tx_checksum.v 18.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
/*

Copyright 2019, The Regents of the University of California.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

   1. Redistributions of source code must retain the above copyright notice,
      this list of conditions and the following disclaimer.

   2. Redistributions in binary form must reproduce the above copyright notice,
      this list of conditions and the following disclaimer in the documentation
      and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE REGENTS OF THE UNIVERSITY OF CALIFORNIA ''AS
IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS OF THE UNIVERSITY OF CALIFORNIA OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.

The views and conclusions contained in the software and documentation are those
of the authors and should not be interpreted as representing official policies,
either expressed or implied, of The Regents of the University of California.

*/

// Language: Verilog 2001

`timescale 1ns / 1ps

/*
 * Transmit checksum offload module
 */
module tx_checksum #
(
    // Width of AXI stream interfaces in bits
    parameter DATA_WIDTH = 256,
    // AXI stream tkeep signal width (words per cycle)
    parameter KEEP_WIDTH = (DATA_WIDTH/8),
    // Propagate tid signal
    parameter ID_ENABLE = 0,
    // tid signal width
    parameter ID_WIDTH = 8,
    // Propagate tdest signal
    parameter DEST_ENABLE = 0,
    // tdest signal width
    parameter DEST_WIDTH = 8,
    // Propagate tuser signal
    parameter USER_ENABLE = 1,
    // tuser signal width
    parameter USER_WIDTH = 1,
    // Use checksum init value
    parameter USE_INIT_VALUE = 0,
    // Depth of data FIFO in words
    parameter DATA_FIFO_DEPTH = 4096,
    // Depth of checksum FIFO
    parameter CHECKSUM_FIFO_DEPTH = 64
)
(
    input  wire                   clk,
    input  wire                   rst,

    /*
     * AXI input
     */
    input  wire [DATA_WIDTH-1:0]  s_axis_tdata,
    input  wire [KEEP_WIDTH-1:0]  s_axis_tkeep,
    input  wire                   s_axis_tvalid,
    output wire                   s_axis_tready,
    input  wire                   s_axis_tlast,
    input  wire [ID_WIDTH-1:0]    s_axis_tid,
    input  wire [DEST_WIDTH-1:0]  s_axis_tdest,
    input  wire [USER_WIDTH-1:0]  s_axis_tuser,

    /*
     * AXI output
     */
    output wire [DATA_WIDTH-1:0]  m_axis_tdata,
    output wire [KEEP_WIDTH-1:0]  m_axis_tkeep,
    output wire                   m_axis_tvalid,
    input  wire                   m_axis_tready,
    output wire                   m_axis_tlast,
    output wire [ID_WIDTH-1:0]    m_axis_tid,
    output wire [DEST_WIDTH-1:0]  m_axis_tdest,
    output wire [USER_WIDTH-1:0]  m_axis_tuser,

    /*
     * Control
     */
    input  wire                   s_axis_cmd_csum_enable,
    input  wire [7:0]             s_axis_cmd_csum_start,
    input  wire [7:0]             s_axis_cmd_csum_offset,
    input  wire [15:0]            s_axis_cmd_csum_init,
    input  wire                   s_axis_cmd_valid,
    output wire                   s_axis_cmd_ready
);

parameter LEVELS = $clog2(DATA_WIDTH/8);

// bus width assertions
initial begin
    if (KEEP_WIDTH * 8 != DATA_WIDTH) begin
        $error("Error: AXI stream interface requires byte (8-bit) granularity (instance %m)");
        $finish;
    end
end

reg transfer_in_reg = 1'b0;

reg [15:0] csum_in_csum_reg = 0;
reg [7:0] csum_in_offset_reg = 0;
reg csum_in_enable_reg = 1'b0;
reg csum_in_valid_reg = 1'b0;
wire csum_in_ready;

wire [15:0] csum_out_csum;
wire [7:0] csum_out_offset;
wire csum_out_enable;
wire csum_out_valid;
reg csum_out_ready = 1'b0;

reg [KEEP_WIDTH-1:0] mask_reg = 0;
reg first_cycle_reg = 1'b0;
reg [7:0] input_offset_reg = 0;
reg [DATA_WIDTH-1:0] s_axis_tdata_masked;

reg frame_reg = 1'b0, frame_next;

reg [15:0] csum_reg = 16'd0, csum_next;
reg [7:0] csum_offset_reg = 8'd0, csum_offset_next;
reg csum_enable_reg = 1'b0, csum_enable_next;
reg csum_split_reg = 1'b0, csum_split_next;

reg [DATA_WIDTH-1:0] sum_reg[LEVELS-2:0];
reg [LEVELS-2:0] sum_valid_reg = 0;
reg [LEVELS-2:0] sum_odd_reg = 0;
reg [LEVELS-2:0] sum_last_reg = 0;
reg [LEVELS-2:0] sum_enable_reg = 0;
reg [7:0] sum_offset_reg[LEVELS-2:0];
reg [15:0] sum_init_reg[LEVELS-2:0];
reg [LEVELS-2:0] sum_init_valid_reg = 0;

wire [DATA_WIDTH-1:0] sum_reg_0 = sum_reg[0];
wire [DATA_WIDTH-1:0] sum_reg_1 = sum_reg[1];
wire [DATA_WIDTH-1:0] sum_reg_2 = sum_reg[2];

reg [16+LEVELS-1:0] sum_acc_temp = 0;
reg [15:0] sum_acc_reg = 0;

// internal datapath
reg  [DATA_WIDTH-1:0] m_axis_tdata_int;
reg  [KEEP_WIDTH-1:0] m_axis_tkeep_int;
reg                   m_axis_tvalid_int;
reg                   m_axis_tready_int_reg = 1'b0;
reg                   m_axis_tlast_int;
reg  [ID_WIDTH-1:0]   m_axis_tid_int;
reg  [DEST_WIDTH-1:0] m_axis_tdest_int;
reg  [USER_WIDTH-1:0] m_axis_tuser_int;
wire                  m_axis_tready_int_early;

wire [DATA_WIDTH-1:0] data_in_axis_tdata;
wire [KEEP_WIDTH-1:0] data_in_axis_tkeep;
wire                  data_in_axis_tvalid;
wire                  data_in_axis_tready;
wire                  data_in_axis_tlast;
wire [ID_WIDTH-1:0]   data_in_axis_tid;
wire [DEST_WIDTH-1:0] data_in_axis_tdest;
wire [USER_WIDTH-1:0] data_in_axis_tuser;

wire [DATA_WIDTH-1:0] data_out_axis_tdata;
wire [KEEP_WIDTH-1:0] data_out_axis_tkeep;
wire                  data_out_axis_tvalid;
reg                   data_out_axis_tready;
wire                  data_out_axis_tlast;
wire [ID_WIDTH-1:0]   data_out_axis_tid;
wire [DEST_WIDTH-1:0] data_out_axis_tdest;
wire [USER_WIDTH-1:0] data_out_axis_tuser;

assign s_axis_tready = data_in_axis_tready && csum_in_ready && transfer_in_reg;

assign s_axis_cmd_ready = !transfer_in_reg;

// data FIFO
assign data_in_axis_tdata = s_axis_tdata;
assign data_in_axis_tkeep = s_axis_tkeep;
assign data_in_axis_tvalid = s_axis_tvalid && csum_in_ready && transfer_in_reg;
assign data_in_axis_tlast = s_axis_tlast;
assign data_in_axis_tid = s_axis_tid;
assign data_in_axis_tdest = s_axis_tdest;
assign data_in_axis_tuser = s_axis_tuser;

axis_fifo #(
    .DEPTH(DATA_FIFO_DEPTH),
    .DATA_WIDTH(DATA_WIDTH),
    .KEEP_ENABLE(1),
    .KEEP_WIDTH(KEEP_WIDTH),
    .LAST_ENABLE(1),
    .ID_ENABLE(ID_ENABLE),
    .ID_WIDTH(ID_WIDTH),
    .DEST_ENABLE(DEST_ENABLE),
    .DEST_WIDTH(DEST_WIDTH),
    .USER_ENABLE(USER_ENABLE),
    .USER_WIDTH(USER_WIDTH),
    .FRAME_FIFO(0)
)
data_fifo (
    .clk(clk),
    .rst(rst),
    // AXI input
    .s_axis_tdata(data_in_axis_tdata),
    .s_axis_tkeep(data_in_axis_tkeep),
    .s_axis_tvalid(data_in_axis_tvalid),
    .s_axis_tready(data_in_axis_tready),
    .s_axis_tlast(data_in_axis_tlast),
    .s_axis_tid(data_in_axis_tid),
    .s_axis_tdest(data_in_axis_tdest),
    .s_axis_tuser(data_in_axis_tuser),
    // AXI output
    .m_axis_tdata(data_out_axis_tdata),
    .m_axis_tkeep(data_out_axis_tkeep),
    .m_axis_tvalid(data_out_axis_tvalid),
    .m_axis_tready(data_out_axis_tready),
    .m_axis_tlast(data_out_axis_tlast),
    .m_axis_tid(data_out_axis_tid),
    .m_axis_tdest(data_out_axis_tdest),
    .m_axis_tuser(data_out_axis_tuser),
    // Status
    .status_overflow(),
    .status_bad_frame(),
    .status_good_frame()
);

// checksum FIFO
axis_fifo #(
    .DEPTH(CHECKSUM_FIFO_DEPTH),
    .DATA_WIDTH(16+8+1),
    .KEEP_ENABLE(0),
    .LAST_ENABLE(0),
    .ID_ENABLE(0),
    .DEST_ENABLE(0),
    .USER_ENABLE(0),
    .FRAME_FIFO(0)
)
csum_fifo (
    .clk(clk),
    .rst(rst),
    // AXI input
    .s_axis_tdata({csum_in_csum_reg, csum_in_offset_reg, csum_in_enable_reg}),
    .s_axis_tkeep(0),
    .s_axis_tvalid(csum_in_valid_reg),
    .s_axis_tready(csum_in_ready),
    .s_axis_tlast(0),
    .s_axis_tid(0),
    .s_axis_tdest(0),
    .s_axis_tuser(0),
    // AXI output
    .m_axis_tdata({csum_out_csum, csum_out_offset, csum_out_enable}),
    .m_axis_tkeep(),
    .m_axis_tvalid(csum_out_valid),
    .m_axis_tready(csum_out_ready),
    .m_axis_tlast(),
    .m_axis_tid(),
    .m_axis_tdest(),
    .m_axis_tuser(),
    // Status
    .status_overflow(),
    .status_bad_frame(),
    .status_good_frame()
);

// Mask input data
integer j;

always @* begin
    for (j = 0; j < KEEP_WIDTH; j = j + 1) begin
        s_axis_tdata_masked[j*8 +: 8] = (s_axis_tkeep[j] && mask_reg[j]) ? s_axis_tdata[j*8 +: 8] : 8'd0;
    end
end

// Compute checksum
integer i;

always @(posedge clk) begin
    sum_valid_reg[0] <= sum_valid_reg[0] && !csum_in_ready;

    if (s_axis_tvalid && s_axis_tready) begin
        for (i = 0; i < DATA_WIDTH/8/4; i = i + 1) begin
            sum_reg[0][i*17 +: 17] <= {s_axis_tdata_masked[(4*i+0)*8 +: 8], s_axis_tdata_masked[(4*i+1)*8 +: 8]} + {s_axis_tdata_masked[(4*i+2)*8 +: 8], s_axis_tdata_masked[(4*i+3)*8 +: 8]};
        end
        sum_valid_reg[0] <= 1'b1;
        sum_last_reg[0] <= s_axis_tlast;
        sum_init_valid_reg[0] <= first_cycle_reg;

        first_cycle_reg <= 1'b0;

        if (s_axis_tlast) begin
            transfer_in_reg <= 1'b0;
        end

        if (input_offset_reg > 0) begin
            if (input_offset_reg >= KEEP_WIDTH) begin
                mask_reg <= 0;
                input_offset_reg <= input_offset_reg - KEEP_WIDTH;
            end else begin
                mask_reg <= {KEEP_WIDTH{1'b1}} << input_offset_reg;
                input_offset_reg <= 0;
            end
        end else begin
            mask_reg <= {KEEP_WIDTH{1'b1}};
        end
    end

    if (s_axis_cmd_valid && s_axis_cmd_ready) begin
        transfer_in_reg <= 1'b1;
        sum_odd_reg[0] <= s_axis_cmd_csum_start[0];
        sum_enable_reg[0] <= s_axis_cmd_csum_enable;
        sum_offset_reg[0] <= s_axis_cmd_csum_offset;
        sum_init_reg[0] <= s_axis_cmd_csum_init;
        first_cycle_reg <= 1'b1;
        
        if (s_axis_cmd_csum_start >= KEEP_WIDTH) begin
            mask_reg <= 0;
            input_offset_reg <= s_axis_cmd_csum_start - KEEP_WIDTH;
        end else begin
            mask_reg <= {KEEP_WIDTH{1'b1}} << s_axis_cmd_csum_start;
            input_offset_reg <= 0;
        end
    end

    if (rst) begin
        transfer_in_reg <= 1'b0;
        sum_valid_reg[0] <= 1'b0;
    end
end

generate

    genvar l;

    for (l = 1; l < LEVELS-1; l = l + 1) begin

        always @(posedge clk) begin
            sum_valid_reg[l] <= sum_valid_reg[l] && !csum_in_ready;

            if (sum_valid_reg[l-1] && csum_in_ready) begin
                for (i = 0; i < DATA_WIDTH/8/4/2**l; i = i + 1) begin
                    sum_reg[l][i*(17+l) +: (17+l)] <= sum_reg[l-1][(i*2+0)*(17+l-1) +: (17+l-1)] + sum_reg[l-1][(i*2+1)*(17+l-1) +: (17+l-1)];
                end
                sum_valid_reg[l] <= 1'b1;
                sum_odd_reg[l] <= sum_odd_reg[l-1];
                sum_last_reg[l] <= sum_last_reg[l-1];
                sum_enable_reg[l] <= sum_enable_reg[l-1];
                sum_offset_reg[l] <= sum_offset_reg[l-1];
                sum_init_reg[l] <= sum_init_reg[l-1];
                sum_init_valid_reg[l] <= sum_init_valid_reg[l-1];
            end

            if (rst) begin
                sum_valid_reg[l] <= 1'b0;
            end
        end

    end

endgenerate

always @(posedge clk) begin
    csum_in_valid_reg <= 1'b0;

    if (sum_valid_reg[LEVELS-2] && csum_in_ready) begin
        sum_acc_temp = sum_reg[LEVELS-2][16+LEVELS-1-1:0] + (sum_init_valid_reg[LEVELS-2] && USE_INIT_VALUE ? sum_init_reg[LEVELS-2] : sum_acc_reg);
        sum_acc_temp = sum_acc_temp[15:0] + (sum_acc_temp >> 16);
        sum_acc_temp = sum_acc_temp[15:0] + sum_acc_temp[16];

        if (sum_last_reg[LEVELS-2]) begin
            if (sum_odd_reg[LEVELS-2]) begin
                csum_in_csum_reg[7:0] <= ~sum_acc_temp[15:8];
                csum_in_csum_reg[15:8] <= ~sum_acc_temp[7:0];
            end else begin
                csum_in_csum_reg[7:0] <= ~sum_acc_temp[7:0];
                csum_in_csum_reg[15:8] <= ~sum_acc_temp[15:8];
            end
            csum_in_offset_reg <= sum_offset_reg[LEVELS-2];
            csum_in_enable_reg <= sum_enable_reg[LEVELS-2];
            csum_in_valid_reg <= 1'b1;
            sum_acc_reg <= 0;
        end else begin
            sum_acc_reg <= sum_acc_temp;
        end
    end

    if (rst) begin
        csum_in_valid_reg <= 1'b0;
    end
end

// Insert checksum
always @* begin
    data_out_axis_tready = m_axis_tready_int_reg && frame_reg;
    csum_out_ready = 1'b0;

    frame_next = frame_reg;

    csum_next = csum_reg;
    csum_offset_next = csum_offset_reg;
    csum_enable_next = csum_enable_reg;
    csum_split_next = csum_split_reg;

    m_axis_tdata_int  = data_out_axis_tdata;
    m_axis_tkeep_int  = data_out_axis_tkeep;
    m_axis_tvalid_int = data_out_axis_tvalid && data_out_axis_tready;
    m_axis_tlast_int  = data_out_axis_tlast;
    m_axis_tid_int    = data_out_axis_tid;
    m_axis_tdest_int  = data_out_axis_tdest;
    m_axis_tuser_int  = data_out_axis_tuser;

    if (frame_reg) begin
        if (data_out_axis_tvalid && data_out_axis_tready) begin
            if (data_out_axis_tlast) begin
                frame_next = 1'b0;
            end

            if (csum_enable_reg) begin
                if (csum_offset_reg >= KEEP_WIDTH) begin
                    csum_offset_next = csum_offset_reg - KEEP_WIDTH;
                end else if (csum_split_reg) begin
                    // other byte of split checksum
                    m_axis_tdata_int[0 +: 8] = csum_reg[7:0];
                    csum_enable_next = 1'b0;
                end else if (csum_offset_reg == KEEP_WIDTH-1) begin
                    // split across two cycles
                    m_axis_tdata_int[DATA_WIDTH-8 +: 8] = csum_reg[15:8];
                    csum_split_next = 1'b1;
                end else begin
                    m_axis_tdata_int[csum_offset_reg*8 +: 8] = csum_reg[15:8];
                    m_axis_tdata_int[(csum_offset_reg+1)*8 +: 8] = csum_reg[7:0];

                    csum_enable_next = 1'b0;
                end
            end
        end
    end else begin
        csum_out_ready = 1'b1;
        csum_next = csum_out_csum;
        csum_offset_next = csum_out_offset;
        csum_enable_next = csum_out_enable;
        csum_split_next = 1'b0;
        if (csum_out_valid) begin
            frame_next = 1'b1;
        end
    end
end

always @(posedge clk) begin
    frame_reg <= frame_next;

    csum_reg <= csum_next;
    csum_offset_reg <= csum_offset_next;
    csum_enable_reg <= csum_enable_next;
    csum_split_reg <= csum_split_next;

    if (rst) begin
        frame_reg <= 1'b0;
        csum_enable_reg <= 1'b0;
    end
end

// output datapath logic
reg [DATA_WIDTH-1:0] m_axis_tdata_reg  = {DATA_WIDTH{1'b0}};
reg [KEEP_WIDTH-1:0] m_axis_tkeep_reg  = {KEEP_WIDTH{1'b0}};
reg                  m_axis_tvalid_reg = 1'b0, m_axis_tvalid_next;
reg                  m_axis_tlast_reg  = 1'b0;
reg [ID_WIDTH-1:0]   m_axis_tid_reg    = {ID_WIDTH{1'b0}};
reg [DEST_WIDTH-1:0] m_axis_tdest_reg  = {DEST_WIDTH{1'b0}};
reg [USER_WIDTH-1:0] m_axis_tuser_reg  = {USER_WIDTH{1'b0}};

reg [DATA_WIDTH-1:0] temp_m_axis_tdata_reg  = {DATA_WIDTH{1'b0}};
reg [KEEP_WIDTH-1:0] temp_m_axis_tkeep_reg  = {KEEP_WIDTH{1'b0}};
reg                  temp_m_axis_tvalid_reg = 1'b0, temp_m_axis_tvalid_next;
reg                  temp_m_axis_tlast_reg  = 1'b0;
reg [ID_WIDTH-1:0]   temp_m_axis_tid_reg    = {ID_WIDTH{1'b0}};
reg [DEST_WIDTH-1:0] temp_m_axis_tdest_reg  = {DEST_WIDTH{1'b0}};
reg [USER_WIDTH-1:0] temp_m_axis_tuser_reg  = {USER_WIDTH{1'b0}};

// datapath control
reg store_axis_int_to_output;
reg store_axis_int_to_temp;
reg store_axis_temp_to_output;

assign m_axis_tdata  = m_axis_tdata_reg;
assign m_axis_tkeep  = m_axis_tkeep_reg;
assign m_axis_tvalid = m_axis_tvalid_reg;
assign m_axis_tlast  = m_axis_tlast_reg;
assign m_axis_tid    = ID_ENABLE   ? m_axis_tid_reg   : {ID_WIDTH{1'b0}};
assign m_axis_tdest  = DEST_ENABLE ? m_axis_tdest_reg : {DEST_WIDTH{1'b0}};
assign m_axis_tuser  = USER_ENABLE ? m_axis_tuser_reg : {USER_WIDTH{1'b0}};

// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
assign m_axis_tready_int_early = m_axis_tready || (!temp_m_axis_tvalid_reg && (!m_axis_tvalid_reg || !m_axis_tvalid_int));

always @* begin
    // transfer sink ready state to source
    m_axis_tvalid_next = m_axis_tvalid_reg;
    temp_m_axis_tvalid_next = temp_m_axis_tvalid_reg;

    store_axis_int_to_output = 1'b0;
    store_axis_int_to_temp = 1'b0;
    store_axis_temp_to_output = 1'b0;

    if (m_axis_tready_int_reg) begin
        // input is ready
        if (m_axis_tready || !m_axis_tvalid_reg) begin
            // output is ready or currently not valid, transfer data to output
            m_axis_tvalid_next = m_axis_tvalid_int;
            store_axis_int_to_output = 1'b1;
        end else begin
            // output is not ready, store input in temp
            temp_m_axis_tvalid_next = m_axis_tvalid_int;
            store_axis_int_to_temp = 1'b1;
        end
    end else if (m_axis_tready) begin
        // input is not ready, but output is ready
        m_axis_tvalid_next = temp_m_axis_tvalid_reg;
        temp_m_axis_tvalid_next = 1'b0;
        store_axis_temp_to_output = 1'b1;
    end
end

always @(posedge clk) begin
    if (rst) begin
        m_axis_tvalid_reg <= 1'b0;
        m_axis_tready_int_reg <= 1'b0;
        temp_m_axis_tvalid_reg <= 1'b0;
    end else begin
        m_axis_tvalid_reg <= m_axis_tvalid_next;
        m_axis_tready_int_reg <= m_axis_tready_int_early;
        temp_m_axis_tvalid_reg <= temp_m_axis_tvalid_next;
    end

    // datapath
    if (store_axis_int_to_output) begin
        m_axis_tdata_reg <= m_axis_tdata_int;
        m_axis_tkeep_reg <= m_axis_tkeep_int;
        m_axis_tlast_reg <= m_axis_tlast_int;
        m_axis_tid_reg   <= m_axis_tid_int;
        m_axis_tdest_reg <= m_axis_tdest_int;
        m_axis_tuser_reg <= m_axis_tuser_int;
    end else if (store_axis_temp_to_output) begin
        m_axis_tdata_reg <= temp_m_axis_tdata_reg;
        m_axis_tkeep_reg <= temp_m_axis_tkeep_reg;
        m_axis_tlast_reg <= temp_m_axis_tlast_reg;
        m_axis_tid_reg   <= temp_m_axis_tid_reg;
        m_axis_tdest_reg <= temp_m_axis_tdest_reg;
        m_axis_tuser_reg <= temp_m_axis_tuser_reg;
    end

    if (store_axis_int_to_temp) begin
        temp_m_axis_tdata_reg <= m_axis_tdata_int;
        temp_m_axis_tkeep_reg <= m_axis_tkeep_int;
        temp_m_axis_tlast_reg <= m_axis_tlast_int;
        temp_m_axis_tid_reg   <= m_axis_tid_int;
        temp_m_axis_tdest_reg <= m_axis_tdest_int;
        temp_m_axis_tuser_reg <= m_axis_tuser_int;
    end
end

endmodule