Commit 75f45050 authored by jerrrrry's avatar jerrrrry
Browse files

Initial commit

parents
# ComfyUI Internal Routes
All routes under the `/internal` path are designated for **internal use by ComfyUI only**. These routes are not intended for use by external applications may change at any time without notice.
from aiohttp import web
from typing import Optional
from folder_paths import folder_names_and_paths, get_directory_by_type
from api_server.services.terminal_service import TerminalService
import app.logger
import os
class InternalRoutes:
'''
The top level web router for internal routes: /internal/*
The endpoints here should NOT be depended upon. It is for ComfyUI frontend use only.
Check README.md for more information.
'''
def __init__(self, prompt_server):
self.routes: web.RouteTableDef = web.RouteTableDef()
self._app: Optional[web.Application] = None
self.prompt_server = prompt_server
self.terminal_service = TerminalService(prompt_server)
def setup_routes(self):
@self.routes.get('/logs')
async def get_logs(request):
return web.json_response("".join([(l["t"] + " - " + l["m"]) for l in app.logger.get_logs()]))
@self.routes.get('/logs/raw')
async def get_raw_logs(request):
self.terminal_service.update_size()
return web.json_response({
"entries": list(app.logger.get_logs()),
"size": {"cols": self.terminal_service.cols, "rows": self.terminal_service.rows}
})
@self.routes.patch('/logs/subscribe')
async def subscribe_logs(request):
json_data = await request.json()
client_id = json_data["clientId"]
enabled = json_data["enabled"]
if enabled:
self.terminal_service.subscribe(client_id)
else:
self.terminal_service.unsubscribe(client_id)
return web.Response(status=200)
@self.routes.get('/folder_paths')
async def get_folder_paths(request):
response = {}
for key in folder_names_and_paths:
response[key] = folder_names_and_paths[key][0]
return web.json_response(response)
@self.routes.get('/files/{directory_type}')
async def get_files(request: web.Request) -> web.Response:
directory_type = request.match_info['directory_type']
if directory_type not in ("output", "input", "temp"):
return web.json_response({"error": "Invalid directory type"}, status=400)
directory = get_directory_by_type(directory_type)
sorted_files = sorted(
(entry for entry in os.scandir(directory) if entry.is_file()),
key=lambda entry: -entry.stat().st_mtime
)
return web.json_response([entry.name for entry in sorted_files], status=200)
def get_app(self):
if self._app is None:
self._app = web.Application()
self.setup_routes()
self._app.add_routes(self.routes)
return self._app
from app.logger import on_flush
import os
import shutil
class TerminalService:
def __init__(self, server):
self.server = server
self.cols = None
self.rows = None
self.subscriptions = set()
on_flush(self.send_messages)
def get_terminal_size(self):
try:
size = os.get_terminal_size()
return (size.columns, size.lines)
except OSError:
try:
size = shutil.get_terminal_size()
return (size.columns, size.lines)
except OSError:
return (80, 24) # fallback to 80x24
def update_size(self):
columns, lines = self.get_terminal_size()
changed = False
if columns != self.cols:
self.cols = columns
changed = True
if lines != self.rows:
self.rows = lines
changed = True
if changed:
return {"cols": self.cols, "rows": self.rows}
return None
def subscribe(self, client_id):
self.subscriptions.add(client_id)
def unsubscribe(self, client_id):
self.subscriptions.discard(client_id)
def send_messages(self, entries):
if not len(entries) or not len(self.subscriptions):
return
new_size = self.update_size()
for client_id in self.subscriptions.copy(): # prevent: Set changed size during iteration
if client_id not in self.server.sockets:
# Automatically unsub if the socket has disconnected
self.unsubscribe(client_id)
continue
self.server.send_sync("logs", {"entries": entries, "size": new_size}, client_id)
import os
from typing import List, Union, TypedDict, Literal
from typing_extensions import TypeGuard
class FileInfo(TypedDict):
name: str
path: str
type: Literal["file"]
size: int
class DirectoryInfo(TypedDict):
name: str
path: str
type: Literal["directory"]
FileSystemItem = Union[FileInfo, DirectoryInfo]
def is_file_info(item: FileSystemItem) -> TypeGuard[FileInfo]:
return item["type"] == "file"
class FileSystemOperations:
@staticmethod
def walk_directory(directory: str) -> List[FileSystemItem]:
file_list: List[FileSystemItem] = []
for root, dirs, files in os.walk(directory):
for name in files:
file_path = os.path.join(root, name)
relative_path = os.path.relpath(file_path, directory)
file_list.append({
"name": name,
"path": relative_path,
"type": "file",
"size": os.path.getsize(file_path)
})
for name in dirs:
dir_path = os.path.join(root, name)
relative_path = os.path.relpath(dir_path, directory)
file_list.append({
"name": name,
"path": relative_path,
"type": "directory"
})
return file_list
import os
import json
from aiohttp import web
import logging
class AppSettings():
def __init__(self, user_manager):
self.user_manager = user_manager
def get_settings(self, request):
try:
file = self.user_manager.get_request_user_filepath(
request,
"comfy.settings.json"
)
except KeyError as e:
logging.error("User settings not found.")
raise web.HTTPUnauthorized() from e
if os.path.isfile(file):
try:
with open(file) as f:
return json.load(f)
except:
logging.error(f"The user settings file is corrupted: {file}")
return {}
else:
return {}
def save_settings(self, request, settings):
file = self.user_manager.get_request_user_filepath(
request, "comfy.settings.json")
with open(file, "w") as f:
f.write(json.dumps(settings, indent=4))
def add_routes(self, routes):
@routes.get("/settings")
async def get_settings(request):
return web.json_response(self.get_settings(request))
@routes.get("/settings/{id}")
async def get_setting(request):
value = None
settings = self.get_settings(request)
setting_id = request.match_info.get("id", None)
if setting_id and setting_id in settings:
value = settings[setting_id]
return web.json_response(value)
@routes.post("/settings")
async def post_settings(request):
settings = self.get_settings(request)
new_settings = await request.json()
self.save_settings(request, {**settings, **new_settings})
return web.Response(status=200)
@routes.post("/settings/{id}")
async def post_setting(request):
setting_id = request.match_info.get("id", None)
if not setting_id:
return web.Response(status=400)
settings = self.get_settings(request)
settings[setting_id] = await request.json()
self.save_settings(request, settings)
return web.Response(status=200)
from __future__ import annotations
import os
import folder_paths
import glob
from aiohttp import web
import json
import logging
from functools import lru_cache
from utils.json_util import merge_json_recursive
# Extra locale files to load into main.json
EXTRA_LOCALE_FILES = [
"nodeDefs.json",
"commands.json",
"settings.json",
]
def safe_load_json_file(file_path: str) -> dict:
if not os.path.exists(file_path):
return {}
try:
with open(file_path, "r", encoding="utf-8") as f:
return json.load(f)
except json.JSONDecodeError:
logging.error(f"Error loading {file_path}")
return {}
class CustomNodeManager:
@lru_cache(maxsize=1)
def build_translations(self):
"""Load all custom nodes translations during initialization. Translations are
expected to be loaded from `locales/` folder.
The folder structure is expected to be the following:
- custom_nodes/
- custom_node_1/
- locales/
- en/
- main.json
- commands.json
- settings.json
returned translations are expected to be in the following format:
{
"en": {
"nodeDefs": {...},
"commands": {...},
"settings": {...},
...{other main.json keys}
}
}
"""
translations = {}
for folder in folder_paths.get_folder_paths("custom_nodes"):
# Sort glob results for deterministic ordering
for custom_node_dir in sorted(glob.glob(os.path.join(folder, "*/"))):
locales_dir = os.path.join(custom_node_dir, "locales")
if not os.path.exists(locales_dir):
continue
for lang_dir in glob.glob(os.path.join(locales_dir, "*/")):
lang_code = os.path.basename(os.path.dirname(lang_dir))
if lang_code not in translations:
translations[lang_code] = {}
# Load main.json
main_file = os.path.join(lang_dir, "main.json")
node_translations = safe_load_json_file(main_file)
# Load extra locale files
for extra_file in EXTRA_LOCALE_FILES:
extra_file_path = os.path.join(lang_dir, extra_file)
key = extra_file.split(".")[0]
json_data = safe_load_json_file(extra_file_path)
if json_data:
node_translations[key] = json_data
if node_translations:
translations[lang_code] = merge_json_recursive(
translations[lang_code], node_translations
)
return translations
def add_routes(self, routes, webapp, loadedModules):
example_workflow_folder_names = ["example_workflows", "example", "examples", "workflow", "workflows"]
@routes.get("/workflow_templates")
async def get_workflow_templates(request):
"""Returns a web response that contains the map of custom_nodes names and their associated workflow templates. The ones without templates are omitted."""
files = []
for folder in folder_paths.get_folder_paths("custom_nodes"):
for folder_name in example_workflow_folder_names:
pattern = os.path.join(folder, f"*/{folder_name}/*.json")
matched_files = glob.glob(pattern)
files.extend(matched_files)
workflow_templates_dict = (
{}
) # custom_nodes folder name -> example workflow names
for file in files:
custom_nodes_name = os.path.basename(
os.path.dirname(os.path.dirname(file))
)
workflow_name = os.path.splitext(os.path.basename(file))[0]
workflow_templates_dict.setdefault(custom_nodes_name, []).append(
workflow_name
)
return web.json_response(workflow_templates_dict)
# Serve workflow templates from custom nodes.
for module_name, module_dir in loadedModules:
for folder_name in example_workflow_folder_names:
workflows_dir = os.path.join(module_dir, folder_name)
if os.path.exists(workflows_dir):
if folder_name != "example_workflows":
logging.debug(
"Found example workflow folder '%s' for custom node '%s', consider renaming it to 'example_workflows'",
folder_name, module_name)
webapp.add_routes(
[
web.static(
"/api/workflow_templates/" + module_name, workflows_dir
)
]
)
@routes.get("/i18n")
async def get_i18n(request):
"""Returns translations from all custom nodes' locales folders."""
return web.json_response(self.build_translations())
import logging
import os
import shutil
from app.logger import log_startup_warning
from utils.install_util import get_missing_requirements_message
from comfy.cli_args import args
_DB_AVAILABLE = False
Session = None
try:
from alembic import command
from alembic.config import Config
from alembic.runtime.migration import MigrationContext
from alembic.script import ScriptDirectory
from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker
_DB_AVAILABLE = True
except ImportError as e:
log_startup_warning(
f"""
------------------------------------------------------------------------
Error importing dependencies: {e}
{get_missing_requirements_message()}
This error is happening because ComfyUI now uses a local sqlite database.
------------------------------------------------------------------------
""".strip()
)
def dependencies_available():
"""
Temporary function to check if the dependencies are available
"""
return _DB_AVAILABLE
def can_create_session():
"""
Temporary function to check if the database is available to create a session
During initial release there may be environmental issues (or missing dependencies) that prevent the database from being created
"""
return dependencies_available() and Session is not None
def get_alembic_config():
root_path = os.path.join(os.path.dirname(__file__), "../..")
config_path = os.path.abspath(os.path.join(root_path, "alembic.ini"))
scripts_path = os.path.abspath(os.path.join(root_path, "alembic_db"))
config = Config(config_path)
config.set_main_option("script_location", scripts_path)
config.set_main_option("sqlalchemy.url", args.database_url)
return config
def get_db_path():
url = args.database_url
if url.startswith("sqlite:///"):
return url.split("///")[1]
else:
raise ValueError(f"Unsupported database URL '{url}'.")
def init_db():
db_url = args.database_url
logging.debug(f"Database URL: {db_url}")
db_path = get_db_path()
db_exists = os.path.exists(db_path)
config = get_alembic_config()
# Check if we need to upgrade
engine = create_engine(db_url)
conn = engine.connect()
context = MigrationContext.configure(conn)
current_rev = context.get_current_revision()
script = ScriptDirectory.from_config(config)
target_rev = script.get_current_head()
if target_rev is None:
logging.warning("No target revision found.")
elif current_rev != target_rev:
# Backup the database pre upgrade
backup_path = db_path + ".bkp"
if db_exists:
shutil.copy(db_path, backup_path)
else:
backup_path = None
try:
command.upgrade(config, target_rev)
logging.info(f"Database upgraded from {current_rev} to {target_rev}")
except Exception as e:
if backup_path:
# Restore the database from backup if upgrade fails
shutil.copy(backup_path, db_path)
os.remove(backup_path)
logging.exception("Error upgrading database: ")
raise e
global Session
Session = sessionmaker(bind=engine)
def create_session():
return Session()
from sqlalchemy.orm import declarative_base
Base = declarative_base()
def to_dict(obj):
fields = obj.__table__.columns.keys()
return {
field: (val.to_dict() if hasattr(val, "to_dict") else val)
for field in fields
if (val := getattr(obj, field))
}
# TODO: Define models here
from __future__ import annotations
import argparse
import logging
import os
import re
import sys
import tempfile
import zipfile
import importlib
from dataclasses import dataclass
from functools import cached_property
from pathlib import Path
from typing import TypedDict, Optional
from importlib.metadata import version
import requests
from typing_extensions import NotRequired
from utils.install_util import get_missing_requirements_message, requirements_path
from comfy.cli_args import DEFAULT_VERSION_STRING
import app.logger
def frontend_install_warning_message():
return f"""
{get_missing_requirements_message()}
This error is happening because the ComfyUI frontend is no longer shipped as part of the main repo but as a pip package instead.
""".strip()
def parse_version(version: str) -> tuple[int, int, int]:
return tuple(map(int, version.split(".")))
def is_valid_version(version: str) -> bool:
"""Validate if a string is a valid semantic version (X.Y.Z format)."""
pattern = r"^(\d+)\.(\d+)\.(\d+)$"
return bool(re.match(pattern, version))
def get_installed_frontend_version():
"""Get the currently installed frontend package version."""
frontend_version_str = version("comfyui-frontend-package")
return frontend_version_str
def get_required_frontend_version():
"""Get the required frontend version from requirements.txt."""
try:
with open(requirements_path, "r", encoding="utf-8") as f:
for line in f:
line = line.strip()
if line.startswith("comfyui-frontend-package=="):
version_str = line.split("==")[-1]
if not is_valid_version(version_str):
logging.error(f"Invalid version format in requirements.txt: {version_str}")
return None
return version_str
logging.error("comfyui-frontend-package not found in requirements.txt")
return None
except FileNotFoundError:
logging.error("requirements.txt not found. Cannot determine required frontend version.")
return None
except Exception as e:
logging.error(f"Error reading requirements.txt: {e}")
return None
def check_frontend_version():
"""Check if the frontend version is up to date."""
try:
frontend_version_str = get_installed_frontend_version()
frontend_version = parse_version(frontend_version_str)
required_frontend_str = get_required_frontend_version()
required_frontend = parse_version(required_frontend_str)
if frontend_version < required_frontend:
app.logger.log_startup_warning(
f"""
________________________________________________________________________
WARNING WARNING WARNING WARNING WARNING
Installed frontend version {".".join(map(str, frontend_version))} is lower than the recommended version {".".join(map(str, required_frontend))}.
{frontend_install_warning_message()}
________________________________________________________________________
""".strip()
)
else:
logging.info("ComfyUI frontend version: {}".format(frontend_version_str))
except Exception as e:
logging.error(f"Failed to check frontend version: {e}")
REQUEST_TIMEOUT = 10 # seconds
class Asset(TypedDict):
url: str
class Release(TypedDict):
id: int
tag_name: str
name: str
prerelease: bool
created_at: str
published_at: str
body: str
assets: NotRequired[list[Asset]]
@dataclass
class FrontEndProvider:
owner: str
repo: str
@property
def folder_name(self) -> str:
return f"{self.owner}_{self.repo}"
@property
def release_url(self) -> str:
return f"https://api.github.com/repos/{self.owner}/{self.repo}/releases"
@cached_property
def all_releases(self) -> list[Release]:
releases = []
api_url = self.release_url
while api_url:
response = requests.get(api_url, timeout=REQUEST_TIMEOUT)
response.raise_for_status() # Raises an HTTPError if the response was an error
releases.extend(response.json())
# GitHub uses the Link header to provide pagination links. Check if it exists and update api_url accordingly.
if "next" in response.links:
api_url = response.links["next"]["url"]
else:
api_url = None
return releases
@cached_property
def latest_release(self) -> Release:
latest_release_url = f"{self.release_url}/latest"
response = requests.get(latest_release_url, timeout=REQUEST_TIMEOUT)
response.raise_for_status() # Raises an HTTPError if the response was an error
return response.json()
@cached_property
def latest_prerelease(self) -> Release:
"""Get the latest pre-release version - even if it's older than the latest release"""
release = [release for release in self.all_releases if release["prerelease"]]
if not release:
raise ValueError("No pre-releases found")
# GitHub returns releases in reverse chronological order, so first is latest
return release[0]
def get_release(self, version: str) -> Release:
if version == "latest":
return self.latest_release
elif version == "prerelease":
return self.latest_prerelease
else:
for release in self.all_releases:
if release["tag_name"] in [version, f"v{version}"]:
return release
raise ValueError(f"Version {version} not found in releases")
def download_release_asset_zip(release: Release, destination_path: str) -> None:
"""Download dist.zip from github release."""
asset_url = None
for asset in release.get("assets", []):
if asset["name"] == "dist.zip":
asset_url = asset["url"]
break
if not asset_url:
raise ValueError("dist.zip not found in the release assets")
# Use a temporary file to download the zip content
with tempfile.TemporaryFile() as tmp_file:
headers = {"Accept": "application/octet-stream"}
response = requests.get(
asset_url, headers=headers, allow_redirects=True, timeout=REQUEST_TIMEOUT
)
response.raise_for_status() # Ensure we got a successful response
# Write the content to the temporary file
tmp_file.write(response.content)
# Go back to the beginning of the temporary file
tmp_file.seek(0)
# Extract the zip file content to the destination path
with zipfile.ZipFile(tmp_file, "r") as zip_ref:
zip_ref.extractall(destination_path)
class FrontendManager:
CUSTOM_FRONTENDS_ROOT = str(Path(__file__).parents[1] / "web_custom_versions")
@classmethod
def get_required_frontend_version(cls) -> str:
"""Get the required frontend package version."""
return get_required_frontend_version()
@classmethod
def default_frontend_path(cls) -> str:
try:
import comfyui_frontend_package
return str(importlib.resources.files(comfyui_frontend_package) / "static")
except ImportError:
logging.error(
f"""
********** ERROR ***********
comfyui-frontend-package is not installed.
{frontend_install_warning_message()}
********** ERROR ***********
""".strip()
)
sys.exit(-1)
@classmethod
def templates_path(cls) -> str:
try:
import comfyui_workflow_templates
return str(
importlib.resources.files(comfyui_workflow_templates) / "templates"
)
except ImportError:
logging.error(
f"""
********** ERROR ***********
comfyui-workflow-templates is not installed.
{frontend_install_warning_message()}
********** ERROR ***********
""".strip()
)
@classmethod
def embedded_docs_path(cls) -> str:
"""Get the path to embedded documentation"""
try:
import comfyui_embedded_docs
return str(
importlib.resources.files(comfyui_embedded_docs) / "docs"
)
except ImportError:
logging.info("comfyui-embedded-docs package not found")
return None
@classmethod
def parse_version_string(cls, value: str) -> tuple[str, str, str]:
"""
Args:
value (str): The version string to parse.
Returns:
tuple[str, str]: A tuple containing provider name and version.
Raises:
argparse.ArgumentTypeError: If the version string is invalid.
"""
VERSION_PATTERN = r"^([a-zA-Z0-9][a-zA-Z0-9-]{0,38})/([a-zA-Z0-9_.-]+)@(v?\d+\.\d+\.\d+[-._a-zA-Z0-9]*|latest|prerelease)$"
match_result = re.match(VERSION_PATTERN, value)
if match_result is None:
raise argparse.ArgumentTypeError(f"Invalid version string: {value}")
return match_result.group(1), match_result.group(2), match_result.group(3)
@classmethod
def init_frontend_unsafe(
cls, version_string: str, provider: Optional[FrontEndProvider] = None
) -> str:
"""
Initializes the frontend for the specified version.
Args:
version_string (str): The version string.
provider (FrontEndProvider, optional): The provider to use. Defaults to None.
Returns:
str: The path to the initialized frontend.
Raises:
Exception: If there is an error during the initialization process.
main error source might be request timeout or invalid URL.
"""
if version_string == DEFAULT_VERSION_STRING:
check_frontend_version()
return cls.default_frontend_path()
repo_owner, repo_name, version = cls.parse_version_string(version_string)
if version.startswith("v"):
expected_path = str(
Path(cls.CUSTOM_FRONTENDS_ROOT)
/ f"{repo_owner}_{repo_name}"
/ version.lstrip("v")
)
if os.path.exists(expected_path):
logging.info(
f"Using existing copy of specific frontend version tag: {repo_owner}/{repo_name}@{version}"
)
return expected_path
logging.info(
f"Initializing frontend: {repo_owner}/{repo_name}@{version}, requesting version details from GitHub..."
)
provider = provider or FrontEndProvider(repo_owner, repo_name)
release = provider.get_release(version)
semantic_version = release["tag_name"].lstrip("v")
web_root = str(
Path(cls.CUSTOM_FRONTENDS_ROOT) / provider.folder_name / semantic_version
)
if not os.path.exists(web_root):
try:
os.makedirs(web_root, exist_ok=True)
logging.info(
"Downloading frontend(%s) version(%s) to (%s)",
provider.folder_name,
semantic_version,
web_root,
)
logging.debug(release)
download_release_asset_zip(release, destination_path=web_root)
finally:
# Clean up the directory if it is empty, i.e. the download failed
if not os.listdir(web_root):
os.rmdir(web_root)
return web_root
@classmethod
def init_frontend(cls, version_string: str) -> str:
"""
Initializes the frontend with the specified version string.
Args:
version_string (str): The version string to initialize the frontend with.
Returns:
str: The path of the initialized frontend.
"""
try:
return cls.init_frontend_unsafe(version_string)
except Exception as e:
logging.error("Failed to initialize frontend: %s", e)
logging.info("Falling back to the default frontend.")
check_frontend_version()
return cls.default_frontend_path()
from collections import deque
from datetime import datetime
import io
import logging
import sys
import threading
logs = None
stdout_interceptor = None
stderr_interceptor = None
class LogInterceptor(io.TextIOWrapper):
def __init__(self, stream, *args, **kwargs):
buffer = stream.buffer
encoding = stream.encoding
super().__init__(buffer, *args, **kwargs, encoding=encoding, line_buffering=stream.line_buffering)
self._lock = threading.Lock()
self._flush_callbacks = []
self._logs_since_flush = []
def write(self, data):
entry = {"t": datetime.now().isoformat(), "m": data}
with self._lock:
self._logs_since_flush.append(entry)
# Simple handling for cr to overwrite the last output if it isnt a full line
# else logs just get full of progress messages
if isinstance(data, str) and data.startswith("\r") and not logs[-1]["m"].endswith("\n"):
logs.pop()
logs.append(entry)
super().write(data)
def flush(self):
super().flush()
for cb in self._flush_callbacks:
cb(self._logs_since_flush)
self._logs_since_flush = []
def on_flush(self, callback):
self._flush_callbacks.append(callback)
def get_logs():
return logs
def on_flush(callback):
if stdout_interceptor is not None:
stdout_interceptor.on_flush(callback)
if stderr_interceptor is not None:
stderr_interceptor.on_flush(callback)
def setup_logger(log_level: str = 'INFO', capacity: int = 300, use_stdout: bool = False):
global logs
if logs:
return
# Override output streams and log to buffer
logs = deque(maxlen=capacity)
global stdout_interceptor
global stderr_interceptor
stdout_interceptor = sys.stdout = LogInterceptor(sys.stdout)
stderr_interceptor = sys.stderr = LogInterceptor(sys.stderr)
# Setup default global logger
logger = logging.getLogger()
logger.setLevel(log_level)
stream_handler = logging.StreamHandler()
stream_handler.setFormatter(logging.Formatter("%(message)s"))
if use_stdout:
# Only errors and critical to stderr
stream_handler.addFilter(lambda record: not record.levelno < logging.ERROR)
# Lesser to stdout
stdout_handler = logging.StreamHandler(sys.stdout)
stdout_handler.setFormatter(logging.Formatter("%(message)s"))
stdout_handler.addFilter(lambda record: record.levelno < logging.ERROR)
logger.addHandler(stdout_handler)
logger.addHandler(stream_handler)
STARTUP_WARNINGS = []
def log_startup_warning(msg):
logging.warning(msg)
STARTUP_WARNINGS.append(msg)
def print_startup_warnings():
for s in STARTUP_WARNINGS:
logging.warning(s)
STARTUP_WARNINGS.clear()
from __future__ import annotations
import os
import base64
import json
import time
import logging
import folder_paths
import glob
import comfy.utils
from aiohttp import web
from PIL import Image
from io import BytesIO
from folder_paths import map_legacy, filter_files_extensions, filter_files_content_types
class ModelFileManager:
def __init__(self) -> None:
self.cache: dict[str, tuple[list[dict], dict[str, float], float]] = {}
def get_cache(self, key: str, default=None) -> tuple[list[dict], dict[str, float], float] | None:
return self.cache.get(key, default)
def set_cache(self, key: str, value: tuple[list[dict], dict[str, float], float]):
self.cache[key] = value
def clear_cache(self):
self.cache.clear()
def add_routes(self, routes):
# NOTE: This is an experiment to replace `/models`
@routes.get("/experiment/models")
async def get_model_folders(request):
model_types = list(folder_paths.folder_names_and_paths.keys())
folder_black_list = ["configs", "custom_nodes"]
output_folders: list[dict] = []
for folder in model_types:
if folder in folder_black_list:
continue
output_folders.append({"name": folder, "folders": folder_paths.get_folder_paths(folder)})
return web.json_response(output_folders)
# NOTE: This is an experiment to replace `/models/{folder}`
@routes.get("/experiment/models/{folder}")
async def get_all_models(request):
folder = request.match_info.get("folder", None)
if not folder in folder_paths.folder_names_and_paths:
return web.Response(status=404)
files = self.get_model_file_list(folder)
return web.json_response(files)
@routes.get("/experiment/models/preview/{folder}/{path_index}/{filename:.*}")
async def get_model_preview(request):
folder_name = request.match_info.get("folder", None)
path_index = int(request.match_info.get("path_index", None))
filename = request.match_info.get("filename", None)
if not folder_name in folder_paths.folder_names_and_paths:
return web.Response(status=404)
folders = folder_paths.folder_names_and_paths[folder_name]
folder = folders[0][path_index]
full_filename = os.path.join(folder, filename)
previews = self.get_model_previews(full_filename)
default_preview = previews[0] if len(previews) > 0 else None
if default_preview is None or (isinstance(default_preview, str) and not os.path.isfile(default_preview)):
return web.Response(status=404)
try:
with Image.open(default_preview) as img:
img_bytes = BytesIO()
img.save(img_bytes, format="WEBP")
img_bytes.seek(0)
return web.Response(body=img_bytes.getvalue(), content_type="image/webp")
except:
return web.Response(status=404)
def get_model_file_list(self, folder_name: str):
folder_name = map_legacy(folder_name)
folders = folder_paths.folder_names_and_paths[folder_name]
output_list: list[dict] = []
for index, folder in enumerate(folders[0]):
if not os.path.isdir(folder):
continue
out = self.cache_model_file_list_(folder)
if out is None:
out = self.recursive_search_models_(folder, index)
self.set_cache(folder, out)
output_list.extend(out[0])
return output_list
def cache_model_file_list_(self, folder: str):
model_file_list_cache = self.get_cache(folder)
if model_file_list_cache is None:
return None
if not os.path.isdir(folder):
return None
if os.path.getmtime(folder) != model_file_list_cache[1]:
return None
for x in model_file_list_cache[1]:
time_modified = model_file_list_cache[1][x]
folder = x
if os.path.getmtime(folder) != time_modified:
return None
return model_file_list_cache
def recursive_search_models_(self, directory: str, pathIndex: int) -> tuple[list[str], dict[str, float], float]:
if not os.path.isdir(directory):
return [], {}, time.perf_counter()
excluded_dir_names = [".git"]
# TODO use settings
include_hidden_files = False
result: list[str] = []
dirs: dict[str, float] = {}
for dirpath, subdirs, filenames in os.walk(directory, followlinks=True, topdown=True):
subdirs[:] = [d for d in subdirs if d not in excluded_dir_names]
if not include_hidden_files:
subdirs[:] = [d for d in subdirs if not d.startswith(".")]
filenames = [f for f in filenames if not f.startswith(".")]
filenames = filter_files_extensions(filenames, folder_paths.supported_pt_extensions)
for file_name in filenames:
try:
full_path = os.path.join(dirpath, file_name)
relative_path = os.path.relpath(full_path, directory)
# Get file metadata
file_info = {
"name": relative_path,
"pathIndex": pathIndex,
"modified": os.path.getmtime(full_path), # Add modification time
"created": os.path.getctime(full_path), # Add creation time
"size": os.path.getsize(full_path) # Add file size
}
result.append(file_info)
except Exception as e:
logging.warning(f"Warning: Unable to access {file_name}. Error: {e}. Skipping this file.")
continue
for d in subdirs:
path: str = os.path.join(dirpath, d)
try:
dirs[path] = os.path.getmtime(path)
except FileNotFoundError:
logging.warning(f"Warning: Unable to access {path}. Skipping this path.")
continue
return result, dirs, time.perf_counter()
def get_model_previews(self, filepath: str) -> list[str | BytesIO]:
dirname = os.path.dirname(filepath)
if not os.path.exists(dirname):
return []
basename = os.path.splitext(filepath)[0]
match_files = glob.glob(f"{basename}.*", recursive=False)
image_files = filter_files_content_types(match_files, "image")
safetensors_file = next(filter(lambda x: x.endswith(".safetensors"), match_files), None)
safetensors_metadata = {}
result: list[str | BytesIO] = []
for filename in image_files:
_basename = os.path.splitext(filename)[0]
if _basename == basename:
result.append(filename)
if _basename == f"{basename}.preview":
result.append(filename)
if safetensors_file:
safetensors_filepath = os.path.join(dirname, safetensors_file)
header = comfy.utils.safetensors_header(safetensors_filepath, max_size=8*1024*1024)
if header:
safetensors_metadata = json.loads(header)
safetensors_images = safetensors_metadata.get("__metadata__", {}).get("ssmd_cover_images", None)
if safetensors_images:
safetensors_images = json.loads(safetensors_images)
for image in safetensors_images:
result.append(BytesIO(base64.b64decode(image)))
return result
def __exit__(self, exc_type, exc_value, traceback):
self.clear_cache()
from __future__ import annotations
import json
import os
import re
import uuid
import glob
import shutil
import logging
from aiohttp import web
from urllib import parse
from comfy.cli_args import args
import folder_paths
from .app_settings import AppSettings
from typing import TypedDict
default_user = "default"
class FileInfo(TypedDict):
path: str
size: int
modified: int
created: int
def get_file_info(path: str, relative_to: str) -> FileInfo:
return {
"path": os.path.relpath(path, relative_to).replace(os.sep, '/'),
"size": os.path.getsize(path),
"modified": os.path.getmtime(path),
"created": os.path.getctime(path)
}
class UserManager():
def __init__(self):
user_directory = folder_paths.get_user_directory()
self.settings = AppSettings(self)
if not os.path.exists(user_directory):
os.makedirs(user_directory, exist_ok=True)
if not args.multi_user:
logging.warning("****** User settings have been changed to be stored on the server instead of browser storage. ******")
logging.warning("****** For multi-user setups add the --multi-user CLI argument to enable multiple user profiles. ******")
if args.multi_user:
if os.path.isfile(self.get_users_file()):
with open(self.get_users_file()) as f:
self.users = json.load(f)
else:
self.users = {}
else:
self.users = {"default": "default"}
def get_users_file(self):
return os.path.join(folder_paths.get_user_directory(), "users.json")
def get_request_user_id(self, request):
user = "default"
if args.multi_user and "comfy-user" in request.headers:
user = request.headers["comfy-user"]
if user not in self.users:
raise KeyError("Unknown user: " + user)
return user
def get_request_user_filepath(self, request, file, type="userdata", create_dir=True):
user_directory = folder_paths.get_user_directory()
if type == "userdata":
root_dir = user_directory
else:
raise KeyError("Unknown filepath type:" + type)
user = self.get_request_user_id(request)
path = user_root = os.path.abspath(os.path.join(root_dir, user))
# prevent leaving /{type}
if os.path.commonpath((root_dir, user_root)) != root_dir:
return None
if file is not None:
# Check if filename is url encoded
if "%" in file:
file = parse.unquote(file)
# prevent leaving /{type}/{user}
path = os.path.abspath(os.path.join(user_root, file))
if os.path.commonpath((user_root, path)) != user_root:
return None
parent = os.path.split(path)[0]
if create_dir and not os.path.exists(parent):
os.makedirs(parent, exist_ok=True)
return path
def add_user(self, name):
name = name.strip()
if not name:
raise ValueError("username not provided")
user_id = re.sub("[^a-zA-Z0-9-_]+", '-', name)
user_id = user_id + "_" + str(uuid.uuid4())
self.users[user_id] = name
with open(self.get_users_file(), "w") as f:
json.dump(self.users, f)
return user_id
def add_routes(self, routes):
self.settings.add_routes(routes)
@routes.get("/users")
async def get_users(request):
if args.multi_user:
return web.json_response({"storage": "server", "users": self.users})
else:
user_dir = self.get_request_user_filepath(request, None, create_dir=False)
return web.json_response({
"storage": "server",
"migrated": os.path.exists(user_dir)
})
@routes.post("/users")
async def post_users(request):
body = await request.json()
username = body["username"]
if username in self.users.values():
return web.json_response({"error": "Duplicate username."}, status=400)
user_id = self.add_user(username)
return web.json_response(user_id)
@routes.get("/userdata")
async def listuserdata(request):
"""
List user data files in a specified directory.
This endpoint allows listing files in a user's data directory, with options for recursion,
full file information, and path splitting.
Query Parameters:
- dir (required): The directory to list files from.
- recurse (optional): If "true", recursively list files in subdirectories.
- full_info (optional): If "true", return detailed file information (path, size, modified time).
- split (optional): If "true", split file paths into components (only applies when full_info is false).
Returns:
- 400: If 'dir' parameter is missing.
- 403: If the requested path is not allowed.
- 404: If the requested directory does not exist.
- 200: JSON response with the list of files or file information.
The response format depends on the query parameters:
- Default: List of relative file paths.
- full_info=true: List of dictionaries with file details.
- split=true (and full_info=false): List of lists, each containing path components.
"""
directory = request.rel_url.query.get('dir', '')
if not directory:
return web.Response(status=400, text="Directory not provided")
path = self.get_request_user_filepath(request, directory)
if not path:
return web.Response(status=403, text="Invalid directory")
if not os.path.exists(path):
return web.Response(status=404, text="Directory not found")
recurse = request.rel_url.query.get('recurse', '').lower() == "true"
full_info = request.rel_url.query.get('full_info', '').lower() == "true"
split_path = request.rel_url.query.get('split', '').lower() == "true"
# Use different patterns based on whether we're recursing or not
if recurse:
pattern = os.path.join(glob.escape(path), '**', '*')
else:
pattern = os.path.join(glob.escape(path), '*')
def process_full_path(full_path: str) -> FileInfo | str | list[str]:
if full_info:
return get_file_info(full_path, path)
rel_path = os.path.relpath(full_path, path).replace(os.sep, '/')
if split_path:
return [rel_path] + rel_path.split('/')
return rel_path
results = [
process_full_path(full_path)
for full_path in glob.glob(pattern, recursive=recurse)
if os.path.isfile(full_path)
]
return web.json_response(results)
@routes.get("/v2/userdata")
async def list_userdata_v2(request):
"""
List files and directories in a user's data directory.
This endpoint provides a structured listing of contents within a specified
subdirectory of the user's data storage.
Query Parameters:
- path (optional): The relative path within the user's data directory
to list. Defaults to the root ('').
Returns:
- 400: If the requested path is invalid, outside the user's data directory, or is not a directory.
- 404: If the requested path does not exist.
- 403: If the user is invalid.
- 500: If there is an error reading the directory contents.
- 200: JSON response containing a list of file and directory objects.
Each object includes:
- name: The name of the file or directory.
- type: 'file' or 'directory'.
- path: The relative path from the user's data root.
- size (for files): The size in bytes.
- modified (for files): The last modified timestamp (Unix epoch).
"""
requested_rel_path = request.rel_url.query.get('path', '')
# URL-decode the path parameter
try:
requested_rel_path = parse.unquote(requested_rel_path)
except Exception as e:
logging.warning(f"Failed to decode path parameter: {requested_rel_path}, Error: {e}")
return web.Response(status=400, text="Invalid characters in path parameter")
# Check user validity and get the absolute path for the requested directory
try:
base_user_path = self.get_request_user_filepath(request, None, create_dir=False)
if requested_rel_path:
target_abs_path = self.get_request_user_filepath(request, requested_rel_path, create_dir=False)
else:
target_abs_path = base_user_path
except KeyError as e:
# Invalid user detected by get_request_user_id inside get_request_user_filepath
logging.warning(f"Access denied for user: {e}")
return web.Response(status=403, text="Invalid user specified in request")
if not target_abs_path:
# Path traversal or other issue detected by get_request_user_filepath
return web.Response(status=400, text="Invalid path requested")
# Handle cases where the user directory or target path doesn't exist
if not os.path.exists(target_abs_path):
# Check if it's the base user directory that's missing (new user case)
if target_abs_path == base_user_path:
# It's okay if the base user directory doesn't exist yet, return empty list
return web.json_response([])
else:
# A specific subdirectory was requested but doesn't exist
return web.Response(status=404, text="Requested path not found")
if not os.path.isdir(target_abs_path):
return web.Response(status=400, text="Requested path is not a directory")
results = []
try:
for root, dirs, files in os.walk(target_abs_path, topdown=True):
# Process directories
for dir_name in dirs:
dir_path = os.path.join(root, dir_name)
rel_path = os.path.relpath(dir_path, base_user_path).replace(os.sep, '/')
results.append({
"name": dir_name,
"path": rel_path,
"type": "directory"
})
# Process files
for file_name in files:
file_path = os.path.join(root, file_name)
rel_path = os.path.relpath(file_path, base_user_path).replace(os.sep, '/')
entry_info = {
"name": file_name,
"path": rel_path,
"type": "file"
}
try:
stats = os.stat(file_path) # Use os.stat for potentially better performance with os.walk
entry_info["size"] = stats.st_size
entry_info["modified"] = stats.st_mtime
except OSError as stat_error:
logging.warning(f"Could not stat file {file_path}: {stat_error}")
pass # Include file with available info
results.append(entry_info)
except OSError as e:
logging.error(f"Error listing directory {target_abs_path}: {e}")
return web.Response(status=500, text="Error reading directory contents")
# Sort results alphabetically, directories first then files
results.sort(key=lambda x: (x['type'] != 'directory', x['name'].lower()))
return web.json_response(results)
def get_user_data_path(request, check_exists = False, param = "file"):
file = request.match_info.get(param, None)
if not file:
return web.Response(status=400)
path = self.get_request_user_filepath(request, file)
if not path:
return web.Response(status=403)
if check_exists and not os.path.exists(path):
return web.Response(status=404)
return path
@routes.get("/userdata/{file}")
async def getuserdata(request):
path = get_user_data_path(request, check_exists=True)
if not isinstance(path, str):
return path
return web.FileResponse(path)
@routes.post("/userdata/{file}")
async def post_userdata(request):
"""
Upload or update a user data file.
This endpoint handles file uploads to a user's data directory, with options for
controlling overwrite behavior and response format.
Query Parameters:
- overwrite (optional): If "false", prevents overwriting existing files. Defaults to "true".
- full_info (optional): If "true", returns detailed file information (path, size, modified time).
If "false", returns only the relative file path.
Path Parameters:
- file: The target file path (URL encoded if necessary).
Returns:
- 400: If 'file' parameter is missing.
- 403: If the requested path is not allowed.
- 409: If overwrite=false and the file already exists.
- 200: JSON response with either:
- Full file information (if full_info=true)
- Relative file path (if full_info=false)
The request body should contain the raw file content to be written.
"""
path = get_user_data_path(request)
if not isinstance(path, str):
return path
overwrite = request.query.get("overwrite", 'true') != "false"
full_info = request.query.get('full_info', 'false').lower() == "true"
if not overwrite and os.path.exists(path):
return web.Response(status=409, text="File already exists")
try:
body = await request.read()
with open(path, "wb") as f:
f.write(body)
except OSError as e:
logging.warning(f"Error saving file '{path}': {e}")
return web.Response(
status=400,
reason="Invalid filename. Please avoid special characters like :\\/*?\"<>|"
)
user_path = self.get_request_user_filepath(request, None)
if full_info:
resp = get_file_info(path, user_path)
else:
resp = os.path.relpath(path, user_path)
return web.json_response(resp)
@routes.delete("/userdata/{file}")
async def delete_userdata(request):
path = get_user_data_path(request, check_exists=True)
if not isinstance(path, str):
return path
os.remove(path)
return web.Response(status=204)
@routes.post("/userdata/{file}/move/{dest}")
async def move_userdata(request):
"""
Move or rename a user data file.
This endpoint handles moving or renaming files within a user's data directory, with options for
controlling overwrite behavior and response format.
Path Parameters:
- file: The source file path (URL encoded if necessary)
- dest: The destination file path (URL encoded if necessary)
Query Parameters:
- overwrite (optional): If "false", prevents overwriting existing files. Defaults to "true".
- full_info (optional): If "true", returns detailed file information (path, size, modified time).
If "false", returns only the relative file path.
Returns:
- 400: If either 'file' or 'dest' parameter is missing
- 403: If either requested path is not allowed
- 404: If the source file does not exist
- 409: If overwrite=false and the destination file already exists
- 200: JSON response with either:
- Full file information (if full_info=true)
- Relative file path (if full_info=false)
"""
source = get_user_data_path(request, check_exists=True)
if not isinstance(source, str):
return source
dest = get_user_data_path(request, check_exists=False, param="dest")
if not isinstance(source, str):
return dest
overwrite = request.query.get("overwrite", 'true') != "false"
full_info = request.query.get('full_info', 'false').lower() == "true"
if not overwrite and os.path.exists(dest):
return web.Response(status=409, text="File already exists")
logging.info(f"moving '{source}' -> '{dest}'")
shutil.move(source, dest)
user_path = self.get_request_user_filepath(request, None)
if full_info:
resp = get_file_info(dest, user_path)
else:
resp = os.path.relpath(dest, user_path)
return web.json_response(resp)
from .wav2vec2 import Wav2Vec2Model
import comfy.model_management
import comfy.ops
import comfy.utils
import logging
import torchaudio
class AudioEncoderModel():
def __init__(self, config):
self.load_device = comfy.model_management.text_encoder_device()
offload_device = comfy.model_management.text_encoder_offload_device()
self.dtype = comfy.model_management.text_encoder_dtype(self.load_device)
self.model = Wav2Vec2Model(dtype=self.dtype, device=offload_device, operations=comfy.ops.manual_cast)
self.model.eval()
self.patcher = comfy.model_patcher.ModelPatcher(self.model, load_device=self.load_device, offload_device=offload_device)
self.model_sample_rate = 16000
def load_sd(self, sd):
return self.model.load_state_dict(sd, strict=False)
def get_sd(self):
return self.model.state_dict()
def encode_audio(self, audio, sample_rate):
comfy.model_management.load_model_gpu(self.patcher)
audio = torchaudio.functional.resample(audio, sample_rate, self.model_sample_rate)
out, all_layers = self.model(audio.to(self.load_device))
outputs = {}
outputs["encoded_audio"] = out
outputs["encoded_audio_all_layers"] = all_layers
return outputs
def load_audio_encoder_from_sd(sd, prefix=""):
audio_encoder = AudioEncoderModel(None)
sd = comfy.utils.state_dict_prefix_replace(sd, {"wav2vec2.": ""})
m, u = audio_encoder.load_sd(sd)
if len(m) > 0:
logging.warning("missing audio encoder: {}".format(m))
return audio_encoder
import torch
import torch.nn as nn
from comfy.ldm.modules.attention import optimized_attention_masked
class LayerNormConv(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride, bias=False, dtype=None, device=None, operations=None):
super().__init__()
self.conv = operations.Conv1d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, bias=bias, device=device, dtype=dtype)
self.layer_norm = operations.LayerNorm(out_channels, elementwise_affine=True, device=device, dtype=dtype)
def forward(self, x):
x = self.conv(x)
return torch.nn.functional.gelu(self.layer_norm(x.transpose(-2, -1)).transpose(-2, -1))
class ConvFeatureEncoder(nn.Module):
def __init__(self, conv_dim, dtype=None, device=None, operations=None):
super().__init__()
self.conv_layers = nn.ModuleList([
LayerNormConv(1, conv_dim, kernel_size=10, stride=5, bias=True, device=device, dtype=dtype, operations=operations),
LayerNormConv(conv_dim, conv_dim, kernel_size=3, stride=2, bias=True, device=device, dtype=dtype, operations=operations),
LayerNormConv(conv_dim, conv_dim, kernel_size=3, stride=2, bias=True, device=device, dtype=dtype, operations=operations),
LayerNormConv(conv_dim, conv_dim, kernel_size=3, stride=2, bias=True, device=device, dtype=dtype, operations=operations),
LayerNormConv(conv_dim, conv_dim, kernel_size=3, stride=2, bias=True, device=device, dtype=dtype, operations=operations),
LayerNormConv(conv_dim, conv_dim, kernel_size=2, stride=2, bias=True, device=device, dtype=dtype, operations=operations),
LayerNormConv(conv_dim, conv_dim, kernel_size=2, stride=2, bias=True, device=device, dtype=dtype, operations=operations),
])
def forward(self, x):
x = x.unsqueeze(1)
for conv in self.conv_layers:
x = conv(x)
return x.transpose(1, 2)
class FeatureProjection(nn.Module):
def __init__(self, conv_dim, embed_dim, dtype=None, device=None, operations=None):
super().__init__()
self.layer_norm = operations.LayerNorm(conv_dim, eps=1e-05, device=device, dtype=dtype)
self.projection = operations.Linear(conv_dim, embed_dim, device=device, dtype=dtype)
def forward(self, x):
x = self.layer_norm(x)
x = self.projection(x)
return x
class PositionalConvEmbedding(nn.Module):
def __init__(self, embed_dim=768, kernel_size=128, groups=16):
super().__init__()
self.conv = nn.Conv1d(
embed_dim,
embed_dim,
kernel_size=kernel_size,
padding=kernel_size // 2,
groups=groups,
)
self.conv = torch.nn.utils.parametrizations.weight_norm(self.conv, name="weight", dim=2)
self.activation = nn.GELU()
def forward(self, x):
x = x.transpose(1, 2)
x = self.conv(x)[:, :, :-1]
x = self.activation(x)
x = x.transpose(1, 2)
return x
class TransformerEncoder(nn.Module):
def __init__(
self,
embed_dim=768,
num_heads=12,
num_layers=12,
mlp_ratio=4.0,
dtype=None, device=None, operations=None
):
super().__init__()
self.pos_conv_embed = PositionalConvEmbedding(embed_dim=embed_dim)
self.layers = nn.ModuleList([
TransformerEncoderLayer(
embed_dim=embed_dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
device=device, dtype=dtype, operations=operations
)
for _ in range(num_layers)
])
self.layer_norm = operations.LayerNorm(embed_dim, eps=1e-05, device=device, dtype=dtype)
def forward(self, x, mask=None):
x = x + self.pos_conv_embed(x)
all_x = ()
for layer in self.layers:
all_x += (x,)
x = layer(x, mask)
x = self.layer_norm(x)
all_x += (x,)
return x, all_x
class Attention(nn.Module):
def __init__(self, embed_dim, num_heads, bias=True, dtype=None, device=None, operations=None):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.head_dim = embed_dim // num_heads
self.k_proj = operations.Linear(embed_dim, embed_dim, bias=bias, device=device, dtype=dtype)
self.v_proj = operations.Linear(embed_dim, embed_dim, bias=bias, device=device, dtype=dtype)
self.q_proj = operations.Linear(embed_dim, embed_dim, bias=bias, device=device, dtype=dtype)
self.out_proj = operations.Linear(embed_dim, embed_dim, bias=bias, device=device, dtype=dtype)
def forward(self, x, mask=None):
assert (mask is None) # TODO?
q = self.q_proj(x)
k = self.k_proj(x)
v = self.v_proj(x)
out = optimized_attention_masked(q, k, v, self.num_heads)
return self.out_proj(out)
class FeedForward(nn.Module):
def __init__(self, embed_dim, mlp_ratio, dtype=None, device=None, operations=None):
super().__init__()
self.intermediate_dense = operations.Linear(embed_dim, int(embed_dim * mlp_ratio), device=device, dtype=dtype)
self.output_dense = operations.Linear(int(embed_dim * mlp_ratio), embed_dim, device=device, dtype=dtype)
def forward(self, x):
x = self.intermediate_dense(x)
x = torch.nn.functional.gelu(x)
x = self.output_dense(x)
return x
class TransformerEncoderLayer(nn.Module):
def __init__(
self,
embed_dim=768,
num_heads=12,
mlp_ratio=4.0,
dtype=None, device=None, operations=None
):
super().__init__()
self.attention = Attention(embed_dim, num_heads, device=device, dtype=dtype, operations=operations)
self.layer_norm = operations.LayerNorm(embed_dim, device=device, dtype=dtype)
self.feed_forward = FeedForward(embed_dim, mlp_ratio, device=device, dtype=dtype, operations=operations)
self.final_layer_norm = operations.LayerNorm(embed_dim, device=device, dtype=dtype)
def forward(self, x, mask=None):
residual = x
x = self.layer_norm(x)
x = self.attention(x, mask=mask)
x = residual + x
x = x + self.feed_forward(self.final_layer_norm(x))
return x
class Wav2Vec2Model(nn.Module):
"""Complete Wav2Vec 2.0 model."""
def __init__(
self,
embed_dim=1024,
final_dim=256,
num_heads=16,
num_layers=24,
dtype=None, device=None, operations=None
):
super().__init__()
conv_dim = 512
self.feature_extractor = ConvFeatureEncoder(conv_dim, device=device, dtype=dtype, operations=operations)
self.feature_projection = FeatureProjection(conv_dim, embed_dim, device=device, dtype=dtype, operations=operations)
self.masked_spec_embed = nn.Parameter(torch.empty(embed_dim, device=device, dtype=dtype))
self.encoder = TransformerEncoder(
embed_dim=embed_dim,
num_heads=num_heads,
num_layers=num_layers,
device=device, dtype=dtype, operations=operations
)
def forward(self, x, mask_time_indices=None, return_dict=False):
x = torch.mean(x, dim=1)
x = (x - x.mean()) / torch.sqrt(x.var() + 1e-7)
features = self.feature_extractor(x)
features = self.feature_projection(features)
batch_size, seq_len, _ = features.shape
x, all_x = self.encoder(features)
return x, all_x
import pickle
load = pickle.load
class Empty:
pass
class Unpickler(pickle.Unpickler):
def find_class(self, module, name):
#TODO: safe unpickle
if module.startswith("pytorch_lightning"):
return Empty
return super().find_class(module, name)
#taken from: https://github.com/lllyasviel/ControlNet
#and modified
import torch
import torch.nn as nn
from ..ldm.modules.diffusionmodules.util import (
timestep_embedding,
)
from ..ldm.modules.attention import SpatialTransformer
from ..ldm.modules.diffusionmodules.openaimodel import UNetModel, TimestepEmbedSequential, ResBlock, Downsample
from ..ldm.util import exists
from .control_types import UNION_CONTROLNET_TYPES
from collections import OrderedDict
import comfy.ops
from comfy.ldm.modules.attention import optimized_attention
class OptimizedAttention(nn.Module):
def __init__(self, c, nhead, dropout=0.0, dtype=None, device=None, operations=None):
super().__init__()
self.heads = nhead
self.c = c
self.in_proj = operations.Linear(c, c * 3, bias=True, dtype=dtype, device=device)
self.out_proj = operations.Linear(c, c, bias=True, dtype=dtype, device=device)
def forward(self, x):
x = self.in_proj(x)
q, k, v = x.split(self.c, dim=2)
out = optimized_attention(q, k, v, self.heads)
return self.out_proj(out)
class QuickGELU(nn.Module):
def forward(self, x: torch.Tensor):
return x * torch.sigmoid(1.702 * x)
class ResBlockUnionControlnet(nn.Module):
def __init__(self, dim, nhead, dtype=None, device=None, operations=None):
super().__init__()
self.attn = OptimizedAttention(dim, nhead, dtype=dtype, device=device, operations=operations)
self.ln_1 = operations.LayerNorm(dim, dtype=dtype, device=device)
self.mlp = nn.Sequential(
OrderedDict([("c_fc", operations.Linear(dim, dim * 4, dtype=dtype, device=device)), ("gelu", QuickGELU()),
("c_proj", operations.Linear(dim * 4, dim, dtype=dtype, device=device))]))
self.ln_2 = operations.LayerNorm(dim, dtype=dtype, device=device)
def attention(self, x: torch.Tensor):
return self.attn(x)
def forward(self, x: torch.Tensor):
x = x + self.attention(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return x
class ControlledUnetModel(UNetModel):
#implemented in the ldm unet
pass
class ControlNet(nn.Module):
def __init__(
self,
image_size,
in_channels,
model_channels,
hint_channels,
num_res_blocks,
dropout=0,
channel_mult=(1, 2, 4, 8),
conv_resample=True,
dims=2,
num_classes=None,
use_checkpoint=False,
dtype=torch.float32,
num_heads=-1,
num_head_channels=-1,
num_heads_upsample=-1,
use_scale_shift_norm=False,
resblock_updown=False,
use_new_attention_order=False,
use_spatial_transformer=False, # custom transformer support
transformer_depth=1, # custom transformer support
context_dim=None, # custom transformer support
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
legacy=True,
disable_self_attentions=None,
num_attention_blocks=None,
disable_middle_self_attn=False,
use_linear_in_transformer=False,
adm_in_channels=None,
transformer_depth_middle=None,
transformer_depth_output=None,
attn_precision=None,
union_controlnet_num_control_type=None,
device=None,
operations=comfy.ops.disable_weight_init,
**kwargs,
):
super().__init__()
assert use_spatial_transformer == True, "use_spatial_transformer has to be true"
if use_spatial_transformer:
assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
if context_dim is not None:
assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
# from omegaconf.listconfig import ListConfig
# if type(context_dim) == ListConfig:
# context_dim = list(context_dim)
if num_heads_upsample == -1:
num_heads_upsample = num_heads
if num_heads == -1:
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
if num_head_channels == -1:
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
self.dims = dims
self.image_size = image_size
self.in_channels = in_channels
self.model_channels = model_channels
if isinstance(num_res_blocks, int):
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
else:
if len(num_res_blocks) != len(channel_mult):
raise ValueError("provide num_res_blocks either as an int (globally constant) or "
"as a list/tuple (per-level) with the same length as channel_mult")
self.num_res_blocks = num_res_blocks
if disable_self_attentions is not None:
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
assert len(disable_self_attentions) == len(channel_mult)
if num_attention_blocks is not None:
assert len(num_attention_blocks) == len(self.num_res_blocks)
assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
transformer_depth = transformer_depth[:]
self.dropout = dropout
self.channel_mult = channel_mult
self.conv_resample = conv_resample
self.num_classes = num_classes
self.use_checkpoint = use_checkpoint
self.dtype = dtype
self.num_heads = num_heads
self.num_head_channels = num_head_channels
self.num_heads_upsample = num_heads_upsample
self.predict_codebook_ids = n_embed is not None
time_embed_dim = model_channels * 4
self.time_embed = nn.Sequential(
operations.Linear(model_channels, time_embed_dim, dtype=self.dtype, device=device),
nn.SiLU(),
operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
)
if self.num_classes is not None:
if isinstance(self.num_classes, int):
self.label_emb = nn.Embedding(num_classes, time_embed_dim)
elif self.num_classes == "continuous":
self.label_emb = nn.Linear(1, time_embed_dim)
elif self.num_classes == "sequential":
assert adm_in_channels is not None
self.label_emb = nn.Sequential(
nn.Sequential(
operations.Linear(adm_in_channels, time_embed_dim, dtype=self.dtype, device=device),
nn.SiLU(),
operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
)
)
else:
raise ValueError()
self.input_blocks = nn.ModuleList(
[
TimestepEmbedSequential(
operations.conv_nd(dims, in_channels, model_channels, 3, padding=1, dtype=self.dtype, device=device)
)
]
)
self.zero_convs = nn.ModuleList([self.make_zero_conv(model_channels, operations=operations, dtype=self.dtype, device=device)])
self.input_hint_block = TimestepEmbedSequential(
operations.conv_nd(dims, hint_channels, 16, 3, padding=1, dtype=self.dtype, device=device),
nn.SiLU(),
operations.conv_nd(dims, 16, 16, 3, padding=1, dtype=self.dtype, device=device),
nn.SiLU(),
operations.conv_nd(dims, 16, 32, 3, padding=1, stride=2, dtype=self.dtype, device=device),
nn.SiLU(),
operations.conv_nd(dims, 32, 32, 3, padding=1, dtype=self.dtype, device=device),
nn.SiLU(),
operations.conv_nd(dims, 32, 96, 3, padding=1, stride=2, dtype=self.dtype, device=device),
nn.SiLU(),
operations.conv_nd(dims, 96, 96, 3, padding=1, dtype=self.dtype, device=device),
nn.SiLU(),
operations.conv_nd(dims, 96, 256, 3, padding=1, stride=2, dtype=self.dtype, device=device),
nn.SiLU(),
operations.conv_nd(dims, 256, model_channels, 3, padding=1, dtype=self.dtype, device=device)
)
self._feature_size = model_channels
input_block_chans = [model_channels]
ch = model_channels
ds = 1
for level, mult in enumerate(channel_mult):
for nr in range(self.num_res_blocks[level]):
layers = [
ResBlock(
ch,
time_embed_dim,
dropout,
out_channels=mult * model_channels,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
dtype=self.dtype,
device=device,
operations=operations,
)
]
ch = mult * model_channels
num_transformers = transformer_depth.pop(0)
if num_transformers > 0:
if num_head_channels == -1:
dim_head = ch // num_heads
else:
num_heads = ch // num_head_channels
dim_head = num_head_channels
if legacy:
#num_heads = 1
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
if exists(disable_self_attentions):
disabled_sa = disable_self_attentions[level]
else:
disabled_sa = False
if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
layers.append(
SpatialTransformer(
ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim,
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
use_checkpoint=use_checkpoint, attn_precision=attn_precision, dtype=self.dtype, device=device, operations=operations
)
)
self.input_blocks.append(TimestepEmbedSequential(*layers))
self.zero_convs.append(self.make_zero_conv(ch, operations=operations, dtype=self.dtype, device=device))
self._feature_size += ch
input_block_chans.append(ch)
if level != len(channel_mult) - 1:
out_ch = ch
self.input_blocks.append(
TimestepEmbedSequential(
ResBlock(
ch,
time_embed_dim,
dropout,
out_channels=out_ch,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
down=True,
dtype=self.dtype,
device=device,
operations=operations
)
if resblock_updown
else Downsample(
ch, conv_resample, dims=dims, out_channels=out_ch, dtype=self.dtype, device=device, operations=operations
)
)
)
ch = out_ch
input_block_chans.append(ch)
self.zero_convs.append(self.make_zero_conv(ch, operations=operations, dtype=self.dtype, device=device))
ds *= 2
self._feature_size += ch
if num_head_channels == -1:
dim_head = ch // num_heads
else:
num_heads = ch // num_head_channels
dim_head = num_head_channels
if legacy:
#num_heads = 1
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
mid_block = [
ResBlock(
ch,
time_embed_dim,
dropout,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
dtype=self.dtype,
device=device,
operations=operations
)]
if transformer_depth_middle >= 0:
mid_block += [SpatialTransformer( # always uses a self-attn
ch, num_heads, dim_head, depth=transformer_depth_middle, context_dim=context_dim,
disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
use_checkpoint=use_checkpoint, attn_precision=attn_precision, dtype=self.dtype, device=device, operations=operations
),
ResBlock(
ch,
time_embed_dim,
dropout,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
dtype=self.dtype,
device=device,
operations=operations
)]
self.middle_block = TimestepEmbedSequential(*mid_block)
self.middle_block_out = self.make_zero_conv(ch, operations=operations, dtype=self.dtype, device=device)
self._feature_size += ch
if union_controlnet_num_control_type is not None:
self.num_control_type = union_controlnet_num_control_type
num_trans_channel = 320
num_trans_head = 8
num_trans_layer = 1
num_proj_channel = 320
# task_scale_factor = num_trans_channel ** 0.5
self.task_embedding = nn.Parameter(torch.empty(self.num_control_type, num_trans_channel, dtype=self.dtype, device=device))
self.transformer_layes = nn.Sequential(*[ResBlockUnionControlnet(num_trans_channel, num_trans_head, dtype=self.dtype, device=device, operations=operations) for _ in range(num_trans_layer)])
self.spatial_ch_projs = operations.Linear(num_trans_channel, num_proj_channel, dtype=self.dtype, device=device)
#-----------------------------------------------------------------------------------------------------
control_add_embed_dim = 256
class ControlAddEmbedding(nn.Module):
def __init__(self, in_dim, out_dim, num_control_type, dtype=None, device=None, operations=None):
super().__init__()
self.num_control_type = num_control_type
self.in_dim = in_dim
self.linear_1 = operations.Linear(in_dim * num_control_type, out_dim, dtype=dtype, device=device)
self.linear_2 = operations.Linear(out_dim, out_dim, dtype=dtype, device=device)
def forward(self, control_type, dtype, device):
c_type = torch.zeros((self.num_control_type,), device=device)
c_type[control_type] = 1.0
c_type = timestep_embedding(c_type.flatten(), self.in_dim, repeat_only=False).to(dtype).reshape((-1, self.num_control_type * self.in_dim))
return self.linear_2(torch.nn.functional.silu(self.linear_1(c_type)))
self.control_add_embedding = ControlAddEmbedding(control_add_embed_dim, time_embed_dim, self.num_control_type, dtype=self.dtype, device=device, operations=operations)
else:
self.task_embedding = None
self.control_add_embedding = None
def union_controlnet_merge(self, hint, control_type, emb, context):
# Equivalent to: https://github.com/xinsir6/ControlNetPlus/tree/main
inputs = []
condition_list = []
for idx in range(min(1, len(control_type))):
controlnet_cond = self.input_hint_block(hint[idx], emb, context)
feat_seq = torch.mean(controlnet_cond, dim=(2, 3))
if idx < len(control_type):
feat_seq += self.task_embedding[control_type[idx]].to(dtype=feat_seq.dtype, device=feat_seq.device)
inputs.append(feat_seq.unsqueeze(1))
condition_list.append(controlnet_cond)
x = torch.cat(inputs, dim=1)
x = self.transformer_layes(x)
controlnet_cond_fuser = None
for idx in range(len(control_type)):
alpha = self.spatial_ch_projs(x[:, idx])
alpha = alpha.unsqueeze(-1).unsqueeze(-1)
o = condition_list[idx] + alpha
if controlnet_cond_fuser is None:
controlnet_cond_fuser = o
else:
controlnet_cond_fuser += o
return controlnet_cond_fuser
def make_zero_conv(self, channels, operations=None, dtype=None, device=None):
return TimestepEmbedSequential(operations.conv_nd(self.dims, channels, channels, 1, padding=0, dtype=dtype, device=device))
def forward(self, x, hint, timesteps, context, y=None, **kwargs):
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype)
emb = self.time_embed(t_emb)
guided_hint = None
if self.control_add_embedding is not None: #Union Controlnet
control_type = kwargs.get("control_type", [])
if any([c >= self.num_control_type for c in control_type]):
max_type = max(control_type)
max_type_name = {
v: k for k, v in UNION_CONTROLNET_TYPES.items()
}[max_type]
raise ValueError(
f"Control type {max_type_name}({max_type}) is out of range for the number of control types" +
f"({self.num_control_type}) supported.\n" +
"Please consider using the ProMax ControlNet Union model.\n" +
"https://huggingface.co/xinsir/controlnet-union-sdxl-1.0/tree/main"
)
emb += self.control_add_embedding(control_type, emb.dtype, emb.device)
if len(control_type) > 0:
if len(hint.shape) < 5:
hint = hint.unsqueeze(dim=0)
guided_hint = self.union_controlnet_merge(hint, control_type, emb, context)
if guided_hint is None:
guided_hint = self.input_hint_block(hint, emb, context)
out_output = []
out_middle = []
if self.num_classes is not None:
assert y.shape[0] == x.shape[0]
emb = emb + self.label_emb(y)
h = x
for module, zero_conv in zip(self.input_blocks, self.zero_convs):
if guided_hint is not None:
h = module(h, emb, context)
h += guided_hint
guided_hint = None
else:
h = module(h, emb, context)
out_output.append(zero_conv(h, emb, context))
h = self.middle_block(h, emb, context)
out_middle.append(self.middle_block_out(h, emb, context))
return {"middle": out_middle, "output": out_output}
UNION_CONTROLNET_TYPES = {
"openpose": 0,
"depth": 1,
"hed/pidi/scribble/ted": 2,
"canny/lineart/anime_lineart/mlsd": 3,
"normal": 4,
"segment": 5,
"tile": 6,
"repaint": 7,
}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment