
s_axis_tready_next = m_axis_tready_int_early;
frame_ptr_next = 1'b0;
state_next = STATE_IDLE;
end else begin
state_next = STATE_FCS;
end
end
endcase
end
always @(posedge clk) begin
if (rst) begin
state_reg <= STATE_IDLE;
frame_ptr_reg <= 1'b0;
s_axis_tready_reg <= 1'b0;
busy_reg <= 1'b0;
crc_state <= 32'hFFFFFFFF;
end else begin
state_reg <= state_next;
frame_ptr_reg <= frame_ptr_next;
s_axis_tready_reg <= s_axis_tready_next;
busy_reg <= state_next != STATE_IDLE;
// datapath
if (reset_crc) begin
crc_state <= 32'hFFFFFFFF;
end else if (update_crc) begin
crc_state <= crc_next7;
end
end
last_cycle_tdata_reg <= last_cycle_tdata_next;
last_cycle_tkeep_reg <= last_cycle_tkeep_next;
end
// output datapath logic
reg [63:0] m_axis_tdata_reg = 64'd0;
reg [7:0] m_axis_tkeep_reg = 8'd0;
reg m_axis_tvalid_reg = 1'b0, m_axis_tvalid_next;
reg m_axis_tlast_reg = 1'b0;
reg m_axis_tuser_reg = 1'b0;
reg [63:0] temp_m_axis_tdata_reg = 64'd0;
reg [7:0] temp_m_axis_tkeep_reg = 8'd0;
reg temp_m_axis_tvalid_reg = 1'b0, temp_m_axis_tvalid_next;
reg temp_m_axis_tlast_reg = 1'b0;
reg temp_m_axis_tuser_reg = 1'b0;
// datapath control
reg store_axis_int_to_output;
reg store_axis_int_to_temp;
reg store_axis_temp_to_output;
assign m_axis_tdata = m_axis_tdata_reg;
assign m_axis_tkeep = m_axis_tkeep_reg;
assign m_axis_tvalid = m_axis_tvalid_reg;
assign m_axis_tlast = m_axis_tlast_reg;
assign m_axis_tuser = m_axis_tuser_reg;
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
assign m_axis_tready_int_early = m_axis_tready || (!temp_m_axis_tvalid_reg && (!m_axis_tvalid_reg || !m_axis_tvalid_int));
always @* begin
// transfer sink ready state to source
m_axis_tvalid_next = m_axis_tvalid_reg;
temp_m_axis_tvalid_next = temp_m_axis_tvalid_reg;
store_axis_int_to_output = 1'b0;
store_axis_int_to_temp = 1'b0;
store_axis_temp_to_output = 1'b0;
if (m_axis_tready_int_reg) begin
// input is ready
if (m_axis_tready || !m_axis_tvalid_reg) begin
// output is ready or currently not valid, transfer data to output
m_axis_tvalid_next = m_axis_tvalid_int;
store_axis_int_to_output = 1'b1;
end else begin
// output is not ready, store input in temp
temp_m_axis_tvalid_next = m_axis_tvalid_int;
store_axis_int_to_temp = 1'b1;
end
end else if (m_axis_tready) begin
// input is not ready, but output is ready
m_axis_tvalid_next = temp_m_axis_tvalid_reg;
temp_m_axis_tvalid_next = 1'b0;
store_axis_temp_to_output = 1'b1;
end
end
always @(posedge clk) begin
if (rst) begin
m_axis_tvalid_reg <= 1'b0;
m_axis_tready_int_reg <= 1'b0;
temp_m_axis_tvalid_reg <= 1'b0;
end else begin
m_axis_tvalid_reg <= m_axis_tvalid_next;
m_axis_tready_int_reg <= m_axis_tready_int_early;
temp_m_axis_tvalid_reg <= temp_m_axis_tvalid_next;
end
// datapath
if (store_axis_int_to_output) begin
m_axis_tdata_reg <= m_axis_tdata_int;
m_axis_tkeep_reg <= m_axis_tkeep_int;
m_axis_tlast_reg <= m_axis_tlast_int;
m_axis_tuser_reg <= m_axis_tuser_int;
end else if (store_axis_temp_to_output) begin
m_axis_tdata_reg <= temp_m_axis_tdata_reg;
m_axis_tkeep_reg <= temp_m_axis_tkeep_reg;
m_axis_tlast_reg <= temp_m_axis_tlast_reg;
m_axis_tuser_reg <= temp_m_axis_tuser_reg;
end
if (store_axis_int_to_temp) begin
temp_m_axis_tdata_reg <= m_axis_tdata_int;
temp_m_axis_tkeep_reg <= m_axis_tkeep_int;
temp_m_axis_tlast_reg <= m_axis_tlast_int;
temp_m_axis_tuser_reg <= m_axis_tuser_int;
end
end
endmodule
/*
Copyright (c) 2015-2018 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* AXI4-Stream GMII frame receiver (GMII in, AXI out)
*/
module axis_gmii_rx #
(
parameter DATA_WIDTH = 8,
parameter PTP_TS_ENABLE = 0,
parameter PTP_TS_WIDTH = 96,
parameter USER_WIDTH = (PTP_TS_ENABLE ? PTP_TS_WIDTH : 0) + 1
)
(
input wire clk,
input wire rst,
/*
* GMII input
*/
input wire [DATA_WIDTH-1:0] gmii_rxd,
input wire gmii_rx_dv,
input wire gmii_rx_er,
/*
* AXI output
*/
output wire [DATA_WIDTH-1:0] m_axis_tdata,
output wire m_axis_tvalid,
output wire m_axis_tlast,
output wire [USER_WIDTH-1:0] m_axis_tuser,
/*
* PTP
*/
input wire [PTP_TS_WIDTH-1:0] ptp_ts,
/*
* Control
*/
input wire clk_enable,
input wire mii_select,
/*
* Status
*/
output wire start_packet,
output wire error_bad_frame,
output wire error_bad_fcs
);
// bus width assertions
initial begin
if (DATA_WIDTH != 8) begin
$error("Error: Interface width must be 8");
$finish;
end
end
localparam [7:0]
ETH_PRE = 8'h55,
ETH_SFD = 8'hD5;
localparam [2:0]
STATE_IDLE = 3'd0,
STATE_PAYLOAD = 3'd1,
STATE_WAIT_LAST = 3'd2;
reg [2:0] state_reg = STATE_IDLE, state_next;
// datapath control signals
reg reset_crc;
reg update_crc;
reg mii_odd = 1'b0;
reg mii_locked = 1'b0;
reg [DATA_WIDTH-1:0] gmii_rxd_d0 = {DATA_WIDTH{1'b0}};
reg [DATA_WIDTH-1:0] gmii_rxd_d1 = {DATA_WIDTH{1'b0}};
reg [DATA_WIDTH-1:0] gmii_rxd_d2 = {DATA_WIDTH{1'b0}};
reg [DATA_WIDTH-1:0] gmii_rxd_d3 = {DATA_WIDTH{1'b0}};
reg [DATA_WIDTH-1:0] gmii_rxd_d4 = {DATA_WIDTH{1'b0}};
reg gmii_rx_dv_d0 = 1'b0;
reg gmii_rx_dv_d1 = 1'b0;
reg gmii_rx_dv_d2 = 1'b0;
reg gmii_rx_dv_d3 = 1'b0;
reg gmii_rx_dv_d4 = 1'b0;
reg gmii_rx_er_d0 = 1'b0;
reg gmii_rx_er_d1 = 1'b0;
reg gmii_rx_er_d2 = 1'b0;
reg gmii_rx_er_d3 = 1'b0;
reg gmii_rx_er_d4 = 1'b0;
reg [DATA_WIDTH-1:0] m_axis_tdata_reg = {DATA_WIDTH{1'b0}}, m_axis_tdata_next;
reg m_axis_tvalid_reg = 1'b0, m_axis_tvalid_next;
reg m_axis_tlast_reg = 1'b0, m_axis_tlast_next;
reg m_axis_tuser_reg = 1'b0, m_axis_tuser_next;
reg start_packet_reg = 1'b0, start_packet_next;
reg error_bad_frame_reg = 1'b0, error_bad_frame_next;
reg error_bad_fcs_reg = 1'b0, error_bad_fcs_next;
reg [PTP_TS_WIDTH-1:0] ptp_ts_reg = 0, ptp_ts_next;
reg [31:0] crc_state = 32'hFFFFFFFF;
wire [31:0] crc_next;
assign m_axis_tdata = m_axis_tdata_reg;
assign m_axis_tvalid = m_axis_tvalid_reg;
assign m_axis_tlast = m_axis_tlast_reg;
assign m_axis_tuser = PTP_TS_ENABLE ? {ptp_ts_reg, m_axis_tuser_reg} : m_axis_tuser_reg;
assign start_packet = start_packet_reg;
assign error_bad_frame = error_bad_frame_reg;
assign error_bad_fcs = error_bad_fcs_reg;
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(8),
.STYLE("AUTO")
)
eth_crc_8 (
.data_in(gmii_rxd_d4),
.state_in(crc_state),
.data_out(),
.state_out(crc_next)
);
always @* begin
state_next = STATE_IDLE;
reset_crc = 1'b0;
update_crc = 1'b0;
m_axis_tdata_next = {DATA_WIDTH{1'b0}};
m_axis_tvalid_next = 1'b0;
m_axis_tlast_next = 1'b0;
m_axis_tuser_next = 1'b0;
start_packet_next = 1'b0;
error_bad_frame_next = 1'b0;
error_bad_fcs_next = 1'b0;
ptp_ts_next = ptp_ts_reg;
if (!clk_enable) begin
// clock disabled - hold state
state_next = state_reg;
end else if (mii_select && !mii_odd) begin
// MII even cycle - hold state
state_next = state_reg;
end else begin
case (state_reg)
STATE_IDLE: begin
// idle state - wait for packet
reset_crc = 1'b1;
if (gmii_rx_dv_d4 && !gmii_rx_er_d4 && gmii_rxd_d4 == ETH_SFD) begin
ptp_ts_next = ptp_ts;
start_packet_next = 1'b1;
state_next = STATE_PAYLOAD;
end else begin
state_next = STATE_IDLE;
end
end
STATE_PAYLOAD: begin
// read payload
update_crc = 1'b1;
m_axis_tdata_next = gmii_rxd_d4;
m_axis_tvalid_next = 1'b1;
if (gmii_rx_dv_d4 && gmii_rx_er_d4) begin
// error
m_axis_tlast_next = 1'b1;
m_axis_tuser_next = 1'b1;
error_bad_frame_next = 1'b1;
state_next = STATE_WAIT_LAST;
end else if (!gmii_rx_dv) begin
// end of packet
m_axis_tlast_next = 1'b1;
if (gmii_rx_er_d0 || gmii_rx_er_d1 || gmii_rx_er_d2 || gmii_rx_er_d3) begin
// error received in FCS bytes
m_axis_tuser_next = 1'b1;
error_bad_frame_next = 1'b1;
end else if ({gmii_rxd_d0, gmii_rxd_d1, gmii_rxd_d2, gmii_rxd_d3} == ~crc_next) begin
// FCS good
m_axis_tuser_next = 1'b0;
end else begin
// FCS bad
m_axis_tuser_next = 1'b1;
error_bad_frame_next = 1'b1;
error_bad_fcs_next = 1'b1;
end
state_next = STATE_IDLE;
end else begin
state_next = STATE_PAYLOAD;
end
end
STATE_WAIT_LAST: begin
// wait for end of packet
if (~gmii_rx_dv) begin
state_next = STATE_IDLE;
end else begin
state_next = STATE_WAIT_LAST;
end
end
endcase
end
end
always @(posedge clk) begin
if (rst) begin
state_reg <= STATE_IDLE;
m_axis_tvalid_reg <= 1'b0;
start_packet_reg <= 1'b0;
error_bad_frame_reg <= 1'b0;
error_bad_fcs_reg <= 1'b0;
crc_state <= 32'hFFFFFFFF;
mii_locked <= 1'b0;
mii_odd <= 1'b0;
gmii_rx_dv_d0 <= 1'b0;
gmii_rx_dv_d1 <= 1'b0;
gmii_rx_dv_d2 <= 1'b0;
gmii_rx_dv_d3 <= 1'b0;
gmii_rx_dv_d4 <= 1'b0;
end else begin
state_reg <= state_next;
m_axis_tvalid_reg <= m_axis_tvalid_next;
start_packet_reg <= start_packet_next;
error_bad_frame_reg <= error_bad_frame_next;
error_bad_fcs_reg <= error_bad_fcs_next;
// datapath
if (reset_crc) begin
crc_state <= 32'hFFFFFFFF;
end else if (update_crc) begin
crc_state <= crc_next;
end
if (clk_enable) begin
if (mii_select) begin
mii_odd <= !mii_odd;
if (mii_locked) begin
mii_locked <= gmii_rx_dv;
end else if (gmii_rx_dv && {gmii_rxd[3:0], gmii_rxd_d0[7:4]} == ETH_SFD) begin
mii_locked <= 1'b1;
mii_odd <= 1'b1;
end
if (mii_odd) begin
gmii_rx_dv_d0 <= gmii_rx_dv & gmii_rx_dv_d0;
gmii_rx_dv_d1 <= gmii_rx_dv_d0 & gmii_rx_dv;
gmii_rx_dv_d2 <= gmii_rx_dv_d1 & gmii_rx_dv;
gmii_rx_dv_d3 <= gmii_rx_dv_d2 & gmii_rx_dv;
gmii_rx_dv_d4 <= gmii_rx_dv_d3 & gmii_rx_dv;
end else begin
gmii_rx_dv_d0 <= gmii_rx_dv;
end
end else begin
gmii_rx_dv_d0 <= gmii_rx_dv;
gmii_rx_dv_d1 <= gmii_rx_dv_d0 & gmii_rx_dv;
gmii_rx_dv_d2 <= gmii_rx_dv_d1 & gmii_rx_dv;
gmii_rx_dv_d3 <= gmii_rx_dv_d2 & gmii_rx_dv;
gmii_rx_dv_d4 <= gmii_rx_dv_d3 & gmii_rx_dv;
end
end
end
ptp_ts_reg <= ptp_ts_next;
m_axis_tdata_reg <= m_axis_tdata_next;
m_axis_tlast_reg <= m_axis_tlast_next;
m_axis_tuser_reg <= m_axis_tuser_next;
// delay input
if (clk_enable) begin
if (mii_select) begin
gmii_rxd_d0 <= {gmii_rxd[3:0], gmii_rxd_d0[7:4]};
if (mii_odd) begin
gmii_rxd_d1 <= gmii_rxd_d0;
gmii_rxd_d2 <= gmii_rxd_d1;
gmii_rxd_d3 <= gmii_rxd_d2;
gmii_rxd_d4 <= gmii_rxd_d3;
gmii_rx_er_d0 <= gmii_rx_er | gmii_rx_er_d0;
gmii_rx_er_d1 <= gmii_rx_er_d0;
gmii_rx_er_d2 <= gmii_rx_er_d1;
gmii_rx_er_d3 <= gmii_rx_er_d2;
gmii_rx_er_d4 <= gmii_rx_er_d3;
end else begin
gmii_rx_er_d0 <= gmii_rx_er;
end
end else begin
gmii_rxd_d0 <= gmii_rxd;
gmii_rxd_d1 <= gmii_rxd_d0;
gmii_rxd_d2 <= gmii_rxd_d1;
gmii_rxd_d3 <= gmii_rxd_d2;
gmii_rxd_d4 <= gmii_rxd_d3;
gmii_rx_er_d0 <= gmii_rx_er;
gmii_rx_er_d1 <= gmii_rx_er_d0;
gmii_rx_er_d2 <= gmii_rx_er_d1;
gmii_rx_er_d3 <= gmii_rx_er_d2;
gmii_rx_er_d4 <= gmii_rx_er_d3;
end
end
end
endmodule
/*
Copyright (c) 2015-2018 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* AXI4-Stream GMII frame transmitter (AXI in, GMII out)
*/
module axis_gmii_tx #
(
parameter DATA_WIDTH = 8,
parameter ENABLE_PADDING = 1,
parameter MIN_FRAME_LENGTH = 64,
parameter PTP_TS_ENABLE = 0,
parameter PTP_TS_WIDTH = 96,
parameter PTP_TAG_ENABLE = PTP_TS_ENABLE,
parameter PTP_TAG_WIDTH = 16,
parameter USER_WIDTH = (PTP_TAG_ENABLE ? PTP_TAG_WIDTH : 0) + 1
)
(
input wire clk,
input wire rst,
/*
* AXI input
*/
input wire [DATA_WIDTH-1:0] s_axis_tdata,
input wire s_axis_tvalid,
output wire s_axis_tready,
input wire s_axis_tlast,
input wire [USER_WIDTH-1:0] s_axis_tuser,
/*
* GMII output
*/
output wire [DATA_WIDTH-1:0] gmii_txd,
output wire gmii_tx_en,
output wire gmii_tx_er,
/*
* PTP
*/
input wire [PTP_TS_WIDTH-1:0] ptp_ts,
output wire [PTP_TS_WIDTH-1:0] m_axis_ptp_ts,
output wire [PTP_TAG_WIDTH-1:0] m_axis_ptp_ts_tag,
output wire m_axis_ptp_ts_valid,
/*
* Control
*/
input wire clk_enable,
input wire mii_select,
/*
* Configuration
*/
input wire [7:0] ifg_delay,
/*
* Status
*/
output wire start_packet,
output wire error_underflow
);
// bus width assertions
initial begin
if (DATA_WIDTH != 8) begin
$error("Error: Interface width must be 8");
$finish;
end
end
localparam [7:0]
ETH_PRE = 8'h55,
ETH_SFD = 8'hD5;
localparam [2:0]
STATE_IDLE = 3'd0,
STATE_PREAMBLE = 3'd1,
STATE_PAYLOAD = 3'd2,
STATE_LAST = 3'd3,
STATE_PAD = 3'd4,
STATE_FCS = 3'd5,
STATE_WAIT_END = 3'd6,
STATE_IFG = 3'd7;
reg [2:0] state_reg = STATE_IDLE, state_next;
// datapath control signals
reg reset_crc;
reg update_crc;
reg [7:0] s_tdata_reg = 8'd0, s_tdata_next;
reg mii_odd_reg = 1'b0, mii_odd_next;
reg [3:0] mii_msn_reg = 4'b0, mii_msn_next;
reg [15:0] frame_ptr_reg = 16'd0, frame_ptr_next;
reg [7:0] gmii_txd_reg = 8'd0, gmii_txd_next;
reg gmii_tx_en_reg = 1'b0, gmii_tx_en_next;
reg gmii_tx_er_reg = 1'b0, gmii_tx_er_next;
reg s_axis_tready_reg = 1'b0, s_axis_tready_next;
reg [PTP_TS_WIDTH-1:0] m_axis_ptp_ts_reg = 0, m_axis_ptp_ts_next;
reg [PTP_TAG_WIDTH-1:0] m_axis_ptp_ts_tag_reg = 0, m_axis_ptp_ts_tag_next;
reg m_axis_ptp_ts_valid_reg = 1'b0, m_axis_ptp_ts_valid_next;
reg start_packet_reg = 1'b0, start_packet_next;
reg error_underflow_reg = 1'b0, error_underflow_next;
reg [31:0] crc_state = 32'hFFFFFFFF;
wire [31:0] crc_next;
assign s_axis_tready = s_axis_tready_reg;
assign gmii_txd = gmii_txd_reg;
assign gmii_tx_en = gmii_tx_en_reg;
assign gmii_tx_er = gmii_tx_er_reg;
assign m_axis_ptp_ts = PTP_TS_ENABLE ? m_axis_ptp_ts_reg : 0;
assign m_axis_ptp_ts_tag = PTP_TAG_ENABLE ? m_axis_ptp_ts_tag_reg : 0;
assign m_axis_ptp_ts_valid = PTP_TS_ENABLE || PTP_TAG_ENABLE ? m_axis_ptp_ts_valid_reg : 1'b0;
assign start_packet = start_packet_reg;
assign error_underflow = error_underflow_reg;
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(8),
.STYLE("AUTO")
)
eth_crc_8 (
.data_in(s_tdata_reg),
.state_in(crc_state),
.data_out(),
.state_out(crc_next)
);
always @* begin
state_next = STATE_IDLE;
reset_crc = 1'b0;
update_crc = 1'b0;
mii_odd_next = mii_odd_reg;
mii_msn_next = mii_msn_reg;
frame_ptr_next = frame_ptr_reg;
s_axis_tready_next = 1'b0;
s_tdata_next = s_tdata_reg;
m_axis_ptp_ts_next = m_axis_ptp_ts_reg;
m_axis_ptp_ts_tag_next = m_axis_ptp_ts_tag_reg;
m_axis_ptp_ts_valid_next = 1'b0;
gmii_txd_next = {DATA_WIDTH{1'b0}};
gmii_tx_en_next = 1'b0;
gmii_tx_er_next = 1'b0;
start_packet_next = 1'b0;
error_underflow_next = 1'b0;
if (!clk_enable) begin
// clock disabled - hold state and outputs
gmii_txd_next = gmii_txd_reg;
gmii_tx_en_next = gmii_tx_en_reg;
gmii_tx_er_next = gmii_tx_er_reg;
state_next = state_reg;
end else if (mii_select && mii_odd_reg) begin
// MII odd cycle - hold state, output MSN
mii_odd_next = 1'b0;
gmii_txd_next = {4'd0, mii_msn_reg};
gmii_tx_en_next = gmii_tx_en_reg;
gmii_tx_er_next = gmii_tx_er_reg;
state_next = state_reg;
end else begin
case (state_reg)
STATE_IDLE: begin
// idle state - wait for packet
reset_crc = 1'b1;
mii_odd_next = 1'b0;
if (s_axis_tvalid) begin
mii_odd_next = 1'b1;
frame_ptr_next = 16'd1;
gmii_txd_next = ETH_PRE;
gmii_tx_en_next = 1'b1;
state_next = STATE_PREAMBLE;
end else begin
state_next = STATE_IDLE;
end
end
STATE_PREAMBLE: begin
// send preamble
reset_crc = 1'b1;
mii_odd_next = 1'b1;
frame_ptr_next = frame_ptr_reg + 16'd1;
gmii_txd_next = ETH_PRE;
gmii_tx_en_next = 1'b1;
if (frame_ptr_reg == 16'd6) begin
s_axis_tready_next = 1'b1;
s_tdata_next = s_axis_tdata;
state_next = STATE_PREAMBLE;
end else if (frame_ptr_reg == 16'd7) begin
// end of preamble; start payload
frame_ptr_next = 16'd0;
if (s_axis_tready_reg) begin
s_axis_tready_next = 1'b1;
s_tdata_next = s_axis_tdata;
end
gmii_txd_next = ETH_SFD;
m_axis_ptp_ts_next = ptp_ts;
m_axis_ptp_ts_tag_next = s_axis_tuser >> 1;
m_axis_ptp_ts_valid_next = 1'b1;
start_packet_next = 1'b1;
state_next = STATE_PAYLOAD;
end else begin
state_next = STATE_PREAMBLE;
end
end
STATE_PAYLOAD: begin
// send payload
update_crc = 1'b1;
s_axis_tready_next = 1'b1;
mii_odd_next = 1'b1;
frame_ptr_next = frame_ptr_reg + 16'd1;
gmii_txd_next = s_tdata_reg;
gmii_tx_en_next = 1'b1;
s_tdata_next = s_axis_tdata;
if (s_axis_tvalid) begin
if (s_axis_tlast) begin
s_axis_tready_next = !s_axis_tready_reg;
if (s_axis_tuser[0]) begin
gmii_tx_er_next = 1'b1;
frame_ptr_next = 1'b0;
state_next = STATE_IFG;
end else begin
state_next = STATE_LAST;
end
end else begin
state_next = STATE_PAYLOAD;
end
end else begin
// tvalid deassert, fail frame
gmii_tx_er_next = 1'b1;
frame_ptr_next = 16'd0;
error_underflow_next = 1'b1;
state_next = STATE_WAIT_END;
end
end
STATE_LAST: begin
// last payload word
update_crc = 1'b1;
mii_odd_next = 1'b1;
frame_ptr_next = frame_ptr_reg + 16'd1;
gmii_txd_next = s_tdata_reg;
gmii_tx_en_next = 1'b1;
if (ENABLE_PADDING && frame_ptr_reg < MIN_FRAME_LENGTH-5) begin
s_tdata_next = 8'd0;
state_next = STATE_PAD;
end else begin
frame_ptr_next = 16'd0;
state_next = STATE_FCS;
end
end
STATE_PAD: begin
// send padding
update_crc = 1'b1;
mii_odd_next = 1'b1;
frame_ptr_next = frame_ptr_reg + 16'd1;
gmii_txd_next = 8'd0;
gmii_tx_en_next = 1'b1;
s_tdata_next = 8'd0;
if (frame_ptr_reg < MIN_FRAME_LENGTH-5) begin
state_next = STATE_PAD;
end else begin
frame_ptr_next = 16'd0;
state_next = STATE_FCS;
end
end
STATE_FCS: begin
// send FCS
mii_odd_next = 1'b1;
frame_ptr_next = frame_ptr_reg + 16'd1;
case (frame_ptr_reg)
2'd0: gmii_txd_next = ~crc_state[7:0];
2'd1: gmii_txd_next = ~crc_state[15:8];
2'd2: gmii_txd_next = ~crc_state[23:16];
2'd3: gmii_txd_next = ~crc_state[31:24];
endcase
gmii_tx_en_next = 1'b1;
if (frame_ptr_reg < 3) begin
state_next = STATE_FCS;
end else begin
frame_ptr_next = 16'd0;
state_next = STATE_IFG;
end
end
STATE_WAIT_END: begin
// wait for end of frame
reset_crc = 1'b1;
mii_odd_next = 1'b1;
frame_ptr_next = frame_ptr_reg + 16'd1;
s_axis_tready_next = 1'b1;
if (s_axis_tvalid) begin
if (s_axis_tlast) begin
s_axis_tready_next = 1'b0;
if (frame_ptr_reg < ifg_delay-1) begin
state_next = STATE_IFG;
end else begin
state_next = STATE_IDLE;
end
end else begin
state_next = STATE_WAIT_END;
end
end else begin
state_next = STATE_WAIT_END;
end
end
STATE_IFG: begin
// send IFG
reset_crc = 1'b1;
mii_odd_next = 1'b1;
frame_ptr_next = frame_ptr_reg + 16'd1;
if (frame_ptr_reg < ifg_delay-1) begin
state_next = STATE_IFG;
end else begin
state_next = STATE_IDLE;
end
end
endcase
if (mii_select) begin
mii_msn_next = gmii_txd_next[7:4];
gmii_txd_next[7:4] = 4'd0;
end
end
end
always @(posedge clk) begin
if (rst) begin
state_reg <= STATE_IDLE;
frame_ptr_reg <= 16'd0;
s_axis_tready_reg <= 1'b0;
m_axis_ptp_ts_valid_reg <= 1'b0;
gmii_tx_en_reg <= 1'b0;
gmii_tx_er_reg <= 1'b0;
start_packet_reg <= 1'b0;
error_underflow_reg <= 1'b0;
crc_state <= 32'hFFFFFFFF;
end else begin
state_reg <= state_next;
frame_ptr_reg <= frame_ptr_next;
s_axis_tready_reg <= s_axis_tready_next;
m_axis_ptp_ts_valid_reg <= m_axis_ptp_ts_valid_next;
gmii_tx_en_reg <= gmii_tx_en_next;
gmii_tx_er_reg <= gmii_tx_er_next;
start_packet_reg <= start_packet_next;
error_underflow_reg <= error_underflow_next;
// datapath
if (reset_crc) begin
crc_state <= 32'hFFFFFFFF;
end else if (update_crc) begin
crc_state <= crc_next;
end
end
m_axis_ptp_ts_reg <= m_axis_ptp_ts_next;
m_axis_ptp_ts_tag_reg <= m_axis_ptp_ts_tag_next;
mii_odd_reg <= mii_odd_next;
mii_msn_reg <= mii_msn_next;
s_tdata_reg <= s_tdata_next;
gmii_txd_reg <= gmii_txd_next;
end
endmodule
/*
Copyright (c) 2015-2017 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* AXI4-Stream XGMII frame receiver (XGMII in, AXI out)
*/
module axis_xgmii_rx_32 #
(
parameter DATA_WIDTH = 32,
parameter KEEP_WIDTH = (DATA_WIDTH/8),
parameter CTRL_WIDTH = (DATA_WIDTH/8),
parameter PTP_TS_ENABLE = 0,
parameter PTP_TS_WIDTH = 96,
parameter USER_WIDTH = (PTP_TS_ENABLE ? PTP_TS_WIDTH : 0) + 1
)
(
input wire clk,
input wire rst,
/*
* XGMII input
*/
input wire [DATA_WIDTH-1:0] xgmii_rxd,
input wire [CTRL_WIDTH-1:0] xgmii_rxc,
/*
* AXI output
*/
output wire [DATA_WIDTH-1:0] m_axis_tdata,
output wire [KEEP_WIDTH-1:0] m_axis_tkeep,
output wire m_axis_tvalid,
output wire m_axis_tlast,
output wire [USER_WIDTH-1:0] m_axis_tuser,
/*
* PTP
*/
input wire [PTP_TS_WIDTH-1:0] ptp_ts,
/*
* Status
*/
output wire start_packet,
output wire error_bad_frame,
output wire error_bad_fcs
);
// bus width assertions
initial begin
if (DATA_WIDTH != 32) begin
$error("Error: Interface width must be 32");
$finish;
end
if (KEEP_WIDTH * 8 != DATA_WIDTH || CTRL_WIDTH * 8 != DATA_WIDTH) begin
$error("Error: Interface requires byte (8-bit) granularity");
$finish;
end
end
localparam [7:0]
ETH_PRE = 8'h55,
ETH_SFD = 8'hD5;
localparam [7:0]
XGMII_IDLE = 8'h07,
XGMII_START = 8'hfb,
XGMII_TERM = 8'hfd,
XGMII_ERROR = 8'hfe;
localparam [1:0]
STATE_IDLE = 2'd0,
STATE_PREAMBLE = 2'd1,
STATE_PAYLOAD = 2'd2,
STATE_LAST = 2'd3;
reg [1:0] state_reg = STATE_IDLE, state_next;
// datapath control signals
reg reset_crc;
reg [3:0] last_cycle_tkeep_reg = 4'd0, last_cycle_tkeep_next;
reg [DATA_WIDTH-1:0] xgmii_rxd_d0 = {DATA_WIDTH{1'b0}};
reg [DATA_WIDTH-1:0] xgmii_rxd_d1 = {DATA_WIDTH{1'b0}};
reg [DATA_WIDTH-1:0] xgmii_rxd_d2 = {DATA_WIDTH{1'b0}};
reg [CTRL_WIDTH-1:0] xgmii_rxc_d0 = {CTRL_WIDTH{1'b0}};
reg [CTRL_WIDTH-1:0] xgmii_rxc_d1 = {CTRL_WIDTH{1'b0}};
reg [CTRL_WIDTH-1:0] xgmii_rxc_d2 = {CTRL_WIDTH{1'b0}};
reg [DATA_WIDTH-1:0] m_axis_tdata_reg = {DATA_WIDTH{1'b0}}, m_axis_tdata_next;
reg [KEEP_WIDTH-1:0] m_axis_tkeep_reg = {KEEP_WIDTH{1'b0}}, m_axis_tkeep_next;
reg m_axis_tvalid_reg = 1'b0, m_axis_tvalid_next;
reg m_axis_tlast_reg = 1'b0, m_axis_tlast_next;
reg m_axis_tuser_reg = 1'b0, m_axis_tuser_next;
reg start_packet_reg = 1'b0, start_packet_next;
reg error_bad_frame_reg = 1'b0, error_bad_frame_next;
reg error_bad_fcs_reg = 1'b0, error_bad_fcs_next;
reg [PTP_TS_WIDTH-1:0] ptp_ts_reg = 0, ptp_ts_next;
reg [31:0] crc_state = 32'hFFFFFFFF;
wire [31:0] crc_next0;
wire [31:0] crc_next1;
wire [31:0] crc_next2;
wire [31:0] crc_next3;
wire crc_valid0 = crc_next0 == ~32'h2144df1c;
wire crc_valid1 = crc_next1 == ~32'h2144df1c;
wire crc_valid2 = crc_next2 == ~32'h2144df1c;
wire crc_valid3 = crc_next3 == ~32'h2144df1c;
reg crc_valid0_save = 1'b0;
reg crc_valid1_save = 1'b0;
reg crc_valid2_save = 1'b0;
reg crc_valid3_save = 1'b0;
assign m_axis_tdata = m_axis_tdata_reg;
assign m_axis_tkeep = m_axis_tkeep_reg;
assign m_axis_tvalid = m_axis_tvalid_reg;
assign m_axis_tlast = m_axis_tlast_reg;
assign m_axis_tuser = PTP_TS_ENABLE ? {ptp_ts_reg, m_axis_tuser_reg} : m_axis_tuser_reg;
assign start_packet = start_packet_reg;
assign error_bad_frame = error_bad_frame_reg;
assign error_bad_fcs = error_bad_fcs_reg;
wire last_cycle = state_reg == STATE_LAST;
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(8),
.STYLE("AUTO")
)
eth_crc_8 (
.data_in(xgmii_rxd_d0[7:0]),
.state_in(crc_state),
.data_out(),
.state_out(crc_next0)
);
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(16),
.STYLE("AUTO")
)
eth_crc_16 (
.data_in(xgmii_rxd_d0[15:0]),
.state_in(crc_state),
.data_out(),
.state_out(crc_next1)
);
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(24),
.STYLE("AUTO")
)
eth_crc_24 (
.data_in(xgmii_rxd_d0[23:0]),
.state_in(crc_state),
.data_out(),
.state_out(crc_next2)
);
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(32),
.STYLE("AUTO")
)
eth_crc_32 (
.data_in(xgmii_rxd_d0[31:0]),
.state_in(crc_state),
.data_out(),
.state_out(crc_next3)
);
// detect control characters
reg [3:0] detect_term = 4'd0;
reg [3:0] detect_term_save;
integer i;
// mask errors to within packet
reg [3:0] control_masked;
reg [3:0] tkeep_mask;
always @* begin
casez (detect_term)
4'b0000: begin
control_masked = xgmii_rxc_d0;
tkeep_mask = 4'b1111;
end
4'bzzz1: begin
control_masked = 0;
tkeep_mask = 4'b0000;
end
4'bzz10: begin
control_masked = xgmii_rxc_d0[0];
tkeep_mask = 4'b0001;
end
4'bz100: begin
control_masked = xgmii_rxc_d0[1:0];
tkeep_mask = 4'b0011;
end
4'b1000: begin
control_masked = xgmii_rxc_d0[2:0];
tkeep_mask = 4'b0111;
end
default: begin
control_masked = xgmii_rxc_d0;
tkeep_mask = 4'b1111;
end
endcase
end
always @* begin
state_next = STATE_IDLE;
reset_crc = 1'b0;
last_cycle_tkeep_next = last_cycle_tkeep_reg;
m_axis_tdata_next = {DATA_WIDTH{1'b0}};
m_axis_tkeep_next = {KEEP_WIDTH{1'b1}};
m_axis_tvalid_next = 1'b0;
m_axis_tlast_next = 1'b0;
m_axis_tuser_next = 1'b0;
start_packet_next = 1'b0;
error_bad_frame_next = 1'b0;
error_bad_fcs_next = 1'b0;
ptp_ts_next = ptp_ts_reg;
case (state_reg)
STATE_IDLE: begin
// idle state - wait for packet
reset_crc = 1'b1;
if (xgmii_rxc_d2[0] && xgmii_rxd_d2[7:0] == XGMII_START) begin
// start condition
if (control_masked) begin
// control or error characters in first data word
m_axis_tdata_next = {DATA_WIDTH{1'b0}};
m_axis_tkeep_next = 4'h1;
m_axis_tvalid_next = 1'b1;
m_axis_tlast_next = 1'b1;
m_axis_tuser_next = 1'b1;
error_bad_frame_next = 1'b1;
state_next = STATE_IDLE;
end else begin
reset_crc = 1'b0;
state_next = STATE_PREAMBLE;
end
end else begin
state_next = STATE_IDLE;
end
end
STATE_PREAMBLE: begin
// drop preamble
ptp_ts_next = ptp_ts;
start_packet_next = 1'b1;
state_next = STATE_PAYLOAD;
end
STATE_PAYLOAD: begin
// read payload
m_axis_tdata_next = xgmii_rxd_d2;
m_axis_tkeep_next = {KEEP_WIDTH{1'b1}};
m_axis_tvalid_next = 1'b1;
m_axis_tlast_next = 1'b0;
m_axis_tuser_next = 1'b0;
last_cycle_tkeep_next = tkeep_mask;
if (control_masked) begin
// control or error characters in packet
m_axis_tlast_next = 1'b1;
m_axis_tuser_next = 1'b1;
error_bad_frame_next = 1'b1;
reset_crc = 1'b1;
state_next = STATE_IDLE;
end else if (detect_term) begin
if (detect_term[0]) begin
// end this cycle
reset_crc = 1'b1;
m_axis_tkeep_next = 4'b1111;
m_axis_tlast_next = 1'b1;
if (detect_term[0] && crc_valid3_save) begin
// CRC valid
end else begin
m_axis_tuser_next = 1'b1;
error_bad_frame_next = 1'b1;
error_bad_fcs_next = 1'b1;
end
state_next = STATE_IDLE;
end else begin
// need extra cycle
state_next = STATE_LAST;
end
end else begin
state_next = STATE_PAYLOAD;
end
end
STATE_LAST: begin
// last cycle of packet
m_axis_tdata_next = xgmii_rxd_d2;
m_axis_tkeep_next = last_cycle_tkeep_reg;
m_axis_tvalid_next = 1'b1;
m_axis_tlast_next = 1'b1;
m_axis_tuser_next = 1'b0;
reset_crc = 1'b1;
if ((detect_term_save[1] && crc_valid0_save) ||
(detect_term_save[2] && crc_valid1_save) ||
(detect_term_save[3] && crc_valid2_save)) begin
// CRC valid
end else begin
m_axis_tuser_next = 1'b1;
error_bad_frame_next = 1'b1;
error_bad_fcs_next = 1'b1;
end
state_next = STATE_IDLE;
end
endcase
end
always @(posedge clk) begin
if (rst) begin
state_reg <= STATE_IDLE;
m_axis_tvalid_reg <= 1'b0;
start_packet_reg <= 1'b0;
error_bad_frame_reg <= 1'b0;
error_bad_fcs_reg <= 1'b0;
crc_state <= 32'hFFFFFFFF;
xgmii_rxc_d0 <= {CTRL_WIDTH{1'b0}};
xgmii_rxc_d1 <= {CTRL_WIDTH{1'b0}};
end else begin
state_reg <= state_next;
m_axis_tvalid_reg <= m_axis_tvalid_next;
start_packet_reg <= start_packet_next;
error_bad_frame_reg <= error_bad_frame_next;
error_bad_fcs_reg <= error_bad_fcs_next;
xgmii_rxc_d0 <= xgmii_rxc;
xgmii_rxc_d1 <= xgmii_rxc_d0;
xgmii_rxc_d2 <= xgmii_rxc_d1;
// datapath
if (reset_crc) begin
crc_state <= 32'hFFFFFFFF;
end else begin
crc_state <= crc_next3;
end
end
m_axis_tdata_reg <= m_axis_tdata_next;
m_axis_tkeep_reg <= m_axis_tkeep_next;
m_axis_tlast_reg <= m_axis_tlast_next;
m_axis_tuser_reg <= m_axis_tuser_next;
ptp_ts_reg <= ptp_ts_next;
last_cycle_tkeep_reg <= last_cycle_tkeep_next;
for (i = 0; i < 4; i = i + 1) begin
detect_term[i] <= xgmii_rxc[i] && (xgmii_rxd[i*8 +: 8] == XGMII_TERM);
end
detect_term_save <= detect_term;
crc_valid0_save <= crc_valid0;
crc_valid1_save <= crc_valid1;
crc_valid2_save <= crc_valid2;
crc_valid3_save <= crc_valid3;
xgmii_rxd_d0 <= xgmii_rxd;
xgmii_rxd_d1 <= xgmii_rxd_d0;
xgmii_rxd_d2 <= xgmii_rxd_d1;
end
endmodule
/*
Copyright (c) 2015-2017 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* AXI4-Stream XGMII frame receiver (XGMII in, AXI out)
*/
module axis_xgmii_rx_64 #
(
parameter DATA_WIDTH = 64,
parameter KEEP_WIDTH = (DATA_WIDTH/8),
parameter CTRL_WIDTH = (DATA_WIDTH/8),
parameter PTP_PERIOD_NS = 4'h6,
parameter PTP_PERIOD_FNS = 16'h6666,
parameter PTP_TS_ENABLE = 0,
parameter PTP_TS_WIDTH = 96,
parameter USER_WIDTH = (PTP_TS_ENABLE ? PTP_TS_WIDTH : 0) + 1
)
(
input wire clk,
input wire rst,
/*
* XGMII input
*/
input wire [DATA_WIDTH-1:0] xgmii_rxd,
input wire [CTRL_WIDTH-1:0] xgmii_rxc,
/*
* AXI output
*/
output wire [DATA_WIDTH-1:0] m_axis_tdata,
output wire [KEEP_WIDTH-1:0] m_axis_tkeep,
output wire m_axis_tvalid,
output wire m_axis_tlast,
output wire [USER_WIDTH-1:0] m_axis_tuser,
/*
* PTP
*/
input wire [PTP_TS_WIDTH-1:0] ptp_ts,
/*
* Status
*/
output wire [1:0] start_packet,
output wire error_bad_frame,
output wire error_bad_fcs
);
// bus width assertions
initial begin
if (DATA_WIDTH != 64) begin
$error("Error: Interface width must be 64");
$finish;
end
if (KEEP_WIDTH * 8 != DATA_WIDTH || CTRL_WIDTH * 8 != DATA_WIDTH) begin
$error("Error: Interface requires byte (8-bit) granularity");
$finish;
end
end
localparam [7:0]
ETH_PRE = 8'h55,
ETH_SFD = 8'hD5;
localparam [7:0]
XGMII_IDLE = 8'h07,
XGMII_START = 8'hfb,
XGMII_TERM = 8'hfd,
XGMII_ERROR = 8'hfe;
localparam [1:0]
STATE_IDLE = 2'd0,
STATE_PAYLOAD = 2'd1,
STATE_LAST = 2'd2;
reg [1:0] state_reg = STATE_IDLE, state_next;
// datapath control signals
reg reset_crc;
reg update_crc_last;
reg [7:0] last_cycle_tkeep_reg = 8'd0, last_cycle_tkeep_next;
reg lanes_swapped = 1'b0;
reg [31:0] swap_rxd = 32'd0;
reg [3:0] swap_rxc = 4'd0;
reg [DATA_WIDTH-1:0] xgmii_rxd_d0 = {DATA_WIDTH{1'b0}};
reg [DATA_WIDTH-1:0] xgmii_rxd_d1 = {DATA_WIDTH{1'b0}};
reg [DATA_WIDTH-1:0] xgmii_rxd_crc = {DATA_WIDTH{1'b0}};
reg [CTRL_WIDTH-1:0] xgmii_rxc_d0 = {CTRL_WIDTH{1'b0}};
reg [CTRL_WIDTH-1:0] xgmii_rxc_d1 = {CTRL_WIDTH{1'b0}};
reg [DATA_WIDTH-1:0] m_axis_tdata_reg = {DATA_WIDTH{1'b0}}, m_axis_tdata_next;
reg [KEEP_WIDTH-1:0] m_axis_tkeep_reg = {KEEP_WIDTH{1'b0}}, m_axis_tkeep_next;
reg m_axis_tvalid_reg = 1'b0, m_axis_tvalid_next;
reg m_axis_tlast_reg = 1'b0, m_axis_tlast_next;
reg m_axis_tuser_reg = 1'b0, m_axis_tuser_next;
reg [1:0] start_packet_reg = 2'b00;
reg error_bad_frame_reg = 1'b0, error_bad_frame_next;
reg error_bad_fcs_reg = 1'b0, error_bad_fcs_next;
reg [PTP_TS_WIDTH-1:0] ptp_ts_reg = 0;
reg [31:0] crc_state = 32'hFFFFFFFF;
reg [31:0] crc_state3 = 32'hFFFFFFFF;
wire [31:0] crc_next0;
wire [31:0] crc_next1;
wire [31:0] crc_next2;
wire [31:0] crc_next3;
wire [31:0] crc_next7;
wire crc_valid0 = crc_next0 == ~32'h2144df1c;
wire crc_valid1 = crc_next1 == ~32'h2144df1c;
wire crc_valid2 = crc_next2 == ~32'h2144df1c;
wire crc_valid3 = crc_next3 == ~32'h2144df1c;
wire crc_valid7 = crc_next7 == ~32'h2144df1c;
reg crc_valid7_save = 1'b0;
assign m_axis_tdata = m_axis_tdata_reg;
assign m_axis_tkeep = m_axis_tkeep_reg;
assign m_axis_tvalid = m_axis_tvalid_reg;
assign m_axis_tlast = m_axis_tlast_reg;
assign m_axis_tuser = PTP_TS_ENABLE ? {ptp_ts_reg, m_axis_tuser_reg} : m_axis_tuser_reg;
assign start_packet = start_packet_reg;
assign error_bad_frame = error_bad_frame_reg;
assign error_bad_fcs = error_bad_fcs_reg;
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(8),
.STYLE("AUTO")
)
eth_crc_8 (
.data_in(xgmii_rxd_crc[7:0]),
.state_in(crc_state3),
.data_out(),
.state_out(crc_next0)
);
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(16),
.STYLE("AUTO")
)
eth_crc_16 (
.data_in(xgmii_rxd_crc[15:0]),
.state_in(crc_state3),
.data_out(),
.state_out(crc_next1)
);
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(24),
.STYLE("AUTO")
)
eth_crc_24 (
.data_in(xgmii_rxd_crc[23:0]),
.state_in(crc_state3),
.data_out(),
.state_out(crc_next2)
);
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(32),
.STYLE("AUTO")
)
eth_crc_32 (
.data_in(xgmii_rxd_crc[31:0]),
.state_in(crc_state3),
.data_out(),
.state_out(crc_next3)
);
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(64),
.STYLE("AUTO")
)
eth_crc_64 (
.data_in(xgmii_rxd_crc[63:0]),
.state_in(crc_state),
.data_out(),
.state_out(crc_next7)
);
// detect control characters
reg [7:0] detect_term = 8'd0;
reg [7:0] detect_term_save = 8'd0;
integer i;
// mask errors to within packet
reg [7:0] control_masked;
reg [7:0] tkeep_mask;
always @* begin
casez (detect_term)
8'b00000000: begin
control_masked = xgmii_rxc_d0;
tkeep_mask = 8'b11111111;
end
8'bzzzzzzz1: begin
control_masked = 0;
tkeep_mask = 8'b00000000;
end
8'bzzzzzz10: begin
control_masked = xgmii_rxc_d0[0];
tkeep_mask = 8'b00000001;
end
8'bzzzzz100: begin
control_masked = xgmii_rxc_d0[1:0];
tkeep_mask = 8'b00000011;
end
8'bzzzz1000: begin
control_masked = xgmii_rxc_d0[2:0];
tkeep_mask = 8'b00000111;
end
8'bzzz10000: begin
control_masked = xgmii_rxc_d0[3:0];
tkeep_mask = 8'b00001111;
end
8'bzz100000: begin
control_masked = xgmii_rxc_d0[4:0];
tkeep_mask = 8'b00011111;
end
8'bz1000000: begin
control_masked = xgmii_rxc_d0[5:0];
tkeep_mask = 8'b00111111;
end
8'b10000000: begin
control_masked = xgmii_rxc_d0[6:0];
tkeep_mask = 8'b01111111;
end
default: begin
control_masked = xgmii_rxc_d0;
tkeep_mask = 8'b11111111;
end
endcase
end
always @* begin
state_next = STATE_IDLE;
reset_crc = 1'b0;
update_crc_last = 1'b0;
last_cycle_tkeep_next = last_cycle_tkeep_reg;
m_axis_tdata_next = {DATA_WIDTH{1'b0}};
m_axis_tkeep_next = {KEEP_WIDTH{1'b1}};
m_axis_tvalid_next = 1'b0;
m_axis_tlast_next = 1'b0;
m_axis_tuser_next = 1'b0;
error_bad_frame_next = 1'b0;
error_bad_fcs_next = 1'b0;
case (state_reg)
STATE_IDLE: begin
// idle state - wait for packet
reset_crc = 1'b1;
if (xgmii_rxc_d1[0] && xgmii_rxd_d1[7:0] == XGMII_START) begin
// start condition
if (control_masked) begin
// control or error characters in first data word
m_axis_tdata_next = {DATA_WIDTH{1'b0}};
m_axis_tkeep_next = 8'h01;
m_axis_tvalid_next = 1'b1;
m_axis_tlast_next = 1'b1;
m_axis_tuser_next = 1'b1;
error_bad_frame_next = 1'b1;
state_next = STATE_IDLE;
end else begin
reset_crc = 1'b0;
state_next = STATE_PAYLOAD;
end
end else begin
state_next = STATE_IDLE;
end
end
STATE_PAYLOAD: begin
// read payload
m_axis_tdata_next = xgmii_rxd_d1;
m_axis_tkeep_next = {KEEP_WIDTH{1'b1}};
m_axis_tvalid_next = 1'b1;
m_axis_tlast_next = 1'b0;
m_axis_tuser_next = 1'b0;
last_cycle_tkeep_next = {4'b0000, tkeep_mask[7:4]};
if (control_masked) begin
// control or error characters in packet
m_axis_tlast_next = 1'b1;
m_axis_tuser_next = 1'b1;
error_bad_frame_next = 1'b1;
reset_crc = 1'b1;
state_next = STATE_IDLE;
end else if (detect_term) begin
if (detect_term[4:0]) begin
// end this cycle
reset_crc = 1'b1;
m_axis_tkeep_next = {tkeep_mask[3:0], 4'b1111};
m_axis_tlast_next = 1'b1;
if ((detect_term[0] && crc_valid7_save) ||
(detect_term[1] && crc_valid0) ||
(detect_term[2] && crc_valid1) ||
(detect_term[3] && crc_valid2) ||
(detect_term[4] && crc_valid3)) begin
// CRC valid
end else begin
m_axis_tuser_next = 1'b1;
error_bad_frame_next = 1'b1;
error_bad_fcs_next = 1'b1;
end
state_next = STATE_IDLE;
end else begin
// need extra cycle
update_crc_last = 1'b1;
state_next = STATE_LAST;
end
end else begin
state_next = STATE_PAYLOAD;
end
end
STATE_LAST: begin
// last cycle of packet
m_axis_tdata_next = xgmii_rxd_d1;
m_axis_tkeep_next = last_cycle_tkeep_reg;
m_axis_tvalid_next = 1'b1;
m_axis_tlast_next = 1'b1;
m_axis_tuser_next = 1'b0;
reset_crc = 1'b1;
if ((detect_term_save[5] && crc_valid0) ||
(detect_term_save[6] && crc_valid1) ||
(detect_term_save[7] && crc_valid2)) begin
// CRC valid
end else begin
m_axis_tuser_next = 1'b1;
error_bad_frame_next = 1'b1;
error_bad_fcs_next = 1'b1;
end
if (xgmii_rxc_d1[0] && xgmii_rxd_d1[7:0] == XGMII_START) begin
// start condition
if (control_masked) begin
// control or error characters in first data word
m_axis_tdata_next = {DATA_WIDTH{1'b0}};
m_axis_tkeep_next = 8'h01;
m_axis_tvalid_next = 1'b1;
m_axis_tlast_next = 1'b1;
m_axis_tuser_next = 1'b1;
error_bad_frame_next = 1'b1;
state_next = STATE_IDLE;
end else begin
reset_crc = 1'b0;
state_next = STATE_PAYLOAD;
end
end else begin
state_next = STATE_IDLE;
end
end
endcase
end
always @(posedge clk) begin
if (rst) begin
state_reg <= STATE_IDLE;
m_axis_tvalid_reg <= 1'b0;
start_packet_reg <= 2'b00;
error_bad_frame_reg <= 1'b0;
error_bad_fcs_reg <= 1'b0;
crc_state <= 32'hFFFFFFFF;
crc_state3 <= 32'hFFFFFFFF;
xgmii_rxc_d0 <= {CTRL_WIDTH{1'b0}};
xgmii_rxc_d1 <= {CTRL_WIDTH{1'b0}};
lanes_swapped <= 1'b0;
end else begin
state_reg <= state_next;
m_axis_tvalid_reg <= m_axis_tvalid_next;
start_packet_reg <= 2'b00;
error_bad_frame_reg <= error_bad_frame_next;
error_bad_fcs_reg <= error_bad_fcs_next;
if (xgmii_rxc[0] && xgmii_rxd[7:0] == XGMII_START) begin
lanes_swapped <= 1'b0;
start_packet_reg <= 2'b01;
xgmii_rxc_d0 <= xgmii_rxc;
end else if (xgmii_rxc[4] && xgmii_rxd[39:32] == XGMII_START) begin
lanes_swapped <= 1'b1;
start_packet_reg <= 2'b10;
xgmii_rxc_d0 <= {xgmii_rxc[3:0], swap_rxc};
end else if (lanes_swapped) begin
xgmii_rxc_d0 <= {xgmii_rxc[3:0], swap_rxc};
end else begin
xgmii_rxc_d0 <= xgmii_rxc;
end
xgmii_rxc_d1 <= xgmii_rxc_d0;
// datapath
if (reset_crc) begin
crc_state <= 32'hFFFFFFFF;
end else begin
crc_state <= crc_next7;
end
if (update_crc_last) begin
crc_state3 <= crc_next3;
end else begin
crc_state3 <= crc_next7;
end
end
if (PTP_TS_WIDTH == 96 && $signed({1'b0, ptp_ts_reg[45:16]}) - $signed(31'd1000000000) > 0) begin
// ns field rollover
ptp_ts_reg[45:16] <= $signed({1'b0, ptp_ts_reg[45:16]}) - $signed(31'd1000000000);
ptp_ts_reg[95:48] <= ptp_ts_reg[95:48] + 1;
end
if (xgmii_rxc[0] && xgmii_rxd[7:0] == XGMII_START) begin
if (PTP_TS_WIDTH == 96) begin
ptp_ts_reg[45:0] <= ptp_ts[45:0] + (PTP_PERIOD_NS * 2**16 + PTP_PERIOD_FNS);
ptp_ts_reg[95:48] <= ptp_ts[95:48];
end else begin
ptp_ts_reg <= ptp_ts + (PTP_PERIOD_NS * 2**16 + PTP_PERIOD_FNS);
end
end else if (xgmii_rxc[4] && xgmii_rxd[39:32] == XGMII_START) begin
if (PTP_TS_WIDTH == 96) begin
ptp_ts_reg[45:0] <= ptp_ts[45:0] + (((PTP_PERIOD_NS * 2**16 + PTP_PERIOD_FNS) * 3) >> 1);
ptp_ts_reg[95:48] <= ptp_ts[95:48];
end else begin
ptp_ts_reg <= ptp_ts + (((PTP_PERIOD_NS * 2**16 + PTP_PERIOD_FNS) * 3) >> 1);
end
end
m_axis_tdata_reg <= m_axis_tdata_next;
m_axis_tkeep_reg <= m_axis_tkeep_next;
m_axis_tlast_reg <= m_axis_tlast_next;
m_axis_tuser_reg <= m_axis_tuser_next;
last_cycle_tkeep_reg <= last_cycle_tkeep_next;
detect_term_save <= detect_term;
swap_rxd <= xgmii_rxd[63:32];
swap_rxc <= xgmii_rxc[7:4];
if (xgmii_rxc[0] && xgmii_rxd[7:0] == XGMII_START) begin
xgmii_rxd_d0 <= xgmii_rxd;
xgmii_rxd_crc <= xgmii_rxd;
for (i = 0; i < 8; i = i + 1) begin
detect_term[i] <= xgmii_rxc[i] && (xgmii_rxd[i*8 +: 8] == XGMII_TERM);
end
end else if (xgmii_rxc[4] && xgmii_rxd[39:32] == XGMII_START) begin
xgmii_rxd_d0 <= {xgmii_rxd[31:0], swap_rxd};
xgmii_rxd_crc <= {xgmii_rxd[31:0], swap_rxd};
for (i = 0; i < 4; i = i + 1) begin
detect_term[i] <= swap_rxc[i] && (swap_rxd[i*8 +: 8] == XGMII_TERM);
detect_term[i+4] <= xgmii_rxc[i] && (xgmii_rxd[i*8 +: 8] == XGMII_TERM);
end
end else if (lanes_swapped) begin
xgmii_rxd_d0 <= {xgmii_rxd[31:0], swap_rxd};
xgmii_rxd_crc <= {xgmii_rxd[31:0], swap_rxd};
for (i = 0; i < 4; i = i + 1) begin
detect_term[i] <= swap_rxc[i] && (swap_rxd[i*8 +: 8] == XGMII_TERM);
detect_term[i+4] <= xgmii_rxc[i] && (xgmii_rxd[i*8 +: 8] == XGMII_TERM);
end
end else begin
xgmii_rxd_d0 <= xgmii_rxd;
xgmii_rxd_crc <= xgmii_rxd;
for (i = 0; i < 8; i = i + 1) begin
detect_term[i] <= xgmii_rxc[i] && (xgmii_rxd[i*8 +: 8] == XGMII_TERM);
end
end
crc_valid7_save <= crc_valid7;
if (state_next == STATE_LAST) begin
xgmii_rxd_crc[31:0] <= xgmii_rxd_crc[63:32];
end
xgmii_rxd_d1 <= xgmii_rxd_d0;
end
endmodule
/*
Copyright (c) 2015-2017 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* AXI4-Stream XGMII frame transmitter (AXI in, XGMII out)
*/
module axis_xgmii_tx_32 #
(
parameter DATA_WIDTH = 32,
parameter KEEP_WIDTH = (DATA_WIDTH/8),
parameter CTRL_WIDTH = (DATA_WIDTH/8),
parameter ENABLE_PADDING = 1,
parameter ENABLE_DIC = 1,
parameter MIN_FRAME_LENGTH = 64,
parameter PTP_TS_ENABLE = 0,
parameter PTP_TS_WIDTH = 96,
parameter PTP_TAG_ENABLE = PTP_TS_ENABLE,
parameter PTP_TAG_WIDTH = 16,
parameter USER_WIDTH = (PTP_TAG_ENABLE ? PTP_TAG_WIDTH : 0) + 1
)
(
input wire clk,
input wire rst,
/*
* AXI input
*/
input wire [DATA_WIDTH-1:0] s_axis_tdata,
input wire [KEEP_WIDTH-1:0] s_axis_tkeep,
input wire s_axis_tvalid,
output wire s_axis_tready,
input wire s_axis_tlast,
input wire [USER_WIDTH-1:0] s_axis_tuser,
/*
* XGMII output
*/
output wire [DATA_WIDTH-1:0] xgmii_txd,
output wire [CTRL_WIDTH-1:0] xgmii_txc,
/*
* PTP
*/
input wire [PTP_TS_WIDTH-1:0] ptp_ts,
output wire [PTP_TS_WIDTH-1:0] m_axis_ptp_ts,
output wire [PTP_TAG_WIDTH-1:0] m_axis_ptp_ts_tag,
output wire m_axis_ptp_ts_valid,
/*
* Configuration
*/
input wire [7:0] ifg_delay,
/*
* Status
*/
output wire start_packet,
output wire error_underflow
);
// bus width assertions
initial begin
if (DATA_WIDTH != 32) begin
$error("Error: Interface width must be 32");
$finish;
end
if (KEEP_WIDTH * 8 != DATA_WIDTH || CTRL_WIDTH * 8 != DATA_WIDTH) begin
$error("Error: Interface requires byte (8-bit) granularity");
$finish;
end
end
localparam MIN_FL_NOCRC = MIN_FRAME_LENGTH-4;
localparam MIN_FL_NOCRC_MS = MIN_FL_NOCRC & 16'hfffc;
localparam MIN_FL_NOCRC_LS = MIN_FL_NOCRC & 16'h0003;
localparam [7:0]
ETH_PRE = 8'h55,
ETH_SFD = 8'hD5;
localparam [7:0]
XGMII_IDLE = 8'h07,
XGMII_START = 8'hfb,
XGMII_TERM = 8'hfd,
XGMII_ERROR = 8'hfe;
localparam [3:0]
STATE_IDLE = 4'd0,
STATE_PREAMBLE = 4'd1,
STATE_PAYLOAD = 4'd2,
STATE_PAD = 4'd3,
STATE_FCS_1 = 4'd4,
STATE_FCS_2 = 4'd5,
STATE_FCS_3 = 4'd6,
STATE_IFG = 4'd7,
STATE_WAIT_END = 4'd8;
reg [3:0] state_reg = STATE_IDLE, state_next;
// datapath control signals
reg reset_crc;
reg update_crc;
reg [DATA_WIDTH-1:0] s_axis_tdata_masked;
reg [DATA_WIDTH-1:0] s_tdata_reg ={DATA_WIDTH{1'b0}}, s_tdata_next;
reg [KEEP_WIDTH-1:0] s_tkeep_reg = {KEEP_WIDTH{1'b0}}, s_tkeep_next;
reg [DATA_WIDTH-1:0] fcs_output_txd_0;
reg [DATA_WIDTH-1:0] fcs_output_txd_1;
reg [CTRL_WIDTH-1:0] fcs_output_txc_0;
reg [CTRL_WIDTH-1:0] fcs_output_txc_1;
reg [7:0] ifg_offset;
reg extra_cycle;
reg [15:0] frame_ptr_reg = 16'd0, frame_ptr_next;
reg [7:0] ifg_count_reg = 8'd0, ifg_count_next;
reg [1:0] deficit_idle_count_reg = 2'd0, deficit_idle_count_next;
reg s_axis_tready_reg = 1'b0, s_axis_tready_next;
reg [PTP_TS_WIDTH-1:0] m_axis_ptp_ts_reg = 0, m_axis_ptp_ts_next;
reg [PTP_TAG_WIDTH-1:0] m_axis_ptp_ts_tag_reg = 0, m_axis_ptp_ts_tag_next;
reg m_axis_ptp_ts_valid_reg = 1'b0, m_axis_ptp_ts_valid_next;
reg [31:0] crc_state = 32'hFFFFFFFF;
wire [31:0] crc_next0;
wire [31:0] crc_next1;
wire [31:0] crc_next2;
wire [31:0] crc_next3;
reg [DATA_WIDTH-1:0] xgmii_txd_reg = {CTRL_WIDTH{XGMII_IDLE}}, xgmii_txd_next;
reg [CTRL_WIDTH-1:0] xgmii_txc_reg = {CTRL_WIDTH{1'b1}}, xgmii_txc_next;
reg start_packet_reg = 1'b0, start_packet_next;
reg error_underflow_reg = 1'b0, error_underflow_next;
assign s_axis_tready = s_axis_tready_reg;
assign xgmii_txd = xgmii_txd_reg;
assign xgmii_txc = xgmii_txc_reg;
assign m_axis_ptp_ts = PTP_TS_ENABLE ? m_axis_ptp_ts_reg : 0;
assign m_axis_ptp_ts_tag = PTP_TAG_ENABLE ? m_axis_ptp_ts_tag_reg : 0;
assign m_axis_ptp_ts_valid = PTP_TS_ENABLE || PTP_TAG_ENABLE ? m_axis_ptp_ts_valid_reg : 1'b0;
assign start_packet = start_packet_reg;
assign error_underflow = error_underflow_reg;
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(8),
.STYLE("AUTO")
)
eth_crc_8 (
.data_in(s_tdata_reg[7:0]),
.state_in(crc_state),
.data_out(),
.state_out(crc_next0)
);
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(16),
.STYLE("AUTO")
)
eth_crc_16 (
.data_in(s_tdata_reg[15:0]),
.state_in(crc_state),
.data_out(),
.state_out(crc_next1)
);
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(24),
.STYLE("AUTO")
)
eth_crc_24 (
.data_in(s_tdata_reg[23:0]),
.state_in(crc_state),
.data_out(),
.state_out(crc_next2)
);
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(32),
.STYLE("AUTO")
)
eth_crc_32 (
.data_in(s_tdata_reg[31:0]),
.state_in(crc_state),
.data_out(),
.state_out(crc_next3)
);
function [2:0] keep2count;
input [3:0] k;
casez (k)
4'bzzz0: keep2count = 3'd0;
4'bzz01: keep2count = 3'd1;
4'bz011: keep2count = 3'd2;
4'b0111: keep2count = 3'd3;
4'b1111: keep2count = 3'd4;
endcase
endfunction
// Mask input data
integer j;
always @* begin
for (j = 0; j < 4; j = j + 1) begin
s_axis_tdata_masked[j*8 +: 8] = s_axis_tkeep[j] ? s_axis_tdata[j*8 +: 8] : 8'd0;
end
end
// FCS cycle calculation
always @* begin
casez (s_tkeep_reg)
4'bzz01: begin
fcs_output_txd_0 = {~crc_next0[23:0], s_tdata_reg[7:0]};
fcs_output_txd_1 = {{2{XGMII_IDLE}}, XGMII_TERM, ~crc_next0[31:24]};
fcs_output_txc_0 = 4'b0000;
fcs_output_txc_1 = 4'b1110;
ifg_offset = 8'd3;
extra_cycle = 1'b0;
end
4'bz011: begin
fcs_output_txd_0 = {~crc_next1[15:0], s_tdata_reg[15:0]};
fcs_output_txd_1 = {XGMII_IDLE, XGMII_TERM, ~crc_next1[31:16]};
fcs_output_txc_0 = 4'b0000;
fcs_output_txc_1 = 4'b1100;
ifg_offset = 8'd2;
extra_cycle = 1'b0;
end
4'b0111: begin
fcs_output_txd_0 = {~crc_next2[7:0], s_tdata_reg[23:0]};
fcs_output_txd_1 = {XGMII_TERM, ~crc_next2[31:8]};
fcs_output_txc_0 = 4'b0000;
fcs_output_txc_1 = 4'b1000;
ifg_offset = 8'd1;
extra_cycle = 1'b0;
end
4'b1111: begin
fcs_output_txd_0 = s_tdata_reg;
fcs_output_txd_1 = ~crc_next3;
fcs_output_txc_0 = 4'b0000;
fcs_output_txc_1 = 4'b0000;
ifg_offset = 8'd4;
extra_cycle = 1'b1;
end
default: begin
fcs_output_txd_0 = {CTRL_WIDTH{XGMII_ERROR}};
fcs_output_txd_1 = {CTRL_WIDTH{XGMII_ERROR}};
fcs_output_txc_0 = {CTRL_WIDTH{1'b1}};
fcs_output_txc_1 = {CTRL_WIDTH{1'b1}};
ifg_offset = 8'd0;
extra_cycle = 1'b0;
end
endcase
end
always @* begin
state_next = STATE_IDLE;
reset_crc = 1'b0;
update_crc = 1'b0;
frame_ptr_next = frame_ptr_reg;
ifg_count_next = ifg_count_reg;
deficit_idle_count_next = deficit_idle_count_reg;
s_axis_tready_next = 1'b0;
s_tdata_next = s_tdata_reg;
s_tkeep_next = s_tkeep_reg;
m_axis_ptp_ts_next = m_axis_ptp_ts_reg;
m_axis_ptp_ts_tag_next = m_axis_ptp_ts_tag_reg;
m_axis_ptp_ts_valid_next = 1'b0;
// XGMII idle
xgmii_txd_next = {CTRL_WIDTH{XGMII_IDLE}};
xgmii_txc_next = {CTRL_WIDTH{1'b1}};
start_packet_next = 1'b0;
error_underflow_next = 1'b0;
case (state_reg)
STATE_IDLE: begin
// idle state - wait for data
frame_ptr_next = 16'd4;
reset_crc = 1'b1;
// XGMII idle
xgmii_txd_next = {CTRL_WIDTH{XGMII_IDLE}};
xgmii_txc_next = {CTRL_WIDTH{1'b1}};
s_tdata_next = s_axis_tdata_masked;
s_tkeep_next = s_axis_tkeep;
if (s_axis_tvalid) begin
// XGMII start and preamble
xgmii_txd_next = {{3{ETH_PRE}}, XGMII_START};
xgmii_txc_next = 4'b0001;
s_axis_tready_next = 1'b1;
state_next = STATE_PREAMBLE;
end else begin
ifg_count_next = 8'd0;
deficit_idle_count_next = 2'd0;
state_next = STATE_IDLE;
end
end
STATE_PREAMBLE: begin
// send preamble
s_tdata_next = s_axis_tdata_masked;
s_tkeep_next = s_axis_tkeep;
xgmii_txd_next = {ETH_SFD, {3{ETH_PRE}}};
xgmii_txc_next = 4'b0000;
s_axis_tready_next = 1'b1;
m_axis_ptp_ts_next = ptp_ts;
m_axis_ptp_ts_tag_next = s_axis_tuser >> 1;
m_axis_ptp_ts_valid_next = 1'b1;
start_packet_next = 1'b1;
state_next = STATE_PAYLOAD;
end
STATE_PAYLOAD: begin
// transfer payload
update_crc = 1'b1;
s_axis_tready_next = 1'b1;
frame_ptr_next = frame_ptr_reg + 16'd4;
xgmii_txd_next = s_tdata_reg;
xgmii_txc_next = 4'b0000;
s_tdata_next = s_axis_tdata_masked;
s_tkeep_next = s_axis_tkeep;
if (s_axis_tvalid) begin
if (s_axis_tlast) begin
frame_ptr_next = frame_ptr_reg + keep2count(s_axis_tkeep);
s_axis_tready_next = 1'b0;
if (s_axis_tuser[0]) begin
xgmii_txd_next = {XGMII_TERM, {3{XGMII_ERROR}}};
xgmii_txc_next = 4'b1111;
frame_ptr_next = 16'd0;
ifg_count_next = 8'd10;
state_next = STATE_IFG;
end else begin
s_axis_tready_next = 1'b0;
if (ENABLE_PADDING && (frame_ptr_reg < MIN_FL_NOCRC_MS || (frame_ptr_reg == MIN_FL_NOCRC_MS && keep2count(s_axis_tkeep) < MIN_FL_NOCRC_LS))) begin
s_tkeep_next = 4'hf;
frame_ptr_next = frame_ptr_reg + 16'd4;
if (frame_ptr_reg < (MIN_FL_NOCRC_LS > 0 ? MIN_FL_NOCRC_MS : MIN_FL_NOCRC_MS-4)) begin
state_next = STATE_PAD;
end else begin
s_tkeep_next = 4'hf >> ((4-MIN_FL_NOCRC_LS) % 4);
state_next = STATE_FCS_1;
end
end else begin
state_next = STATE_FCS_1;
end
end
end else begin
state_next = STATE_PAYLOAD;
end
end else begin
// tvalid deassert, fail frame
xgmii_txd_next = {XGMII_TERM, {3{XGMII_ERROR}}};
xgmii_txc_next = 4'b1111;
frame_ptr_next = 16'd0;
ifg_count_next = 8'd10;
error_underflow_next = 1'b1;
state_next = STATE_WAIT_END;
end
end
STATE_PAD: begin
// pad frame to MIN_FRAME_LENGTH
s_axis_tready_next = 1'b0;
xgmii_txd_next = s_tdata_reg;
xgmii_txc_next = {CTRL_WIDTH{1'b0}};
s_tdata_next = 32'd0;
s_tkeep_next = 4'hf;
update_crc = 1'b1;
frame_ptr_next = frame_ptr_reg + 16'd4;
if (frame_ptr_reg < (MIN_FL_NOCRC_LS > 0 ? MIN_FL_NOCRC_MS : MIN_FL_NOCRC_MS-4)) begin
state_next = STATE_PAD;
end else begin
s_tkeep_next = 4'hf >> ((4-MIN_FL_NOCRC_LS) % 4);
state_next = STATE_FCS_1;
end
end
STATE_FCS_1: begin
// last cycle
s_axis_tready_next = 1'b0;
xgmii_txd_next = fcs_output_txd_0;
xgmii_txc_next = fcs_output_txc_0;
frame_ptr_next = 16'd0;
ifg_count_next = (ifg_delay > 8'd12 ? ifg_delay : 8'd12) - ifg_offset + deficit_idle_count_reg;
state_next = STATE_FCS_2;
end
STATE_FCS_2: begin
// last cycle
s_axis_tready_next = 1'b0;
xgmii_txd_next = fcs_output_txd_1;
xgmii_txc_next = fcs_output_txc_1;
frame_ptr_next = 16'd0;
if (extra_cycle) begin
state_next = STATE_FCS_3;
end else begin
state_next = STATE_IFG;
end
end
STATE_FCS_3: begin
// last cycle
s_axis_tready_next = 1'b0;
xgmii_txd_next = {{3{XGMII_IDLE}}, XGMII_TERM};
xgmii_txc_next = 4'b1111;
reset_crc = 1'b1;
frame_ptr_next = 16'd0;
if (ENABLE_DIC) begin
if (ifg_count_next > 8'd3) begin
state_next = STATE_IFG;
end else begin
deficit_idle_count_next = ifg_count_next;
ifg_count_next = 8'd0;
s_axis_tready_next = 1'b1;
state_next = STATE_IDLE;
end
end else begin
if (ifg_count_next > 8'd0) begin
state_next = STATE_IFG;
end else begin
state_next = STATE_IDLE;
end
end
end
STATE_IFG: begin
// send IFG
if (ifg_count_reg > 8'd4) begin
ifg_count_next = ifg_count_reg - 8'd4;
end else begin
ifg_count_next = 8'd0;
end
reset_crc = 1'b1;
if (ENABLE_DIC) begin
if (ifg_count_next > 8'd3) begin
state_next = STATE_IFG;
end else begin
deficit_idle_count_next = ifg_count_next;
ifg_count_next = 8'd0;
state_next = STATE_IDLE;
end
end else begin
if (ifg_count_next > 8'd0) begin
state_next = STATE_IFG;
end else begin
state_next = STATE_IDLE;
end
end
end
STATE_WAIT_END: begin
// wait for end of frame
s_axis_tready_next = 1'b1;
if (ifg_count_reg > 8'd4) begin
ifg_count_next = ifg_count_reg - 8'd4;
end else begin
ifg_count_next = 8'd0;
end
reset_crc = 1'b1;
if (s_axis_tvalid) begin
if (s_axis_tlast) begin
s_axis_tready_next = 1'b0;
if (ENABLE_DIC) begin
if (ifg_count_next > 8'd3) begin
state_next = STATE_IFG;
end else begin
deficit_idle_count_next = ifg_count_next;
ifg_count_next = 8'd0;
state_next = STATE_IDLE;
end
end else begin
if (ifg_count_next > 8'd0) begin
state_next = STATE_IFG;
end else begin
state_next = STATE_IDLE;
end
end
end else begin
state_next = STATE_WAIT_END;
end
end else begin
state_next = STATE_WAIT_END;
end
end
endcase
end
always @(posedge clk) begin
if (rst) begin
state_reg <= STATE_IDLE;
frame_ptr_reg <= 16'd0;
ifg_count_reg <= 8'd0;
deficit_idle_count_reg <= 2'd0;
s_axis_tready_reg <= 1'b0;
m_axis_ptp_ts_valid_reg <= 1'b0;
xgmii_txd_reg <= {CTRL_WIDTH{XGMII_IDLE}};
xgmii_txc_reg <= {CTRL_WIDTH{1'b1}};
start_packet_reg <= 1'b0;
error_underflow_reg <= 1'b0;
crc_state <= 32'hFFFFFFFF;
end else begin
state_reg <= state_next;
frame_ptr_reg <= frame_ptr_next;
ifg_count_reg <= ifg_count_next;
deficit_idle_count_reg <= deficit_idle_count_next;
s_axis_tready_reg <= s_axis_tready_next;
m_axis_ptp_ts_valid_reg <= m_axis_ptp_ts_valid_next;
xgmii_txd_reg <= xgmii_txd_next;
xgmii_txc_reg <= xgmii_txc_next;
start_packet_reg <= start_packet_next;
error_underflow_reg <= error_underflow_next;
// datapath
if (reset_crc) begin
crc_state <= 32'hFFFFFFFF;
end else if (update_crc) begin
crc_state <= crc_next3;
end
end
s_tdata_reg <= s_tdata_next;
s_tkeep_reg <= s_tkeep_next;
m_axis_ptp_ts_reg <= m_axis_ptp_ts_next;
m_axis_ptp_ts_tag_reg <= m_axis_ptp_ts_tag_next;
end
endmodule
/*
Copyright (c) 2015-2017 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* AXI4-Stream XGMII frame transmitter (AXI in, XGMII out)
*/
module axis_xgmii_tx_64 #
(
parameter DATA_WIDTH = 64,
parameter KEEP_WIDTH = (DATA_WIDTH/8),
parameter CTRL_WIDTH = (DATA_WIDTH/8),
parameter ENABLE_PADDING = 1,
parameter ENABLE_DIC = 1,
parameter MIN_FRAME_LENGTH = 64,
parameter PTP_PERIOD_NS = 4'h6,
parameter PTP_PERIOD_FNS = 16'h6666,
parameter PTP_TS_ENABLE = 0,
parameter PTP_TS_WIDTH = 96,
parameter PTP_TAG_ENABLE = PTP_TS_ENABLE,
parameter PTP_TAG_WIDTH = 16,
parameter USER_WIDTH = (PTP_TAG_ENABLE ? PTP_TAG_WIDTH : 0) + 1
)
(
input wire clk,
input wire rst,
/*
* AXI input
*/
input wire [DATA_WIDTH-1:0] s_axis_tdata,
input wire [KEEP_WIDTH-1:0] s_axis_tkeep,
input wire s_axis_tvalid,
output wire s_axis_tready,
input wire s_axis_tlast,
input wire [USER_WIDTH-1:0] s_axis_tuser,
/*
* XGMII output
*/
output wire [DATA_WIDTH-1:0] xgmii_txd,
output wire [CTRL_WIDTH-1:0] xgmii_txc,
/*
* PTP
*/
input wire [PTP_TS_WIDTH-1:0] ptp_ts,
output wire [PTP_TS_WIDTH-1:0] m_axis_ptp_ts,
output wire [PTP_TAG_WIDTH-1:0] m_axis_ptp_ts_tag,
output wire m_axis_ptp_ts_valid,
/*
* Configuration
*/
input wire [7:0] ifg_delay,
/*
* Status
*/
output wire [1:0] start_packet,
output wire error_underflow
);
// bus width assertions
initial begin
if (DATA_WIDTH != 64) begin
$error("Error: Interface width must be 64");
$finish;
end
if (KEEP_WIDTH * 8 != DATA_WIDTH || CTRL_WIDTH * 8 != DATA_WIDTH) begin
$error("Error: Interface requires byte (8-bit) granularity");
$finish;
end
end
localparam MIN_FL_NOCRC = MIN_FRAME_LENGTH-4;
localparam MIN_FL_NOCRC_MS = MIN_FL_NOCRC & 16'hfff8;
localparam MIN_FL_NOCRC_LS = MIN_FL_NOCRC & 16'h0007;
localparam [7:0]
ETH_PRE = 8'h55,
ETH_SFD = 8'hD5;
localparam [7:0]
XGMII_IDLE = 8'h07,
XGMII_START = 8'hfb,
XGMII_TERM = 8'hfd,
XGMII_ERROR = 8'hfe;
localparam [2:0]
STATE_IDLE = 3'd0,
STATE_PAYLOAD = 3'd1,
STATE_PAD = 3'd2,
STATE_FCS_1 = 3'd3,
STATE_FCS_2 = 3'd4,
STATE_IFG = 3'd5,
STATE_WAIT_END = 3'd6;
reg [2:0] state_reg = STATE_IDLE, state_next;
// datapath control signals
reg reset_crc;
reg update_crc;
reg swap_lanes;
reg unswap_lanes;
reg lanes_swapped = 1'b0;
reg [31:0] swap_txd = 32'd0;
reg [3:0] swap_txc = 4'd0;
reg [DATA_WIDTH-1:0] s_axis_tdata_masked;
reg [DATA_WIDTH-1:0] s_tdata_reg = {DATA_WIDTH{1'b0}}, s_tdata_next;
reg [KEEP_WIDTH-1:0] s_tkeep_reg = {KEEP_WIDTH{1'b0}}, s_tkeep_next;
reg [DATA_WIDTH-1:0] fcs_output_txd_0;
reg [DATA_WIDTH-1:0] fcs_output_txd_1;
reg [CTRL_WIDTH-1:0] fcs_output_txc_0;
reg [CTRL_WIDTH-1:0] fcs_output_txc_1;
reg [7:0] ifg_offset;
reg extra_cycle;
reg [15:0] frame_ptr_reg = 16'd0, frame_ptr_next;
reg [7:0] ifg_count_reg = 8'd0, ifg_count_next;
reg [1:0] deficit_idle_count_reg = 2'd0, deficit_idle_count_next;
reg s_axis_tready_reg = 1'b0, s_axis_tready_next;
reg [PTP_TS_WIDTH-1:0] m_axis_ptp_ts_reg = 0, m_axis_ptp_ts_next;
reg [PTP_TAG_WIDTH-1:0] m_axis_ptp_ts_tag_reg = 0, m_axis_ptp_ts_tag_next;
reg m_axis_ptp_ts_valid_reg = 1'b0, m_axis_ptp_ts_valid_next;
reg m_axis_ptp_ts_valid_int_reg = 1'b0, m_axis_ptp_ts_valid_int_next;
reg [31:0] crc_state = 32'hFFFFFFFF;
wire [31:0] crc_next0;
wire [31:0] crc_next1;
wire [31:0] crc_next2;
wire [31:0] crc_next3;
wire [31:0] crc_next4;
wire [31:0] crc_next5;
wire [31:0] crc_next6;
wire [31:0] crc_next7;
reg [DATA_WIDTH-1:0] xgmii_txd_reg = {CTRL_WIDTH{XGMII_IDLE}}, xgmii_txd_next;
reg [CTRL_WIDTH-1:0] xgmii_txc_reg = {CTRL_WIDTH{1'b1}}, xgmii_txc_next;
reg start_packet_reg = 2'b00, start_packet_next;
reg error_underflow_reg = 1'b0, error_underflow_next;
assign s_axis_tready = s_axis_tready_reg;
assign xgmii_txd = xgmii_txd_reg;
assign xgmii_txc = xgmii_txc_reg;
assign m_axis_ptp_ts = PTP_TS_ENABLE ? m_axis_ptp_ts_reg : 0;
assign m_axis_ptp_ts_tag = PTP_TAG_ENABLE ? m_axis_ptp_ts_tag_reg : 0;
assign m_axis_ptp_ts_valid = PTP_TS_ENABLE || PTP_TAG_ENABLE ? m_axis_ptp_ts_valid_reg : 1'b0;
assign start_packet = start_packet_reg;
assign error_underflow = error_underflow_reg;
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(8),
.STYLE("AUTO")
)
eth_crc_8 (
.data_in(s_tdata_reg[7:0]),
.state_in(crc_state),
.data_out(),
.state_out(crc_next0)
);
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(16),
.STYLE("AUTO")
)
eth_crc_16 (
.data_in(s_tdata_reg[15:0]),
.state_in(crc_state),
.data_out(),
.state_out(crc_next1)
);
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(24),
.STYLE("AUTO")
)
eth_crc_24 (
.data_in(s_tdata_reg[23:0]),
.state_in(crc_state),
.data_out(),
.state_out(crc_next2)
);
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(32),
.STYLE("AUTO")
)
eth_crc_32 (
.data_in(s_tdata_reg[31:0]),
.state_in(crc_state),
.data_out(),
.state_out(crc_next3)
);
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(40),
.STYLE("AUTO")
)
eth_crc_40 (
.data_in(s_tdata_reg[39:0]),
.state_in(crc_state),
.data_out(),
.state_out(crc_next4)
);
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(48),
.STYLE("AUTO")
)
eth_crc_48 (
.data_in(s_tdata_reg[47:0]),
.state_in(crc_state),
.data_out(),
.state_out(crc_next5)
);
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(56),
.STYLE("AUTO")
)
eth_crc_56 (
.data_in(s_tdata_reg[55:0]),
.state_in(crc_state),
.data_out(),
.state_out(crc_next6)
);
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(64),
.STYLE("AUTO")
)
eth_crc_64 (
.data_in(s_tdata_reg[63:0]),
.state_in(crc_state),
.data_out(),
.state_out(crc_next7)
);
function [3:0] keep2count;
input [7:0] k;
casez (k)
8'bzzzzzzz0: keep2count = 4'd0;
8'bzzzzzz01: keep2count = 4'd1;
8'bzzzzz011: keep2count = 4'd2;
8'bzzzz0111: keep2count = 4'd3;
8'bzzz01111: keep2count = 4'd4;
8'bzz011111: keep2count = 4'd5;
8'bz0111111: keep2count = 4'd6;
8'b01111111: keep2count = 4'd7;
8'b11111111: keep2count = 4'd8;
endcase
endfunction
// Mask input data
integer j;
always @* begin
for (j = 0; j < 8; j = j + 1) begin
s_axis_tdata_masked[j*8 +: 8] = s_axis_tkeep[j] ? s_axis_tdata[j*8 +: 8] : 8'd0;
end
end
// FCS cycle calculation
always @* begin
casez (s_tkeep_reg)
8'bzzzzzz01: begin
fcs_output_txd_0 = {{2{XGMII_IDLE}}, XGMII_TERM, ~crc_next0[31:0], s_tdata_reg[7:0]};
fcs_output_txd_1 = {8{XGMII_IDLE}};
fcs_output_txc_0 = 8'b11100000;
fcs_output_txc_1 = 8'b11111111;
ifg_offset = 8'd3;
extra_cycle = 1'b0;
end
8'bzzzzz011: begin
fcs_output_txd_0 = {XGMII_IDLE, XGMII_TERM, ~crc_next1[31:0], s_tdata_reg[15:0]};
fcs_output_txd_1 = {8{XGMII_IDLE}};
fcs_output_txc_0 = 8'b11000000;
fcs_output_txc_1 = 8'b11111111;
ifg_offset = 8'd2;
extra_cycle = 1'b0;
end
8'bzzzz0111: begin
fcs_output_txd_0 = {XGMII_TERM, ~crc_next2[31:0], s_tdata_reg[23:0]};
fcs_output_txd_1 = {8{XGMII_IDLE}};
fcs_output_txc_0 = 8'b10000000;
fcs_output_txc_1 = 8'b11111111;
ifg_offset = 8'd1;
extra_cycle = 1'b0;
end
8'bzzz01111: begin
fcs_output_txd_0 = {~crc_next3[31:0], s_tdata_reg[31:0]};
fcs_output_txd_1 = {{7{XGMII_IDLE}}, XGMII_TERM};
fcs_output_txc_0 = 8'b00000000;
fcs_output_txc_1 = 8'b11111111;
ifg_offset = 8'd8;
extra_cycle = 1'b1;
end
8'bzz011111: begin
fcs_output_txd_0 = {~crc_next4[23:0], s_tdata_reg[39:0]};
fcs_output_txd_1 = {{6{XGMII_IDLE}}, XGMII_TERM, ~crc_next4[31:24]};
fcs_output_txc_0 = 8'b00000000;
fcs_output_txc_1 = 8'b11111110;
ifg_offset = 8'd7;
extra_cycle = 1'b1;
end
8'bz0111111: begin
fcs_output_txd_0 = {~crc_next5[15:0], s_tdata_reg[47:0]};
fcs_output_txd_1 = {{5{XGMII_IDLE}}, XGMII_TERM, ~crc_next5[31:16]};
fcs_output_txc_0 = 8'b00000000;
fcs_output_txc_1 = 8'b11111100;
ifg_offset = 8'd6;
extra_cycle = 1'b1;
end
8'b01111111: begin
fcs_output_txd_0 = {~crc_next6[7:0], s_tdata_reg[55:0]};
fcs_output_txd_1 = {{4{XGMII_IDLE}}, XGMII_TERM, ~crc_next6[31:8]};
fcs_output_txc_0 = 8'b00000000;
fcs_output_txc_1 = 8'b11111000;
ifg_offset = 8'd5;
extra_cycle = 1'b1;
end
8'b11111111: begin
fcs_output_txd_0 = s_tdata_reg;
fcs_output_txd_1 = {{3{XGMII_IDLE}}, XGMII_TERM, ~crc_next7[31:0]};
fcs_output_txc_0 = 8'b00000000;
fcs_output_txc_1 = 8'b11110000;
ifg_offset = 8'd4;
extra_cycle = 1'b1;
end
default: begin
fcs_output_txd_0 = {CTRL_WIDTH{XGMII_ERROR}};
fcs_output_txd_1 = {CTRL_WIDTH{XGMII_ERROR}};
fcs_output_txc_0 = {CTRL_WIDTH{1'b1}};
fcs_output_txc_1 = {CTRL_WIDTH{1'b1}};
ifg_offset = 8'd0;
extra_cycle = 1'b1;
end
endcase
end
always @* begin
state_next = STATE_IDLE;
reset_crc = 1'b0;
update_crc = 1'b0;
swap_lanes = 1'b0;
unswap_lanes = 1'b0;
frame_ptr_next = frame_ptr_reg;
ifg_count_next = ifg_count_reg;
deficit_idle_count_next = deficit_idle_count_reg;
s_axis_tready_next = 1'b0;
s_tdata_next = s_tdata_reg;
s_tkeep_next = s_tkeep_reg;
m_axis_ptp_ts_next = m_axis_ptp_ts_reg;
m_axis_ptp_ts_tag_next = m_axis_ptp_ts_tag_reg;
m_axis_ptp_ts_valid_next = 1'b0;
m_axis_ptp_ts_valid_int_next = 1'b0;
// XGMII idle
xgmii_txd_next = {CTRL_WIDTH{XGMII_IDLE}};
xgmii_txc_next = {CTRL_WIDTH{1'b1}};
start_packet_next = 2'b00;
error_underflow_next = 1'b0;
if (m_axis_ptp_ts_valid_int_reg) begin
m_axis_ptp_ts_valid_next = 1'b1;
if (PTP_TS_WIDTH == 96 && $signed({1'b0, m_axis_ptp_ts_reg[45:16]}) - $signed(31'd1000000000) > 0) begin
// ns field rollover
m_axis_ptp_ts_next[45:16] = $signed({1'b0, m_axis_ptp_ts_reg[45:16]}) - $signed(31'd1000000000);
m_axis_ptp_ts_next[95:48] = m_axis_ptp_ts_reg[95:48] + 1;
end
end
case (state_reg)
STATE_IDLE: begin
// idle state - wait for data
frame_ptr_next = 16'd8;
reset_crc = 1'b1;
s_axis_tready_next = 1'b1;
// XGMII idle
xgmii_txd_next = {CTRL_WIDTH{XGMII_IDLE}};
xgmii_txc_next = {CTRL_WIDTH{1'b1}};
s_tdata_next = s_axis_tdata_masked;
s_tkeep_next = s_axis_tkeep;
if (s_axis_tvalid) begin
// XGMII start and preamble
if (ifg_count_reg > 8'd0) begin
// need to send more idles - swap lanes
swap_lanes = 1'b1;
if (PTP_TS_WIDTH == 96) begin
m_axis_ptp_ts_next[45:0] = ptp_ts[45:0] + (((PTP_PERIOD_NS * 2**16 + PTP_PERIOD_FNS) * 3) >> 1);
m_axis_ptp_ts_next[95:48] = ptp_ts[95:48];
end else begin
m_axis_ptp_ts_next = ptp_ts + (((PTP_PERIOD_NS * 2**16 + PTP_PERIOD_FNS) * 3) >> 1);
end
m_axis_ptp_ts_tag_next = s_axis_tuser >> 1;
m_axis_ptp_ts_valid_int_next = 1'b1;
start_packet_next = 2'b10;
end else begin
// no more idles - unswap
unswap_lanes = 1'b1;
if (PTP_TS_WIDTH == 96) begin
m_axis_ptp_ts_next[45:0] = ptp_ts[45:0] + (PTP_PERIOD_NS * 2**16 + PTP_PERIOD_FNS);
m_axis_ptp_ts_next[95:48] = ptp_ts[95:48];
end else begin
m_axis_ptp_ts_next = ptp_ts + (PTP_PERIOD_NS * 2**16 + PTP_PERIOD_FNS);
end
m_axis_ptp_ts_tag_next = s_axis_tuser >> 1;
m_axis_ptp_ts_valid_int_next = 1'b1;
start_packet_next = 2'b01;
end
xgmii_txd_next = {ETH_SFD, {6{ETH_PRE}}, XGMII_START};
xgmii_txc_next = 8'b00000001;
s_axis_tready_next = 1'b1;
state_next = STATE_PAYLOAD;
end else begin
ifg_count_next = 8'd0;
deficit_idle_count_next = 2'd0;
unswap_lanes = 1'b1;
state_next = STATE_IDLE;
end
end
STATE_PAYLOAD: begin
// transfer payload
update_crc = 1'b1;
s_axis_tready_next = 1'b1;
frame_ptr_next = frame_ptr_reg + 16'd8;
xgmii_txd_next = s_tdata_reg;
xgmii_txc_next = 8'b00000000;
s_tdata_next = s_axis_tdata_masked;
s_tkeep_next = s_axis_tkeep;
if (s_axis_tvalid) begin
if (s_axis_tlast) begin
frame_ptr_next = frame_ptr_reg + keep2count(s_axis_tkeep);
s_axis_tready_next = 1'b0;
if (s_axis_tuser[0]) begin
xgmii_txd_next = {{3{XGMII_IDLE}}, XGMII_TERM, {4{XGMII_ERROR}}};
xgmii_txc_next = 8'b11111111;
frame_ptr_next = 16'd0;
ifg_count_next = 8'd8;
state_next = STATE_IFG;
end else begin
s_axis_tready_next = 1'b0;
if (ENABLE_PADDING && (frame_ptr_reg < MIN_FL_NOCRC_MS || (frame_ptr_reg == MIN_FL_NOCRC_MS && keep2count(s_axis_tkeep) < MIN_FL_NOCRC_LS))) begin
s_tkeep_next = 8'hff;
frame_ptr_next = frame_ptr_reg + 16'd8;
if (frame_ptr_reg < (MIN_FL_NOCRC_LS > 0 ? MIN_FL_NOCRC_MS : MIN_FL_NOCRC_MS-8)) begin
state_next = STATE_PAD;
end else begin
s_tkeep_next = 8'hff >> ((8-MIN_FL_NOCRC_LS) % 8);
state_next = STATE_FCS_1;
end
end else begin
state_next = STATE_FCS_1;
end
end
end else begin
state_next = STATE_PAYLOAD;
end
end else begin
// tvalid deassert, fail frame
xgmii_txd_next = {{3{XGMII_IDLE}}, XGMII_TERM, {4{XGMII_ERROR}}};
xgmii_txc_next = 8'b11111111;
frame_ptr_next = 16'd0;
ifg_count_next = 8'd8;
error_underflow_next = 1'b1;
state_next = STATE_WAIT_END;
end
end
STATE_PAD: begin
// pad frame to MIN_FRAME_LENGTH
s_axis_tready_next = 1'b0;
xgmii_txd_next = s_tdata_reg;
xgmii_txc_next = {CTRL_WIDTH{1'b0}};
s_tdata_next = 64'd0;
s_tkeep_next = 8'hff;
update_crc = 1'b1;
frame_ptr_next = frame_ptr_reg + 16'd8;
if (frame_ptr_reg < (MIN_FL_NOCRC_LS > 0 ? MIN_FL_NOCRC_MS : MIN_FL_NOCRC_MS-8)) begin
state_next = STATE_PAD;
end else begin
s_tkeep_next = 8'hff >> ((8-MIN_FL_NOCRC_LS) % 8);
state_next = STATE_FCS_1;
end
end
STATE_FCS_1: begin
// last cycle
s_axis_tready_next = 1'b0;
xgmii_txd_next = fcs_output_txd_0;
xgmii_txc_next = fcs_output_txc_0;
frame_ptr_next = 16'd0;
ifg_count_next = (ifg_delay > 8'd12 ? ifg_delay : 8'd12) - ifg_offset + (lanes_swapped ? 8'd4 : 8'd0) + deficit_idle_count_reg;
if (extra_cycle) begin
state_next = STATE_FCS_2;
end else begin
state_next = STATE_IFG;
end
end
STATE_FCS_2: begin
// last cycle
s_axis_tready_next = 1'b0;
xgmii_txd_next = fcs_output_txd_1;
xgmii_txc_next = fcs_output_txc_1;
reset_crc = 1'b1;
frame_ptr_next = 16'd0;
if (ENABLE_DIC) begin
if (ifg_count_next > 8'd7) begin
state_next = STATE_IFG;
end else begin
if (ifg_count_next >= 8'd4) begin
deficit_idle_count_next = ifg_count_next - 8'd4;
end else begin
deficit_idle_count_next = ifg_count_next;
ifg_count_next = 8'd0;
end
s_axis_tready_next = 1'b1;
state_next = STATE_IDLE;
end
end else begin
if (ifg_count_next > 8'd4) begin
state_next = STATE_IFG;
end else begin
s_axis_tready_next = 1'b1;
state_next = STATE_IDLE;
end
end
end
STATE_IFG: begin
// send IFG
if (ifg_count_reg > 8'd8) begin
ifg_count_next = ifg_count_reg - 8'd8;
end else begin
ifg_count_next = 8'd0;
end
reset_crc = 1'b1;
if (ENABLE_DIC) begin
if (ifg_count_next > 8'd7) begin
state_next = STATE_IFG;
end else begin
if (ifg_count_next >= 8'd4) begin
deficit_idle_count_next = ifg_count_next - 8'd4;
end else begin
deficit_idle_count_next = ifg_count_next;
ifg_count_next = 8'd0;
end
s_axis_tready_next = 1'b1;
state_next = STATE_IDLE;
end
end else begin
if (ifg_count_next > 8'd4) begin
state_next = STATE_IFG;
end else begin
s_axis_tready_next = 1'b1;
state_next = STATE_IDLE;
end
end
end
STATE_WAIT_END: begin
// wait for end of frame
s_axis_tready_next = 1'b1;
if (ifg_count_reg > 8'd8) begin
ifg_count_next = ifg_count_reg - 8'd8;
end else begin
ifg_count_next = 8'd0;
end
reset_crc = 1'b1;
if (s_axis_tvalid) begin
if (s_axis_tlast) begin
s_axis_tready_next = 1'b0;
if (ENABLE_DIC) begin
if (ifg_count_next > 8'd7) begin
state_next = STATE_IFG;
end else begin
if (ifg_count_next >= 8'd4) begin
deficit_idle_count_next = ifg_count_next - 8'd4;
end else begin
deficit_idle_count_next = ifg_count_next;
ifg_count_next = 8'd0;
end
s_axis_tready_next = 1'b1;
state_next = STATE_IDLE;
end
end else begin
if (ifg_count_next > 8'd4) begin
state_next = STATE_IFG;
end else begin
s_axis_tready_next = 1'b1;
state_next = STATE_IDLE;
end
end
end else begin
state_next = STATE_WAIT_END;
end
end else begin
state_next = STATE_WAIT_END;
end
end
endcase
end
always @(posedge clk) begin
if (rst) begin
state_reg <= STATE_IDLE;
frame_ptr_reg <= 16'd0;
ifg_count_reg <= 8'd0;
deficit_idle_count_reg <= 2'd0;
s_axis_tready_reg <= 1'b0;
m_axis_ptp_ts_valid_reg <= 1'b0;
m_axis_ptp_ts_valid_int_reg <= 1'b0;
xgmii_txd_reg <= {CTRL_WIDTH{XGMII_IDLE}};
xgmii_txc_reg <= {CTRL_WIDTH{1'b1}};
start_packet_reg <= 2'b00;
error_underflow_reg <= 1'b0;
crc_state <= 32'hFFFFFFFF;
lanes_swapped <= 1'b0;
end else begin
state_reg <= state_next;
frame_ptr_reg <= frame_ptr_next;
ifg_count_reg <= ifg_count_next;
deficit_idle_count_reg <= deficit_idle_count_next;
s_axis_tready_reg <= s_axis_tready_next;
m_axis_ptp_ts_valid_reg <= m_axis_ptp_ts_valid_next;
m_axis_ptp_ts_valid_int_reg <= m_axis_ptp_ts_valid_int_next;
start_packet_reg <= start_packet_next;
error_underflow_reg <= error_underflow_next;
if (swap_lanes || (lanes_swapped && !unswap_lanes)) begin
lanes_swapped <= 1'b1;
xgmii_txd_reg <= {xgmii_txd_next[31:0], swap_txd};
xgmii_txc_reg <= {xgmii_txc_next[3:0], swap_txc};
end else begin
lanes_swapped <= 1'b0;
xgmii_txd_reg <= xgmii_txd_next;
xgmii_txc_reg <= xgmii_txc_next;
end
// datapath
if (reset_crc) begin
crc_state <= 32'hFFFFFFFF;
end else if (update_crc) begin
crc_state <= crc_next7;
end
end
s_tdata_reg <= s_tdata_next;
s_tkeep_reg <= s_tkeep_next;
m_axis_ptp_ts_reg <= m_axis_ptp_ts_next;
m_axis_ptp_ts_tag_reg <= m_axis_ptp_ts_tag_next;
swap_txd <= xgmii_txd_next[63:32];
swap_txc <= xgmii_txc_next[7:4];
end
endmodule
/*
Copyright (c) 2014-2018 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* Ethernet arbitrated multiplexer
*/
module eth_arb_mux #
(
parameter S_COUNT = 4,
parameter DATA_WIDTH = 8,
parameter KEEP_ENABLE = (DATA_WIDTH>8),
parameter KEEP_WIDTH = (DATA_WIDTH/8),
parameter ID_ENABLE = 0,
parameter ID_WIDTH = 8,
parameter DEST_ENABLE = 0,
parameter DEST_WIDTH = 8,
parameter USER_ENABLE = 1,
parameter USER_WIDTH = 1,
// arbitration type: "PRIORITY" or "ROUND_ROBIN"
parameter ARB_TYPE = "PRIORITY",
// LSB priority: "LOW", "HIGH"
parameter LSB_PRIORITY = "HIGH"
)
(
input wire clk,
input wire rst,
/*
* Ethernet frame inputs
*/
input wire [S_COUNT-1:0] s_eth_hdr_valid,
output wire [S_COUNT-1:0] s_eth_hdr_ready,
input wire [S_COUNT*48-1:0] s_eth_dest_mac,
input wire [S_COUNT*48-1:0] s_eth_src_mac,
input wire [S_COUNT*16-1:0] s_eth_type,
input wire [S_COUNT*DATA_WIDTH-1:0] s_eth_payload_axis_tdata,
input wire [S_COUNT*KEEP_WIDTH-1:0] s_eth_payload_axis_tkeep,
input wire [S_COUNT-1:0] s_eth_payload_axis_tvalid,
output wire [S_COUNT-1:0] s_eth_payload_axis_tready,
input wire [S_COUNT-1:0] s_eth_payload_axis_tlast,
input wire [S_COUNT*ID_WIDTH-1:0] s_eth_payload_axis_tid,
input wire [S_COUNT*DEST_WIDTH-1:0] s_eth_payload_axis_tdest,
input wire [S_COUNT*USER_WIDTH-1:0] s_eth_payload_axis_tuser,
/*
* Ethernet frame output
*/
output wire m_eth_hdr_valid,
input wire m_eth_hdr_ready,
output wire [47:0] m_eth_dest_mac,
output wire [47:0] m_eth_src_mac,
output wire [15:0] m_eth_type,
output wire [DATA_WIDTH-1:0] m_eth_payload_axis_tdata,
output wire [KEEP_WIDTH-1:0] m_eth_payload_axis_tkeep,
output wire m_eth_payload_axis_tvalid,
input wire m_eth_payload_axis_tready,
output wire m_eth_payload_axis_tlast,
output wire [ID_WIDTH-1:0] m_eth_payload_axis_tid,
output wire [DEST_WIDTH-1:0] m_eth_payload_axis_tdest,
output wire [USER_WIDTH-1:0] m_eth_payload_axis_tuser
);
parameter CL_S_COUNT = $clog2(S_COUNT);
reg frame_reg = 1'b0, frame_next;
reg s_eth_hdr_ready_mask_reg = 1'b0, s_eth_hdr_ready_mask_next;
reg m_eth_hdr_valid_reg = 1'b0, m_eth_hdr_valid_next;
reg [47:0] m_eth_dest_mac_reg = 48'd0, m_eth_dest_mac_next;
reg [47:0] m_eth_src_mac_reg = 48'd0, m_eth_src_mac_next;
reg [15:0] m_eth_type_reg = 16'd0, m_eth_type_next;
wire [S_COUNT-1:0] request;
wire [S_COUNT-1:0] acknowledge;
wire [S_COUNT-1:0] grant;
wire grant_valid;
wire [CL_S_COUNT-1:0] grant_encoded;
// internal datapath
reg [DATA_WIDTH-1:0] m_eth_payload_axis_tdata_int;
reg [KEEP_WIDTH-1:0] m_eth_payload_axis_tkeep_int;
reg m_eth_payload_axis_tvalid_int;
reg m_eth_payload_axis_tready_int_reg = 1'b0;
reg m_eth_payload_axis_tlast_int;
reg [ID_WIDTH-1:0] m_eth_payload_axis_tid_int;
reg [DEST_WIDTH-1:0] m_eth_payload_axis_tdest_int;
reg [USER_WIDTH-1:0] m_eth_payload_axis_tuser_int;
wire m_eth_payload_axis_tready_int_early;
assign s_eth_hdr_ready = (!s_eth_hdr_ready_mask_reg && grant_valid) << grant_encoded;
assign s_eth_payload_axis_tready = (m_eth_payload_axis_tready_int_reg && grant_valid) << grant_encoded;
assign m_eth_hdr_valid = m_eth_hdr_valid_reg;
assign m_eth_dest_mac = m_eth_dest_mac_reg;
assign m_eth_src_mac = m_eth_src_mac_reg;
assign m_eth_type = m_eth_type_reg;
// mux for incoming packet
wire [DATA_WIDTH-1:0] current_s_tdata = s_eth_payload_axis_tdata[grant_encoded*DATA_WIDTH +: DATA_WIDTH];
wire [KEEP_WIDTH-1:0] current_s_tkeep = s_eth_payload_axis_tkeep[grant_encoded*KEEP_WIDTH +: KEEP_WIDTH];
wire current_s_tvalid = s_eth_payload_axis_tvalid[grant_encoded];
wire current_s_tready = s_eth_payload_axis_tready[grant_encoded];
wire current_s_tlast = s_eth_payload_axis_tlast[grant_encoded];
wire [ID_WIDTH-1:0] current_s_tid = s_eth_payload_axis_tid[grant_encoded*ID_WIDTH +: ID_WIDTH];
wire [DEST_WIDTH-1:0] current_s_tdest = s_eth_payload_axis_tdest[grant_encoded*DEST_WIDTH +: DEST_WIDTH];
wire [USER_WIDTH-1:0] current_s_tuser = s_eth_payload_axis_tuser[grant_encoded*USER_WIDTH +: USER_WIDTH];
// arbiter instance
arbiter #(
.PORTS(S_COUNT),
.TYPE(ARB_TYPE),
.BLOCK("ACKNOWLEDGE"),
.LSB_PRIORITY(LSB_PRIORITY)
)
arb_inst (
.clk(clk),
.rst(rst),
.request(request),
.acknowledge(acknowledge),
.grant(grant),
.grant_valid(grant_valid),
.grant_encoded(grant_encoded)
);
assign request = s_eth_hdr_valid & ~grant;
assign acknowledge = grant & s_eth_payload_axis_tvalid & s_eth_payload_axis_tready & s_eth_payload_axis_tlast;
always @* begin
frame_next = frame_reg;
s_eth_hdr_ready_mask_next = s_eth_hdr_ready_mask_reg;
m_eth_hdr_valid_next = m_eth_hdr_valid_reg && !m_eth_hdr_ready;
m_eth_dest_mac_next = m_eth_dest_mac_reg;
m_eth_src_mac_next = m_eth_src_mac_reg;
m_eth_type_next = m_eth_type_reg;
if (s_eth_payload_axis_tvalid[grant_encoded] && s_eth_payload_axis_tready[grant_encoded]) begin
// end of frame detection
if (s_eth_payload_axis_tlast[grant_encoded]) begin
frame_next = 1'b0;
s_eth_hdr_ready_mask_next = 1'b0;
end
end
if (!frame_reg && grant_valid) begin
// start of frame
frame_next = 1'b1;
s_eth_hdr_ready_mask_next = 1'b1;
m_eth_hdr_valid_next = 1'b1;
m_eth_dest_mac_next = s_eth_dest_mac[grant_encoded*48 +: 48];
m_eth_src_mac_next = s_eth_src_mac[grant_encoded*48 +: 48];
m_eth_type_next = s_eth_type[grant_encoded*16 +: 16];
end
// pass through selected packet data
m_eth_payload_axis_tdata_int = current_s_tdata;
m_eth_payload_axis_tkeep_int = current_s_tkeep;
m_eth_payload_axis_tvalid_int = current_s_tvalid && m_eth_payload_axis_tready_int_reg && grant_valid;
m_eth_payload_axis_tlast_int = current_s_tlast;
m_eth_payload_axis_tid_int = current_s_tid;
m_eth_payload_axis_tdest_int = current_s_tdest;
m_eth_payload_axis_tuser_int = current_s_tuser;
end
always @(posedge clk) begin
if (rst) begin
frame_reg <= 1'b0;
s_eth_hdr_ready_mask_reg <= 1'b0;
m_eth_hdr_valid_reg <= 1'b0;
end else begin
frame_reg <= frame_next;
s_eth_hdr_ready_mask_reg <= s_eth_hdr_ready_mask_next;
m_eth_hdr_valid_reg <= m_eth_hdr_valid_next;
end
m_eth_dest_mac_reg <= m_eth_dest_mac_next;
m_eth_src_mac_reg <= m_eth_src_mac_next;
m_eth_type_reg <= m_eth_type_next;
end
// output datapath logic
reg [DATA_WIDTH-1:0] m_eth_payload_axis_tdata_reg = {DATA_WIDTH{1'b0}};
reg [KEEP_WIDTH-1:0] m_eth_payload_axis_tkeep_reg = {KEEP_WIDTH{1'b0}};
reg m_eth_payload_axis_tvalid_reg = 1'b0, m_eth_payload_axis_tvalid_next;
reg m_eth_payload_axis_tlast_reg = 1'b0;
reg [ID_WIDTH-1:0] m_eth_payload_axis_tid_reg = {ID_WIDTH{1'b0}};
reg [DEST_WIDTH-1:0] m_eth_payload_axis_tdest_reg = {DEST_WIDTH{1'b0}};
reg [USER_WIDTH-1:0] m_eth_payload_axis_tuser_reg = {USER_WIDTH{1'b0}};
reg [DATA_WIDTH-1:0] temp_m_eth_payload_axis_tdata_reg = {DATA_WIDTH{1'b0}};
reg [KEEP_WIDTH-1:0] temp_m_eth_payload_axis_tkeep_reg = {KEEP_WIDTH{1'b0}};
reg temp_m_eth_payload_axis_tvalid_reg = 1'b0, temp_m_eth_payload_axis_tvalid_next;
reg temp_m_eth_payload_axis_tlast_reg = 1'b0;
reg [ID_WIDTH-1:0] temp_m_eth_payload_axis_tid_reg = {ID_WIDTH{1'b0}};
reg [DEST_WIDTH-1:0] temp_m_eth_payload_axis_tdest_reg = {DEST_WIDTH{1'b0}};
reg [USER_WIDTH-1:0] temp_m_eth_payload_axis_tuser_reg = {USER_WIDTH{1'b0}};
// datapath control
reg store_axis_int_to_output;
reg store_axis_int_to_temp;
reg store_eth_payload_axis_temp_to_output;
assign m_eth_payload_axis_tdata = m_eth_payload_axis_tdata_reg;
assign m_eth_payload_axis_tkeep = KEEP_ENABLE ? m_eth_payload_axis_tkeep_reg : {KEEP_WIDTH{1'b1}};
assign m_eth_payload_axis_tvalid = m_eth_payload_axis_tvalid_reg;
assign m_eth_payload_axis_tlast = m_eth_payload_axis_tlast_reg;
assign m_eth_payload_axis_tid = ID_ENABLE ? m_eth_payload_axis_tid_reg : {ID_WIDTH{1'b0}};
assign m_eth_payload_axis_tdest = DEST_ENABLE ? m_eth_payload_axis_tdest_reg : {DEST_WIDTH{1'b0}};
assign m_eth_payload_axis_tuser = USER_ENABLE ? m_eth_payload_axis_tuser_reg : {USER_WIDTH{1'b0}};
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
assign m_eth_payload_axis_tready_int_early = m_eth_payload_axis_tready || (!temp_m_eth_payload_axis_tvalid_reg && (!m_eth_payload_axis_tvalid_reg || !m_eth_payload_axis_tvalid_int));
always @* begin
// transfer sink ready state to source
m_eth_payload_axis_tvalid_next = m_eth_payload_axis_tvalid_reg;
temp_m_eth_payload_axis_tvalid_next = temp_m_eth_payload_axis_tvalid_reg;
store_axis_int_to_output = 1'b0;
store_axis_int_to_temp = 1'b0;
store_eth_payload_axis_temp_to_output = 1'b0;
if (m_eth_payload_axis_tready_int_reg) begin
// input is ready
if (m_eth_payload_axis_tready || !m_eth_payload_axis_tvalid_reg) begin
// output is ready or currently not valid, transfer data to output
m_eth_payload_axis_tvalid_next = m_eth_payload_axis_tvalid_int;
store_axis_int_to_output = 1'b1;
end else begin
// output is not ready, store input in temp
temp_m_eth_payload_axis_tvalid_next = m_eth_payload_axis_tvalid_int;
store_axis_int_to_temp = 1'b1;
end
end else if (m_eth_payload_axis_tready) begin
// input is not ready, but output is ready
m_eth_payload_axis_tvalid_next = temp_m_eth_payload_axis_tvalid_reg;
temp_m_eth_payload_axis_tvalid_next = 1'b0;
store_eth_payload_axis_temp_to_output = 1'b1;
end
end
always @(posedge clk) begin
if (rst) begin
m_eth_payload_axis_tvalid_reg <= 1'b0;
m_eth_payload_axis_tready_int_reg <= 1'b0;
temp_m_eth_payload_axis_tvalid_reg <= 1'b0;
end else begin
m_eth_payload_axis_tvalid_reg <= m_eth_payload_axis_tvalid_next;
m_eth_payload_axis_tready_int_reg <= m_eth_payload_axis_tready_int_early;
temp_m_eth_payload_axis_tvalid_reg <= temp_m_eth_payload_axis_tvalid_next;
end
// datapath
if (store_axis_int_to_output) begin
m_eth_payload_axis_tdata_reg <= m_eth_payload_axis_tdata_int;
m_eth_payload_axis_tkeep_reg <= m_eth_payload_axis_tkeep_int;
m_eth_payload_axis_tlast_reg <= m_eth_payload_axis_tlast_int;
m_eth_payload_axis_tid_reg <= m_eth_payload_axis_tid_int;
m_eth_payload_axis_tdest_reg <= m_eth_payload_axis_tdest_int;
m_eth_payload_axis_tuser_reg <= m_eth_payload_axis_tuser_int;
end else if (store_eth_payload_axis_temp_to_output) begin
m_eth_payload_axis_tdata_reg <= temp_m_eth_payload_axis_tdata_reg;
m_eth_payload_axis_tkeep_reg <= temp_m_eth_payload_axis_tkeep_reg;
m_eth_payload_axis_tlast_reg <= temp_m_eth_payload_axis_tlast_reg;
m_eth_payload_axis_tid_reg <= temp_m_eth_payload_axis_tid_reg;
m_eth_payload_axis_tdest_reg <= temp_m_eth_payload_axis_tdest_reg;
m_eth_payload_axis_tuser_reg <= temp_m_eth_payload_axis_tuser_reg;
end
if (store_axis_int_to_temp) begin
temp_m_eth_payload_axis_tdata_reg <= m_eth_payload_axis_tdata_int;
temp_m_eth_payload_axis_tkeep_reg <= m_eth_payload_axis_tkeep_int;
temp_m_eth_payload_axis_tlast_reg <= m_eth_payload_axis_tlast_int;
temp_m_eth_payload_axis_tid_reg <= m_eth_payload_axis_tid_int;
temp_m_eth_payload_axis_tdest_reg <= m_eth_payload_axis_tdest_int;
temp_m_eth_payload_axis_tuser_reg <= m_eth_payload_axis_tuser_int;
end
end
endmodule
/*
Copyright (c) 2014-2020 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* AXI4-Stream ethernet frame receiver (AXI in, Ethernet frame out)
*/
module eth_axis_rx #
(
// Width of AXI stream interfaces in bits
parameter DATA_WIDTH = 8,
// Propagate tkeep signal
// If disabled, tkeep assumed to be 1'b1
parameter KEEP_ENABLE = (DATA_WIDTH>8),
// tkeep signal width (words per cycle)
parameter KEEP_WIDTH = (DATA_WIDTH/8)
)
(
input wire clk,
input wire rst,
/*
* AXI input
*/
input wire [DATA_WIDTH-1:0] s_axis_tdata,
input wire [KEEP_WIDTH-1:0] s_axis_tkeep,
input wire s_axis_tvalid,
output wire s_axis_tready,
input wire s_axis_tlast,
input wire s_axis_tuser,
/*
* Ethernet frame output
*/
output wire m_eth_hdr_valid,
input wire m_eth_hdr_ready,
output wire [47:0] m_eth_dest_mac,
output wire [47:0] m_eth_src_mac,
output wire [15:0] m_eth_type,
output wire [DATA_WIDTH-1:0] m_eth_payload_axis_tdata,
output wire [KEEP_WIDTH-1:0] m_eth_payload_axis_tkeep,
output wire m_eth_payload_axis_tvalid,
input wire m_eth_payload_axis_tready,
output wire m_eth_payload_axis_tlast,
output wire m_eth_payload_axis_tuser,
/*
* Status signals
*/
output wire busy,
output wire error_header_early_termination
);
parameter CYCLE_COUNT = (14+KEEP_WIDTH-1)/KEEP_WIDTH;
parameter PTR_WIDTH = $clog2(CYCLE_COUNT);
parameter OFFSET = 14 % KEEP_WIDTH;
// bus width assertions
initial begin
if (KEEP_WIDTH * 8 != DATA_WIDTH) begin
$error("Error: AXI stream interface requires byte (8-bit) granularity (instance %m)");
$finish;
end
end
/*
Ethernet frame
Field Length
Destination MAC address 6 octets
Source MAC address 6 octets
Ethertype 2 octets
This module receives an Ethernet frame on an AXI stream interface, decodes
and strips the headers, then produces the header fields in parallel along
with the payload in a separate AXI stream.
*/
reg read_eth_header_reg = 1'b1, read_eth_header_next;
reg read_eth_payload_reg = 1'b0, read_eth_payload_next;
reg [PTR_WIDTH-1:0] ptr_reg = 0, ptr_next;
reg flush_save;
reg transfer_in_save;
reg s_axis_tready_reg = 1'b0, s_axis_tready_next;
reg m_eth_hdr_valid_reg = 1'b0, m_eth_hdr_valid_next;
reg [47:0] m_eth_dest_mac_reg = 48'd0, m_eth_dest_mac_next;
reg [47:0] m_eth_src_mac_reg = 48'd0, m_eth_src_mac_next;
reg [15:0] m_eth_type_reg = 16'd0, m_eth_type_next;
reg busy_reg = 1'b0;
reg error_header_early_termination_reg = 1'b0, error_header_early_termination_next;
reg [DATA_WIDTH-1:0] save_axis_tdata_reg = 64'd0;
reg [KEEP_WIDTH-1:0] save_axis_tkeep_reg = 8'd0;
reg save_axis_tlast_reg = 1'b0;
reg save_axis_tuser_reg = 1'b0;
reg [DATA_WIDTH-1:0] shift_axis_tdata;
reg [KEEP_WIDTH-1:0] shift_axis_tkeep;
reg shift_axis_tvalid;
reg shift_axis_tlast;
reg shift_axis_tuser;
reg shift_axis_input_tready;
reg shift_axis_extra_cycle_reg = 1'b0;
// internal datapath
reg [DATA_WIDTH-1:0] m_eth_payload_axis_tdata_int;
reg [KEEP_WIDTH-1:0] m_eth_payload_axis_tkeep_int;
reg m_eth_payload_axis_tvalid_int;
reg m_eth_payload_axis_tready_int_reg = 1'b0;
reg m_eth_payload_axis_tlast_int;
reg m_eth_payload_axis_tuser_int;
wire m_eth_payload_axis_tready_int_early;
assign s_axis_tready = s_axis_tready_reg;
assign m_eth_hdr_valid = m_eth_hdr_valid_reg;
assign m_eth_dest_mac = m_eth_dest_mac_reg;
assign m_eth_src_mac = m_eth_src_mac_reg;
assign m_eth_type = m_eth_type_reg;
assign busy = busy_reg;
assign error_header_early_termination = error_header_early_termination_reg;
always @* begin
if (OFFSET == 0) begin
// passthrough if no overlap
shift_axis_tdata = s_axis_tdata;
shift_axis_tkeep = s_axis_tkeep;
shift_axis_tvalid = s_axis_tvalid;
shift_axis_tlast = s_axis_tlast;
shift_axis_tuser = s_axis_tuser;
shift_axis_input_tready = 1'b1;
end else if (shift_axis_extra_cycle_reg) begin
shift_axis_tdata = {s_axis_tdata, save_axis_tdata_reg} >> (OFFSET*8);
shift_axis_tkeep = {{KEEP_WIDTH{1'b0}}, save_axis_tkeep_reg} >> OFFSET;
shift_axis_tvalid = 1'b1;
shift_axis_tlast = save_axis_tlast_reg;
shift_axis_tuser = save_axis_tuser_reg;
shift_axis_input_tready = flush_save;
end else begin
shift_axis_tdata = {s_axis_tdata, save_axis_tdata_reg} >> (OFFSET*8);
shift_axis_tkeep = {s_axis_tkeep, save_axis_tkeep_reg} >> OFFSET;
shift_axis_tvalid = s_axis_tvalid;
shift_axis_tlast = (s_axis_tlast && ((s_axis_tkeep & ({KEEP_WIDTH{1'b1}} << OFFSET)) == 0));
shift_axis_tuser = (s_axis_tuser && ((s_axis_tkeep & ({KEEP_WIDTH{1'b1}} << OFFSET)) == 0));
shift_axis_input_tready = !(s_axis_tlast && s_axis_tready && s_axis_tvalid);
end
end
always @* begin
read_eth_header_next = read_eth_header_reg;
read_eth_payload_next = read_eth_payload_reg;
ptr_next = ptr_reg;
s_axis_tready_next = m_eth_payload_axis_tready_int_early && shift_axis_input_tready && (!m_eth_hdr_valid || m_eth_hdr_ready);
flush_save = 1'b0;
transfer_in_save = 1'b0;
m_eth_hdr_valid_next = m_eth_hdr_valid_reg && !m_eth_hdr_ready;
m_eth_dest_mac_next = m_eth_dest_mac_reg;
m_eth_src_mac_next = m_eth_src_mac_reg;
m_eth_type_next = m_eth_type_reg;
error_header_early_termination_next = 1'b0;
m_eth_payload_axis_tdata_int = shift_axis_tdata;
m_eth_payload_axis_tkeep_int = shift_axis_tkeep;
m_eth_payload_axis_tvalid_int = 1'b0;
m_eth_payload_axis_tlast_int = shift_axis_tlast;
m_eth_payload_axis_tuser_int = shift_axis_tuser;
if ((s_axis_tready && s_axis_tvalid) || (m_eth_payload_axis_tready_int_reg && shift_axis_extra_cycle_reg)) begin
transfer_in_save = 1'b1;
if (read_eth_header_reg) begin
// word transfer in - store it
ptr_next = ptr_reg + 1;
`define _HEADER_FIELD_(offset, field) \
if (ptr_reg == offset/KEEP_WIDTH && (!KEEP_ENABLE || s_axis_tkeep[offset%KEEP_WIDTH])) begin \
field = s_axis_tdata[(offset%KEEP_WIDTH)*8 +: 8]; \
end
`_HEADER_FIELD_(0, m_eth_dest_mac_next[5*8 +: 8])
`_HEADER_FIELD_(1, m_eth_dest_mac_next[4*8 +: 8])
`_HEADER_FIELD_(2, m_eth_dest_mac_next[3*8 +: 8])
`_HEADER_FIELD_(3, m_eth_dest_mac_next[2*8 +: 8])
`_HEADER_FIELD_(4, m_eth_dest_mac_next[1*8 +: 8])
`_HEADER_FIELD_(5, m_eth_dest_mac_next[0*8 +: 8])
`_HEADER_FIELD_(6, m_eth_src_mac_next[5*8 +: 8])
`_HEADER_FIELD_(7, m_eth_src_mac_next[4*8 +: 8])
`_HEADER_FIELD_(8, m_eth_src_mac_next[3*8 +: 8])
`_HEADER_FIELD_(9, m_eth_src_mac_next[2*8 +: 8])
`_HEADER_FIELD_(10, m_eth_src_mac_next[1*8 +: 8])
`_HEADER_FIELD_(11, m_eth_src_mac_next[0*8 +: 8])
`_HEADER_FIELD_(12, m_eth_type_next[1*8 +: 8])
`_HEADER_FIELD_(13, m_eth_type_next[0*8 +: 8])
if (ptr_reg == 13/KEEP_WIDTH && (!KEEP_ENABLE || s_axis_tkeep[13%KEEP_WIDTH])) begin
if (!shift_axis_tlast) begin
m_eth_hdr_valid_next = 1'b1;
read_eth_header_next = 1'b0;
read_eth_payload_next = 1'b1;
end
end
`undef _HEADER_FIELD_
end
if (read_eth_payload_reg) begin
// transfer payload
m_eth_payload_axis_tdata_int = shift_axis_tdata;
m_eth_payload_axis_tkeep_int = shift_axis_tkeep;
m_eth_payload_axis_tvalid_int = 1'b1;
m_eth_payload_axis_tlast_int = shift_axis_tlast;
m_eth_payload_axis_tuser_int = shift_axis_tuser;
end
if (shift_axis_tlast) begin
if (read_eth_header_next) begin
// don't have the whole header
error_header_early_termination_next = 1'b1;
end
flush_save = 1'b1;
ptr_next = 1'b0;
read_eth_header_next = 1'b1;
read_eth_payload_next = 1'b0;
end
end
end
always @(posedge clk) begin
read_eth_header_reg <= read_eth_header_next;
read_eth_payload_reg <= read_eth_payload_next;
ptr_reg <= ptr_next;
s_axis_tready_reg <= s_axis_tready_next;
m_eth_hdr_valid_reg <= m_eth_hdr_valid_next;
m_eth_dest_mac_reg <= m_eth_dest_mac_next;
m_eth_src_mac_reg <= m_eth_src_mac_next;
m_eth_type_reg <= m_eth_type_next;
error_header_early_termination_reg <= error_header_early_termination_next;
busy_reg <= (read_eth_payload_next || ptr_next != 0);
if (transfer_in_save) begin
save_axis_tdata_reg <= s_axis_tdata;
save_axis_tkeep_reg <= s_axis_tkeep;
save_axis_tuser_reg <= s_axis_tuser;
end
if (flush_save) begin
save_axis_tlast_reg <= 1'b0;
shift_axis_extra_cycle_reg <= 1'b0;
end else if (transfer_in_save) begin
save_axis_tlast_reg <= s_axis_tlast;
shift_axis_extra_cycle_reg <= OFFSET ? s_axis_tlast && ((s_axis_tkeep & ({KEEP_WIDTH{1'b1}} << OFFSET)) != 0) : 1'b0;
end
if (rst) begin
read_eth_header_reg <= 1'b1;
read_eth_payload_reg <= 1'b0;
ptr_reg <= 0;
s_axis_tready_reg <= 1'b0;
m_eth_hdr_valid_reg <= 1'b0;
save_axis_tlast_reg <= 1'b0;
shift_axis_extra_cycle_reg <= 1'b0;
busy_reg <= 1'b0;
error_header_early_termination_reg <= 1'b0;
end
end
// output datapath logic
reg [DATA_WIDTH-1:0] m_eth_payload_axis_tdata_reg = {DATA_WIDTH{1'b0}};
reg [KEEP_WIDTH-1:0] m_eth_payload_axis_tkeep_reg = {KEEP_WIDTH{1'b0}};
reg m_eth_payload_axis_tvalid_reg = 1'b0, m_eth_payload_axis_tvalid_next;
reg m_eth_payload_axis_tlast_reg = 1'b0;
reg m_eth_payload_axis_tuser_reg = 1'b0;
reg [DATA_WIDTH-1:0] temp_m_eth_payload_axis_tdata_reg = {DATA_WIDTH{1'b0}};
reg [KEEP_WIDTH-1:0] temp_m_eth_payload_axis_tkeep_reg = {KEEP_WIDTH{1'b0}};
reg temp_m_eth_payload_axis_tvalid_reg = 1'b0, temp_m_eth_payload_axis_tvalid_next;
reg temp_m_eth_payload_axis_tlast_reg = 1'b0;
reg temp_m_eth_payload_axis_tuser_reg = 1'b0;
// datapath control
reg store_eth_payload_int_to_output;
reg store_eth_payload_int_to_temp;
reg store_eth_payload_axis_temp_to_output;
assign m_eth_payload_axis_tdata = m_eth_payload_axis_tdata_reg;
assign m_eth_payload_axis_tkeep = KEEP_ENABLE ? m_eth_payload_axis_tkeep_reg : {KEEP_WIDTH{1'b1}};
assign m_eth_payload_axis_tvalid = m_eth_payload_axis_tvalid_reg;
assign m_eth_payload_axis_tlast = m_eth_payload_axis_tlast_reg;
assign m_eth_payload_axis_tuser = m_eth_payload_axis_tuser_reg;
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
assign m_eth_payload_axis_tready_int_early = m_eth_payload_axis_tready || (!temp_m_eth_payload_axis_tvalid_reg && (!m_eth_payload_axis_tvalid_reg || !m_eth_payload_axis_tvalid_int));
always @* begin
// transfer sink ready state to source
m_eth_payload_axis_tvalid_next = m_eth_payload_axis_tvalid_reg;
temp_m_eth_payload_axis_tvalid_next = temp_m_eth_payload_axis_tvalid_reg;
store_eth_payload_int_to_output = 1'b0;
store_eth_payload_int_to_temp = 1'b0;
store_eth_payload_axis_temp_to_output = 1'b0;
if (m_eth_payload_axis_tready_int_reg) begin
// input is ready
if (m_eth_payload_axis_tready || !m_eth_payload_axis_tvalid_reg) begin
// output is ready or currently not valid, transfer data to output
m_eth_payload_axis_tvalid_next = m_eth_payload_axis_tvalid_int;
store_eth_payload_int_to_output = 1'b1;
end else begin
// output is not ready, store input in temp
temp_m_eth_payload_axis_tvalid_next = m_eth_payload_axis_tvalid_int;
store_eth_payload_int_to_temp = 1'b1;
end
end else if (m_eth_payload_axis_tready) begin
// input is not ready, but output is ready
m_eth_payload_axis_tvalid_next = temp_m_eth_payload_axis_tvalid_reg;
temp_m_eth_payload_axis_tvalid_next = 1'b0;
store_eth_payload_axis_temp_to_output = 1'b1;
end
end
always @(posedge clk) begin
if (rst) begin
m_eth_payload_axis_tvalid_reg <= 1'b0;
m_eth_payload_axis_tready_int_reg <= 1'b0;
temp_m_eth_payload_axis_tvalid_reg <= 1'b0;
end else begin
m_eth_payload_axis_tvalid_reg <= m_eth_payload_axis_tvalid_next;
m_eth_payload_axis_tready_int_reg <= m_eth_payload_axis_tready_int_early;
temp_m_eth_payload_axis_tvalid_reg <= temp_m_eth_payload_axis_tvalid_next;
end
// datapath
if (store_eth_payload_int_to_output) begin
m_eth_payload_axis_tdata_reg <= m_eth_payload_axis_tdata_int;
m_eth_payload_axis_tkeep_reg <= m_eth_payload_axis_tkeep_int;
m_eth_payload_axis_tlast_reg <= m_eth_payload_axis_tlast_int;
m_eth_payload_axis_tuser_reg <= m_eth_payload_axis_tuser_int;
end else if (store_eth_payload_axis_temp_to_output) begin
m_eth_payload_axis_tdata_reg <= temp_m_eth_payload_axis_tdata_reg;
m_eth_payload_axis_tkeep_reg <= temp_m_eth_payload_axis_tkeep_reg;
m_eth_payload_axis_tlast_reg <= temp_m_eth_payload_axis_tlast_reg;
m_eth_payload_axis_tuser_reg <= temp_m_eth_payload_axis_tuser_reg;
end
if (store_eth_payload_int_to_temp) begin
temp_m_eth_payload_axis_tdata_reg <= m_eth_payload_axis_tdata_int;
temp_m_eth_payload_axis_tkeep_reg <= m_eth_payload_axis_tkeep_int;
temp_m_eth_payload_axis_tlast_reg <= m_eth_payload_axis_tlast_int;
temp_m_eth_payload_axis_tuser_reg <= m_eth_payload_axis_tuser_int;
end
end
endmodule
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment