Commit 75f45050 authored by jerrrrry's avatar jerrrrry
Browse files

Initial commit

parents
import torch
import math
import comfy.utils
import logging
class CONDRegular:
def __init__(self, cond):
self.cond = cond
def _copy_with(self, cond):
return self.__class__(cond)
def process_cond(self, batch_size, **kwargs):
return self._copy_with(comfy.utils.repeat_to_batch_size(self.cond, batch_size))
def can_concat(self, other):
if self.cond.shape != other.cond.shape:
return False
if self.cond.device != other.cond.device:
logging.warning("WARNING: conds not on same device, skipping concat.")
return False
return True
def concat(self, others):
conds = [self.cond]
for x in others:
conds.append(x.cond)
return torch.cat(conds)
def size(self):
return list(self.cond.size())
class CONDNoiseShape(CONDRegular):
def process_cond(self, batch_size, area, **kwargs):
data = self.cond
if area is not None:
dims = len(area) // 2
for i in range(dims):
data = data.narrow(i + 2, area[i + dims], area[i])
return self._copy_with(comfy.utils.repeat_to_batch_size(data, batch_size))
class CONDCrossAttn(CONDRegular):
def can_concat(self, other):
s1 = self.cond.shape
s2 = other.cond.shape
if s1 != s2:
if s1[0] != s2[0] or s1[2] != s2[2]: #these 2 cases should not happen
return False
mult_min = math.lcm(s1[1], s2[1])
diff = mult_min // min(s1[1], s2[1])
if diff > 4: #arbitrary limit on the padding because it's probably going to impact performance negatively if it's too much
return False
if self.cond.device != other.cond.device:
logging.warning("WARNING: conds not on same device: skipping concat.")
return False
return True
def concat(self, others):
conds = [self.cond]
crossattn_max_len = self.cond.shape[1]
for x in others:
c = x.cond
crossattn_max_len = math.lcm(crossattn_max_len, c.shape[1])
conds.append(c)
out = []
for c in conds:
if c.shape[1] < crossattn_max_len:
c = c.repeat(1, crossattn_max_len // c.shape[1], 1) #padding with repeat doesn't change result
out.append(c)
return torch.cat(out)
class CONDConstant(CONDRegular):
def __init__(self, cond):
self.cond = cond
def process_cond(self, batch_size, **kwargs):
return self._copy_with(self.cond)
def can_concat(self, other):
if self.cond != other.cond:
return False
return True
def concat(self, others):
return self.cond
def size(self):
return [1]
class CONDList(CONDRegular):
def __init__(self, cond):
self.cond = cond
def process_cond(self, batch_size, **kwargs):
out = []
for c in self.cond:
out.append(comfy.utils.repeat_to_batch_size(c, batch_size))
return self._copy_with(out)
def can_concat(self, other):
if len(self.cond) != len(other.cond):
return False
for i in range(len(self.cond)):
if self.cond[i].shape != other.cond[i].shape:
return False
return True
def concat(self, others):
out = []
for i in range(len(self.cond)):
o = [self.cond[i]]
for x in others:
o.append(x.cond[i])
out.append(torch.cat(o))
return out
def size(self): # hackish implementation to make the mem estimation work
o = 0
c = 1
for c in self.cond:
size = c.size()
o += math.prod(size)
if len(size) > 1:
c = size[1]
return [1, c, o // c]
from __future__ import annotations
from typing import TYPE_CHECKING, Callable
import torch
import numpy as np
import collections
from dataclasses import dataclass
from abc import ABC, abstractmethod
import logging
import comfy.model_management
import comfy.patcher_extension
if TYPE_CHECKING:
from comfy.model_base import BaseModel
from comfy.model_patcher import ModelPatcher
from comfy.controlnet import ControlBase
class ContextWindowABC(ABC):
def __init__(self):
...
@abstractmethod
def get_tensor(self, full: torch.Tensor) -> torch.Tensor:
"""
Get torch.Tensor applicable to current window.
"""
raise NotImplementedError("Not implemented.")
@abstractmethod
def add_window(self, full: torch.Tensor, to_add: torch.Tensor) -> torch.Tensor:
"""
Apply torch.Tensor of window to the full tensor, in place. Returns reference to updated full tensor, not a copy.
"""
raise NotImplementedError("Not implemented.")
class ContextHandlerABC(ABC):
def __init__(self):
...
@abstractmethod
def should_use_context(self, model: BaseModel, conds: list[list[dict]], x_in: torch.Tensor, timestep: torch.Tensor, model_options: dict[str]) -> bool:
raise NotImplementedError("Not implemented.")
@abstractmethod
def get_resized_cond(self, cond_in: list[dict], x_in: torch.Tensor, window: ContextWindowABC, device=None) -> list:
raise NotImplementedError("Not implemented.")
@abstractmethod
def execute(self, calc_cond_batch: Callable, model: BaseModel, conds: list[list[dict]], x_in: torch.Tensor, timestep: torch.Tensor, model_options: dict[str]):
raise NotImplementedError("Not implemented.")
class IndexListContextWindow(ContextWindowABC):
def __init__(self, index_list: list[int], dim: int=0):
self.index_list = index_list
self.context_length = len(index_list)
self.dim = dim
def get_tensor(self, full: torch.Tensor, device=None, dim=None) -> torch.Tensor:
if dim is None:
dim = self.dim
if dim == 0 and full.shape[dim] == 1:
return full
idx = [slice(None)] * dim + [self.index_list]
return full[idx].to(device)
def add_window(self, full: torch.Tensor, to_add: torch.Tensor, dim=None) -> torch.Tensor:
if dim is None:
dim = self.dim
idx = [slice(None)] * dim + [self.index_list]
full[idx] += to_add
return full
class IndexListCallbacks:
EVALUATE_CONTEXT_WINDOWS = "evaluate_context_windows"
COMBINE_CONTEXT_WINDOW_RESULTS = "combine_context_window_results"
EXECUTE_START = "execute_start"
EXECUTE_CLEANUP = "execute_cleanup"
def init_callbacks(self):
return {}
@dataclass
class ContextSchedule:
name: str
func: Callable
@dataclass
class ContextFuseMethod:
name: str
func: Callable
ContextResults = collections.namedtuple("ContextResults", ['window_idx', 'sub_conds_out', 'sub_conds', 'window'])
class IndexListContextHandler(ContextHandlerABC):
def __init__(self, context_schedule: ContextSchedule, fuse_method: ContextFuseMethod, context_length: int=1, context_overlap: int=0, context_stride: int=1, closed_loop=False, dim=0):
self.context_schedule = context_schedule
self.fuse_method = fuse_method
self.context_length = context_length
self.context_overlap = context_overlap
self.context_stride = context_stride
self.closed_loop = closed_loop
self.dim = dim
self._step = 0
self.callbacks = {}
def should_use_context(self, model: BaseModel, conds: list[list[dict]], x_in: torch.Tensor, timestep: torch.Tensor, model_options: dict[str]) -> bool:
# for now, assume first dim is batch - should have stored on BaseModel in actual implementation
if x_in.size(self.dim) > self.context_length:
logging.info(f"Using context windows {self.context_length} for {x_in.size(self.dim)} frames.")
return True
return False
def prepare_control_objects(self, control: ControlBase, device=None) -> ControlBase:
if control.previous_controlnet is not None:
self.prepare_control_objects(control.previous_controlnet, device)
return control
def get_resized_cond(self, cond_in: list[dict], x_in: torch.Tensor, window: IndexListContextWindow, device=None) -> list:
if cond_in is None:
return None
# reuse or resize cond items to match context requirements
resized_cond = []
# cond object is a list containing a dict - outer list is irrelevant, so just loop through it
for actual_cond in cond_in:
resized_actual_cond = actual_cond.copy()
# now we are in the inner dict - "pooled_output" is a tensor, "control" is a ControlBase object, "model_conds" is dictionary
for key in actual_cond:
try:
cond_item = actual_cond[key]
if isinstance(cond_item, torch.Tensor):
# check that tensor is the expected length - x.size(0)
if self.dim < cond_item.ndim and cond_item.size(self.dim) == x_in.size(self.dim):
# if so, it's subsetting time - tell controls the expected indeces so they can handle them
actual_cond_item = window.get_tensor(cond_item)
resized_actual_cond[key] = actual_cond_item.to(device)
else:
resized_actual_cond[key] = cond_item.to(device)
# look for control
elif key == "control":
resized_actual_cond[key] = self.prepare_control_objects(cond_item, device)
elif isinstance(cond_item, dict):
new_cond_item = cond_item.copy()
# when in dictionary, look for tensors and CONDCrossAttn [comfy/conds.py] (has cond attr that is a tensor)
for cond_key, cond_value in new_cond_item.items():
if isinstance(cond_value, torch.Tensor):
if cond_value.ndim < self.dim and cond_value.size(0) == x_in.size(self.dim):
new_cond_item[cond_key] = window.get_tensor(cond_value, device)
# if has cond that is a Tensor, check if needs to be subset
elif hasattr(cond_value, "cond") and isinstance(cond_value.cond, torch.Tensor):
if cond_value.cond.ndim < self.dim and cond_value.cond.size(0) == x_in.size(self.dim):
new_cond_item[cond_key] = cond_value._copy_with(window.get_tensor(cond_value.cond, device))
elif cond_key == "num_video_frames": # for SVD
new_cond_item[cond_key] = cond_value._copy_with(cond_value.cond)
new_cond_item[cond_key].cond = window.context_length
resized_actual_cond[key] = new_cond_item
else:
resized_actual_cond[key] = cond_item
finally:
del cond_item # just in case to prevent VRAM issues
resized_cond.append(resized_actual_cond)
return resized_cond
def set_step(self, timestep: torch.Tensor, model_options: dict[str]):
mask = torch.isclose(model_options["transformer_options"]["sample_sigmas"], timestep, rtol=0.0001)
matches = torch.nonzero(mask)
if torch.numel(matches) == 0:
raise Exception("No sample_sigmas matched current timestep; something went wrong.")
self._step = int(matches[0].item())
def get_context_windows(self, model: BaseModel, x_in: torch.Tensor, model_options: dict[str]) -> list[IndexListContextWindow]:
full_length = x_in.size(self.dim) # TODO: choose dim based on model
context_windows = self.context_schedule.func(full_length, self, model_options)
context_windows = [IndexListContextWindow(window, dim=self.dim) for window in context_windows]
return context_windows
def execute(self, calc_cond_batch: Callable, model: BaseModel, conds: list[list[dict]], x_in: torch.Tensor, timestep: torch.Tensor, model_options: dict[str]):
self.set_step(timestep, model_options)
context_windows = self.get_context_windows(model, x_in, model_options)
enumerated_context_windows = list(enumerate(context_windows))
conds_final = [torch.zeros_like(x_in) for _ in conds]
if self.fuse_method.name == ContextFuseMethods.RELATIVE:
counts_final = [torch.ones(get_shape_for_dim(x_in, self.dim), device=x_in.device) for _ in conds]
else:
counts_final = [torch.zeros(get_shape_for_dim(x_in, self.dim), device=x_in.device) for _ in conds]
biases_final = [([0.0] * x_in.shape[self.dim]) for _ in conds]
for callback in comfy.patcher_extension.get_all_callbacks(IndexListCallbacks.EXECUTE_START, self.callbacks):
callback(self, model, x_in, conds, timestep, model_options)
for enum_window in enumerated_context_windows:
results = self.evaluate_context_windows(calc_cond_batch, model, x_in, conds, timestep, [enum_window], model_options)
for result in results:
self.combine_context_window_results(x_in, result.sub_conds_out, result.sub_conds, result.window, result.window_idx, len(enumerated_context_windows), timestep,
conds_final, counts_final, biases_final)
try:
# finalize conds
if self.fuse_method.name == ContextFuseMethods.RELATIVE:
# relative is already normalized, so return as is
del counts_final
return conds_final
else:
# normalize conds via division by context usage counts
for i in range(len(conds_final)):
conds_final[i] /= counts_final[i]
del counts_final
return conds_final
finally:
for callback in comfy.patcher_extension.get_all_callbacks(IndexListCallbacks.EXECUTE_CLEANUP, self.callbacks):
callback(self, model, x_in, conds, timestep, model_options)
def evaluate_context_windows(self, calc_cond_batch: Callable, model: BaseModel, x_in: torch.Tensor, conds, timestep: torch.Tensor, enumerated_context_windows: list[tuple[int, IndexListContextWindow]],
model_options, device=None, first_device=None):
results: list[ContextResults] = []
for window_idx, window in enumerated_context_windows:
# allow processing to end between context window executions for faster Cancel
comfy.model_management.throw_exception_if_processing_interrupted()
for callback in comfy.patcher_extension.get_all_callbacks(IndexListCallbacks.EVALUATE_CONTEXT_WINDOWS, self.callbacks):
callback(self, model, x_in, conds, timestep, model_options, window_idx, window, model_options, device, first_device)
# update exposed params
model_options["transformer_options"]["context_window"] = window
# get subsections of x, timestep, conds
sub_x = window.get_tensor(x_in, device)
sub_timestep = window.get_tensor(timestep, device, dim=0)
sub_conds = [self.get_resized_cond(cond, x_in, window, device) for cond in conds]
sub_conds_out = calc_cond_batch(model, sub_conds, sub_x, sub_timestep, model_options)
if device is not None:
for i in range(len(sub_conds_out)):
sub_conds_out[i] = sub_conds_out[i].to(x_in.device)
results.append(ContextResults(window_idx, sub_conds_out, sub_conds, window))
return results
def combine_context_window_results(self, x_in: torch.Tensor, sub_conds_out, sub_conds, window: IndexListContextWindow, window_idx: int, total_windows: int, timestep: torch.Tensor,
conds_final: list[torch.Tensor], counts_final: list[torch.Tensor], biases_final: list[torch.Tensor]):
if self.fuse_method.name == ContextFuseMethods.RELATIVE:
for pos, idx in enumerate(window.index_list):
# bias is the influence of a specific index in relation to the whole context window
bias = 1 - abs(idx - (window.index_list[0] + window.index_list[-1]) / 2) / ((window.index_list[-1] - window.index_list[0] + 1e-2) / 2)
bias = max(1e-2, bias)
# take weighted average relative to total bias of current idx
for i in range(len(sub_conds_out)):
bias_total = biases_final[i][idx]
prev_weight = (bias_total / (bias_total + bias))
new_weight = (bias / (bias_total + bias))
# account for dims of tensors
idx_window = [slice(None)] * self.dim + [idx]
pos_window = [slice(None)] * self.dim + [pos]
# apply new values
conds_final[i][idx_window] = conds_final[i][idx_window] * prev_weight + sub_conds_out[i][pos_window] * new_weight
biases_final[i][idx] = bias_total + bias
else:
# add conds and counts based on weights of fuse method
weights = get_context_weights(window.context_length, x_in.shape[self.dim], window.index_list, self, sigma=timestep)
weights_tensor = match_weights_to_dim(weights, x_in, self.dim, device=x_in.device)
for i in range(len(sub_conds_out)):
window.add_window(conds_final[i], sub_conds_out[i] * weights_tensor)
window.add_window(counts_final[i], weights_tensor)
for callback in comfy.patcher_extension.get_all_callbacks(IndexListCallbacks.COMBINE_CONTEXT_WINDOW_RESULTS, self.callbacks):
callback(self, x_in, sub_conds_out, sub_conds, window, window_idx, total_windows, timestep, conds_final, counts_final, biases_final)
def _prepare_sampling_wrapper(executor, model, noise_shape: torch.Tensor, *args, **kwargs):
# limit noise_shape length to context_length for more accurate vram use estimation
model_options = kwargs.get("model_options", None)
if model_options is None:
raise Exception("model_options not found in prepare_sampling_wrapper; this should never happen, something went wrong.")
handler: IndexListContextHandler = model_options.get("context_handler", None)
if handler is not None:
noise_shape = list(noise_shape)
noise_shape[handler.dim] = min(noise_shape[handler.dim], handler.context_length)
return executor(model, noise_shape, *args, **kwargs)
def create_prepare_sampling_wrapper(model: ModelPatcher):
model.add_wrapper_with_key(
comfy.patcher_extension.WrappersMP.PREPARE_SAMPLING,
"ContextWindows_prepare_sampling",
_prepare_sampling_wrapper
)
def match_weights_to_dim(weights: list[float], x_in: torch.Tensor, dim: int, device=None) -> torch.Tensor:
total_dims = len(x_in.shape)
weights_tensor = torch.Tensor(weights).to(device=device)
for _ in range(dim):
weights_tensor = weights_tensor.unsqueeze(0)
for _ in range(total_dims - dim - 1):
weights_tensor = weights_tensor.unsqueeze(-1)
return weights_tensor
def get_shape_for_dim(x_in: torch.Tensor, dim: int) -> list[int]:
total_dims = len(x_in.shape)
shape = []
for _ in range(dim):
shape.append(1)
shape.append(x_in.shape[dim])
for _ in range(total_dims - dim - 1):
shape.append(1)
return shape
class ContextSchedules:
UNIFORM_LOOPED = "looped_uniform"
UNIFORM_STANDARD = "standard_uniform"
STATIC_STANDARD = "standard_static"
BATCHED = "batched"
# from https://github.com/neggles/animatediff-cli/blob/main/src/animatediff/pipelines/context.py
def create_windows_uniform_looped(num_frames: int, handler: IndexListContextHandler, model_options: dict[str]):
windows = []
if num_frames < handler.context_length:
windows.append(list(range(num_frames)))
return windows
context_stride = min(handler.context_stride, int(np.ceil(np.log2(num_frames / handler.context_length))) + 1)
# obtain uniform windows as normal, looping and all
for context_step in 1 << np.arange(context_stride):
pad = int(round(num_frames * ordered_halving(handler._step)))
for j in range(
int(ordered_halving(handler._step) * context_step) + pad,
num_frames + pad + (0 if handler.closed_loop else -handler.context_overlap),
(handler.context_length * context_step - handler.context_overlap),
):
windows.append([e % num_frames for e in range(j, j + handler.context_length * context_step, context_step)])
return windows
def create_windows_uniform_standard(num_frames: int, handler: IndexListContextHandler, model_options: dict[str]):
# unlike looped, uniform_straight does NOT allow windows that loop back to the beginning;
# instead, they get shifted to the corresponding end of the frames.
# in the case that a window (shifted or not) is identical to the previous one, it gets skipped.
windows = []
if num_frames <= handler.context_length:
windows.append(list(range(num_frames)))
return windows
context_stride = min(handler.context_stride, int(np.ceil(np.log2(num_frames / handler.context_length))) + 1)
# first, obtain uniform windows as normal, looping and all
for context_step in 1 << np.arange(context_stride):
pad = int(round(num_frames * ordered_halving(handler._step)))
for j in range(
int(ordered_halving(handler._step) * context_step) + pad,
num_frames + pad + (-handler.context_overlap),
(handler.context_length * context_step - handler.context_overlap),
):
windows.append([e % num_frames for e in range(j, j + handler.context_length * context_step, context_step)])
# now that windows are created, shift any windows that loop, and delete duplicate windows
delete_idxs = []
win_i = 0
while win_i < len(windows):
# if window is rolls over itself, need to shift it
is_roll, roll_idx = does_window_roll_over(windows[win_i], num_frames)
if is_roll:
roll_val = windows[win_i][roll_idx] # roll_val might not be 0 for windows of higher strides
shift_window_to_end(windows[win_i], num_frames=num_frames)
# check if next window (cyclical) is missing roll_val
if roll_val not in windows[(win_i+1) % len(windows)]:
# need to insert new window here - just insert window starting at roll_val
windows.insert(win_i+1, list(range(roll_val, roll_val + handler.context_length)))
# delete window if it's not unique
for pre_i in range(0, win_i):
if windows[win_i] == windows[pre_i]:
delete_idxs.append(win_i)
break
win_i += 1
# reverse delete_idxs so that they will be deleted in an order that doesn't break idx correlation
delete_idxs.reverse()
for i in delete_idxs:
windows.pop(i)
return windows
def create_windows_static_standard(num_frames: int, handler: IndexListContextHandler, model_options: dict[str]):
windows = []
if num_frames <= handler.context_length:
windows.append(list(range(num_frames)))
return windows
# always return the same set of windows
delta = handler.context_length - handler.context_overlap
for start_idx in range(0, num_frames, delta):
# if past the end of frames, move start_idx back to allow same context_length
ending = start_idx + handler.context_length
if ending >= num_frames:
final_delta = ending - num_frames
final_start_idx = start_idx - final_delta
windows.append(list(range(final_start_idx, final_start_idx + handler.context_length)))
break
windows.append(list(range(start_idx, start_idx + handler.context_length)))
return windows
def create_windows_batched(num_frames: int, handler: IndexListContextHandler, model_options: dict[str]):
windows = []
if num_frames <= handler.context_length:
windows.append(list(range(num_frames)))
return windows
# always return the same set of windows;
# no overlap, just cut up based on context_length;
# last window size will be different if num_frames % opts.context_length != 0
for start_idx in range(0, num_frames, handler.context_length):
windows.append(list(range(start_idx, min(start_idx + handler.context_length, num_frames))))
return windows
def create_windows_default(num_frames: int, handler: IndexListContextHandler):
return [list(range(num_frames))]
CONTEXT_MAPPING = {
ContextSchedules.UNIFORM_LOOPED: create_windows_uniform_looped,
ContextSchedules.UNIFORM_STANDARD: create_windows_uniform_standard,
ContextSchedules.STATIC_STANDARD: create_windows_static_standard,
ContextSchedules.BATCHED: create_windows_batched,
}
def get_matching_context_schedule(context_schedule: str) -> ContextSchedule:
func = CONTEXT_MAPPING.get(context_schedule, None)
if func is None:
raise ValueError(f"Unknown context_schedule '{context_schedule}'.")
return ContextSchedule(context_schedule, func)
def get_context_weights(length: int, full_length: int, idxs: list[int], handler: IndexListContextHandler, sigma: torch.Tensor=None):
return handler.fuse_method.func(length, sigma=sigma, handler=handler, full_length=full_length, idxs=idxs)
def create_weights_flat(length: int, **kwargs) -> list[float]:
# weight is the same for all
return [1.0] * length
def create_weights_pyramid(length: int, **kwargs) -> list[float]:
# weight is based on the distance away from the edge of the context window;
# based on weighted average concept in FreeNoise paper
if length % 2 == 0:
max_weight = length // 2
weight_sequence = list(range(1, max_weight + 1, 1)) + list(range(max_weight, 0, -1))
else:
max_weight = (length + 1) // 2
weight_sequence = list(range(1, max_weight, 1)) + [max_weight] + list(range(max_weight - 1, 0, -1))
return weight_sequence
def create_weights_overlap_linear(length: int, full_length: int, idxs: list[int], handler: IndexListContextHandler, **kwargs):
# based on code in Kijai's WanVideoWrapper: https://github.com/kijai/ComfyUI-WanVideoWrapper/blob/dbb2523b37e4ccdf45127e5ae33e31362f755c8e/nodes.py#L1302
# only expected overlap is given different weights
weights_torch = torch.ones((length))
# blend left-side on all except first window
if min(idxs) > 0:
ramp_up = torch.linspace(1e-37, 1, handler.context_overlap)
weights_torch[:handler.context_overlap] = ramp_up
# blend right-side on all except last window
if max(idxs) < full_length-1:
ramp_down = torch.linspace(1, 1e-37, handler.context_overlap)
weights_torch[-handler.context_overlap:] = ramp_down
return weights_torch
class ContextFuseMethods:
FLAT = "flat"
PYRAMID = "pyramid"
RELATIVE = "relative"
OVERLAP_LINEAR = "overlap-linear"
LIST = [PYRAMID, FLAT, OVERLAP_LINEAR]
LIST_STATIC = [PYRAMID, RELATIVE, FLAT, OVERLAP_LINEAR]
FUSE_MAPPING = {
ContextFuseMethods.FLAT: create_weights_flat,
ContextFuseMethods.PYRAMID: create_weights_pyramid,
ContextFuseMethods.RELATIVE: create_weights_pyramid,
ContextFuseMethods.OVERLAP_LINEAR: create_weights_overlap_linear,
}
def get_matching_fuse_method(fuse_method: str) -> ContextFuseMethod:
func = FUSE_MAPPING.get(fuse_method, None)
if func is None:
raise ValueError(f"Unknown fuse_method '{fuse_method}'.")
return ContextFuseMethod(fuse_method, func)
# Returns fraction that has denominator that is a power of 2
def ordered_halving(val):
# get binary value, padded with 0s for 64 bits
bin_str = f"{val:064b}"
# flip binary value, padding included
bin_flip = bin_str[::-1]
# convert binary to int
as_int = int(bin_flip, 2)
# divide by 1 << 64, equivalent to 2**64, or 18446744073709551616,
# or b10000000000000000000000000000000000000000000000000000000000000000 (1 with 64 zero's)
return as_int / (1 << 64)
def get_missing_indexes(windows: list[list[int]], num_frames: int) -> list[int]:
all_indexes = list(range(num_frames))
for w in windows:
for val in w:
try:
all_indexes.remove(val)
except ValueError:
pass
return all_indexes
def does_window_roll_over(window: list[int], num_frames: int) -> tuple[bool, int]:
prev_val = -1
for i, val in enumerate(window):
val = val % num_frames
if val < prev_val:
return True, i
prev_val = val
return False, -1
def shift_window_to_start(window: list[int], num_frames: int):
start_val = window[0]
for i in range(len(window)):
# 1) subtract each element by start_val to move vals relative to the start of all frames
# 2) add num_frames and take modulus to get adjusted vals
window[i] = ((window[i] - start_val) + num_frames) % num_frames
def shift_window_to_end(window: list[int], num_frames: int):
# 1) shift window to start
shift_window_to_start(window, num_frames)
end_val = window[-1]
end_delta = num_frames - end_val - 1
for i in range(len(window)):
# 2) add end_delta to each val to slide windows to end
window[i] = window[i] + end_delta
"""
This file is part of ComfyUI.
Copyright (C) 2024 Comfy
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
"""
import torch
from enum import Enum
import math
import os
import logging
import comfy.utils
import comfy.model_management
import comfy.model_detection
import comfy.model_patcher
import comfy.ops
import comfy.latent_formats
import comfy.model_base
import comfy.cldm.cldm
import comfy.t2i_adapter.adapter
import comfy.ldm.cascade.controlnet
import comfy.cldm.mmdit
import comfy.ldm.hydit.controlnet
import comfy.ldm.flux.controlnet
import comfy.ldm.qwen_image.controlnet
import comfy.cldm.dit_embedder
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from comfy.hooks import HookGroup
def broadcast_image_to(tensor, target_batch_size, batched_number):
current_batch_size = tensor.shape[0]
if current_batch_size == 1:
return tensor
per_batch = target_batch_size // batched_number
tensor = tensor[:per_batch]
if per_batch > tensor.shape[0]:
tensor = torch.cat([tensor] * (per_batch // tensor.shape[0]) + [tensor[:(per_batch % tensor.shape[0])]], dim=0)
current_batch_size = tensor.shape[0]
if current_batch_size == target_batch_size:
return tensor
else:
return torch.cat([tensor] * batched_number, dim=0)
class StrengthType(Enum):
CONSTANT = 1
LINEAR_UP = 2
class ControlBase:
def __init__(self):
self.cond_hint_original = None
self.cond_hint = None
self.strength = 1.0
self.timestep_percent_range = (0.0, 1.0)
self.latent_format = None
self.vae = None
self.global_average_pooling = False
self.timestep_range = None
self.compression_ratio = 8
self.upscale_algorithm = 'nearest-exact'
self.extra_args = {}
self.previous_controlnet = None
self.extra_conds = []
self.strength_type = StrengthType.CONSTANT
self.concat_mask = False
self.extra_concat_orig = []
self.extra_concat = None
self.extra_hooks: HookGroup = None
self.preprocess_image = lambda a: a
def set_cond_hint(self, cond_hint, strength=1.0, timestep_percent_range=(0.0, 1.0), vae=None, extra_concat=[]):
self.cond_hint_original = cond_hint
self.strength = strength
self.timestep_percent_range = timestep_percent_range
if self.latent_format is not None:
if vae is None:
logging.warning("WARNING: no VAE provided to the controlnet apply node when this controlnet requires one.")
self.vae = vae
self.extra_concat_orig = extra_concat.copy()
if self.concat_mask and len(self.extra_concat_orig) == 0:
self.extra_concat_orig.append(torch.tensor([[[[1.0]]]]))
return self
def pre_run(self, model, percent_to_timestep_function):
self.timestep_range = (percent_to_timestep_function(self.timestep_percent_range[0]), percent_to_timestep_function(self.timestep_percent_range[1]))
if self.previous_controlnet is not None:
self.previous_controlnet.pre_run(model, percent_to_timestep_function)
def set_previous_controlnet(self, controlnet):
self.previous_controlnet = controlnet
return self
def cleanup(self):
if self.previous_controlnet is not None:
self.previous_controlnet.cleanup()
self.cond_hint = None
self.extra_concat = None
self.timestep_range = None
def get_models(self):
out = []
if self.previous_controlnet is not None:
out += self.previous_controlnet.get_models()
return out
def get_extra_hooks(self):
out = []
if self.extra_hooks is not None:
out.append(self.extra_hooks)
if self.previous_controlnet is not None:
out += self.previous_controlnet.get_extra_hooks()
return out
def copy_to(self, c):
c.cond_hint_original = self.cond_hint_original
c.strength = self.strength
c.timestep_percent_range = self.timestep_percent_range
c.global_average_pooling = self.global_average_pooling
c.compression_ratio = self.compression_ratio
c.upscale_algorithm = self.upscale_algorithm
c.latent_format = self.latent_format
c.extra_args = self.extra_args.copy()
c.vae = self.vae
c.extra_conds = self.extra_conds.copy()
c.strength_type = self.strength_type
c.concat_mask = self.concat_mask
c.extra_concat_orig = self.extra_concat_orig.copy()
c.extra_hooks = self.extra_hooks.clone() if self.extra_hooks else None
c.preprocess_image = self.preprocess_image
def inference_memory_requirements(self, dtype):
if self.previous_controlnet is not None:
return self.previous_controlnet.inference_memory_requirements(dtype)
return 0
def control_merge(self, control, control_prev, output_dtype):
out = {'input':[], 'middle':[], 'output': []}
for key in control:
control_output = control[key]
applied_to = set()
for i in range(len(control_output)):
x = control_output[i]
if x is not None:
if self.global_average_pooling:
x = torch.mean(x, dim=(2, 3), keepdim=True).repeat(1, 1, x.shape[2], x.shape[3])
if x not in applied_to: #memory saving strategy, allow shared tensors and only apply strength to shared tensors once
applied_to.add(x)
if self.strength_type == StrengthType.CONSTANT:
x *= self.strength
elif self.strength_type == StrengthType.LINEAR_UP:
x *= (self.strength ** float(len(control_output) - i))
if output_dtype is not None and x.dtype != output_dtype:
x = x.to(output_dtype)
out[key].append(x)
if control_prev is not None:
for x in ['input', 'middle', 'output']:
o = out[x]
for i in range(len(control_prev[x])):
prev_val = control_prev[x][i]
if i >= len(o):
o.append(prev_val)
elif prev_val is not None:
if o[i] is None:
o[i] = prev_val
else:
if o[i].shape[0] < prev_val.shape[0]:
o[i] = prev_val + o[i]
else:
o[i] = prev_val + o[i] #TODO: change back to inplace add if shared tensors stop being an issue
return out
def set_extra_arg(self, argument, value=None):
self.extra_args[argument] = value
class ControlNet(ControlBase):
def __init__(self, control_model=None, global_average_pooling=False, compression_ratio=8, latent_format=None, load_device=None, manual_cast_dtype=None, extra_conds=["y"], strength_type=StrengthType.CONSTANT, concat_mask=False, preprocess_image=lambda a: a):
super().__init__()
self.control_model = control_model
self.load_device = load_device
if control_model is not None:
self.control_model_wrapped = comfy.model_patcher.ModelPatcher(self.control_model, load_device=load_device, offload_device=comfy.model_management.unet_offload_device())
self.compression_ratio = compression_ratio
self.global_average_pooling = global_average_pooling
self.model_sampling_current = None
self.manual_cast_dtype = manual_cast_dtype
self.latent_format = latent_format
self.extra_conds += extra_conds
self.strength_type = strength_type
self.concat_mask = concat_mask
self.preprocess_image = preprocess_image
def get_control(self, x_noisy, t, cond, batched_number, transformer_options):
control_prev = None
if self.previous_controlnet is not None:
control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number, transformer_options)
if self.timestep_range is not None:
if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]:
if control_prev is not None:
return control_prev
else:
return None
dtype = self.control_model.dtype
if self.manual_cast_dtype is not None:
dtype = self.manual_cast_dtype
if self.cond_hint is None or x_noisy.shape[2] * self.compression_ratio != self.cond_hint.shape[2] or x_noisy.shape[3] * self.compression_ratio != self.cond_hint.shape[3]:
if self.cond_hint is not None:
del self.cond_hint
self.cond_hint = None
compression_ratio = self.compression_ratio
if self.vae is not None:
compression_ratio *= self.vae.spacial_compression_encode()
else:
if self.latent_format is not None:
raise ValueError("This Controlnet needs a VAE but none was provided, please use a ControlNetApply node with a VAE input and connect it.")
self.cond_hint = comfy.utils.common_upscale(self.cond_hint_original, x_noisy.shape[-1] * compression_ratio, x_noisy.shape[-2] * compression_ratio, self.upscale_algorithm, "center")
self.cond_hint = self.preprocess_image(self.cond_hint)
if self.vae is not None:
loaded_models = comfy.model_management.loaded_models(only_currently_used=True)
self.cond_hint = self.vae.encode(self.cond_hint.movedim(1, -1))
comfy.model_management.load_models_gpu(loaded_models)
if self.latent_format is not None:
self.cond_hint = self.latent_format.process_in(self.cond_hint)
if len(self.extra_concat_orig) > 0:
to_concat = []
for c in self.extra_concat_orig:
c = c.to(self.cond_hint.device)
c = comfy.utils.common_upscale(c, self.cond_hint.shape[3], self.cond_hint.shape[2], self.upscale_algorithm, "center")
to_concat.append(comfy.utils.repeat_to_batch_size(c, self.cond_hint.shape[0]))
self.cond_hint = torch.cat([self.cond_hint] + to_concat, dim=1)
self.cond_hint = self.cond_hint.to(device=x_noisy.device, dtype=dtype)
if x_noisy.shape[0] != self.cond_hint.shape[0]:
self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
context = cond.get('crossattn_controlnet', cond['c_crossattn'])
extra = self.extra_args.copy()
for c in self.extra_conds:
temp = cond.get(c, None)
if temp is not None:
extra[c] = comfy.model_base.convert_tensor(temp, dtype, x_noisy.device)
timestep = self.model_sampling_current.timestep(t)
x_noisy = self.model_sampling_current.calculate_input(t, x_noisy)
control = self.control_model(x=x_noisy.to(dtype), hint=self.cond_hint, timesteps=timestep.to(dtype), context=comfy.model_management.cast_to_device(context, x_noisy.device, dtype), **extra)
return self.control_merge(control, control_prev, output_dtype=None)
def copy(self):
c = ControlNet(None, global_average_pooling=self.global_average_pooling, load_device=self.load_device, manual_cast_dtype=self.manual_cast_dtype)
c.control_model = self.control_model
c.control_model_wrapped = self.control_model_wrapped
self.copy_to(c)
return c
def get_models(self):
out = super().get_models()
out.append(self.control_model_wrapped)
return out
def pre_run(self, model, percent_to_timestep_function):
super().pre_run(model, percent_to_timestep_function)
self.model_sampling_current = model.model_sampling
def cleanup(self):
self.model_sampling_current = None
super().cleanup()
class ControlLoraOps:
class Linear(torch.nn.Module, comfy.ops.CastWeightBiasOp):
def __init__(self, in_features: int, out_features: int, bias: bool = True,
device=None, dtype=None) -> None:
super().__init__()
self.in_features = in_features
self.out_features = out_features
self.weight = None
self.up = None
self.down = None
self.bias = None
def forward(self, input):
weight, bias = comfy.ops.cast_bias_weight(self, input)
if self.up is not None:
return torch.nn.functional.linear(input, weight + (torch.mm(self.up.flatten(start_dim=1), self.down.flatten(start_dim=1))).reshape(self.weight.shape).type(input.dtype), bias)
else:
return torch.nn.functional.linear(input, weight, bias)
class Conv2d(torch.nn.Module, comfy.ops.CastWeightBiasOp):
def __init__(
self,
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
dilation=1,
groups=1,
bias=True,
padding_mode='zeros',
device=None,
dtype=None
):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
self.dilation = dilation
self.transposed = False
self.output_padding = 0
self.groups = groups
self.padding_mode = padding_mode
self.weight = None
self.bias = None
self.up = None
self.down = None
def forward(self, input):
weight, bias = comfy.ops.cast_bias_weight(self, input)
if self.up is not None:
return torch.nn.functional.conv2d(input, weight + (torch.mm(self.up.flatten(start_dim=1), self.down.flatten(start_dim=1))).reshape(self.weight.shape).type(input.dtype), bias, self.stride, self.padding, self.dilation, self.groups)
else:
return torch.nn.functional.conv2d(input, weight, bias, self.stride, self.padding, self.dilation, self.groups)
class ControlLora(ControlNet):
def __init__(self, control_weights, global_average_pooling=False, model_options={}): #TODO? model_options
ControlBase.__init__(self)
self.control_weights = control_weights
self.global_average_pooling = global_average_pooling
self.extra_conds += ["y"]
def pre_run(self, model, percent_to_timestep_function):
super().pre_run(model, percent_to_timestep_function)
controlnet_config = model.model_config.unet_config.copy()
controlnet_config.pop("out_channels")
controlnet_config["hint_channels"] = self.control_weights["input_hint_block.0.weight"].shape[1]
self.manual_cast_dtype = model.manual_cast_dtype
dtype = model.get_dtype()
if self.manual_cast_dtype is None:
class control_lora_ops(ControlLoraOps, comfy.ops.disable_weight_init):
pass
else:
class control_lora_ops(ControlLoraOps, comfy.ops.manual_cast):
pass
dtype = self.manual_cast_dtype
controlnet_config["operations"] = control_lora_ops
controlnet_config["dtype"] = dtype
self.control_model = comfy.cldm.cldm.ControlNet(**controlnet_config)
self.control_model.to(comfy.model_management.get_torch_device())
diffusion_model = model.diffusion_model
sd = diffusion_model.state_dict()
for k in sd:
weight = sd[k]
try:
comfy.utils.set_attr_param(self.control_model, k, weight)
except:
pass
for k in self.control_weights:
if (k not in {"lora_controlnet"}):
if (k.endswith(".up") or k.endswith(".down") or k.endswith(".weight") or k.endswith(".bias")) and ("__" not in k):
comfy.utils.set_attr_param(self.control_model, k, self.control_weights[k].to(dtype).to(comfy.model_management.get_torch_device()))
def copy(self):
c = ControlLora(self.control_weights, global_average_pooling=self.global_average_pooling)
self.copy_to(c)
return c
def cleanup(self):
del self.control_model
self.control_model = None
super().cleanup()
def get_models(self):
out = ControlBase.get_models(self)
return out
def inference_memory_requirements(self, dtype):
return comfy.utils.calculate_parameters(self.control_weights) * comfy.model_management.dtype_size(dtype) + ControlBase.inference_memory_requirements(self, dtype)
def controlnet_config(sd, model_options={}):
model_config = comfy.model_detection.model_config_from_unet(sd, "", True)
unet_dtype = model_options.get("dtype", None)
if unet_dtype is None:
weight_dtype = comfy.utils.weight_dtype(sd)
supported_inference_dtypes = list(model_config.supported_inference_dtypes)
unet_dtype = comfy.model_management.unet_dtype(model_params=-1, supported_dtypes=supported_inference_dtypes, weight_dtype=weight_dtype)
load_device = comfy.model_management.get_torch_device()
manual_cast_dtype = comfy.model_management.unet_manual_cast(unet_dtype, load_device)
operations = model_options.get("custom_operations", None)
if operations is None:
operations = comfy.ops.pick_operations(unet_dtype, manual_cast_dtype, disable_fast_fp8=True)
offload_device = comfy.model_management.unet_offload_device()
return model_config, operations, load_device, unet_dtype, manual_cast_dtype, offload_device
def controlnet_load_state_dict(control_model, sd):
missing, unexpected = control_model.load_state_dict(sd, strict=False)
if len(missing) > 0:
logging.warning("missing controlnet keys: {}".format(missing))
if len(unexpected) > 0:
logging.debug("unexpected controlnet keys: {}".format(unexpected))
return control_model
def load_controlnet_mmdit(sd, model_options={}):
new_sd = comfy.model_detection.convert_diffusers_mmdit(sd, "")
model_config, operations, load_device, unet_dtype, manual_cast_dtype, offload_device = controlnet_config(new_sd, model_options=model_options)
num_blocks = comfy.model_detection.count_blocks(new_sd, 'joint_blocks.{}.')
for k in sd:
new_sd[k] = sd[k]
concat_mask = False
control_latent_channels = new_sd.get("pos_embed_input.proj.weight").shape[1]
if control_latent_channels == 17: #inpaint controlnet
concat_mask = True
control_model = comfy.cldm.mmdit.ControlNet(num_blocks=num_blocks, control_latent_channels=control_latent_channels, operations=operations, device=offload_device, dtype=unet_dtype, **model_config.unet_config)
control_model = controlnet_load_state_dict(control_model, new_sd)
latent_format = comfy.latent_formats.SD3()
latent_format.shift_factor = 0 #SD3 controlnet weirdness
control = ControlNet(control_model, compression_ratio=1, latent_format=latent_format, concat_mask=concat_mask, load_device=load_device, manual_cast_dtype=manual_cast_dtype)
return control
class ControlNetSD35(ControlNet):
def pre_run(self, model, percent_to_timestep_function):
if self.control_model.double_y_emb:
missing, unexpected = self.control_model.orig_y_embedder.load_state_dict(model.diffusion_model.y_embedder.state_dict(), strict=False)
else:
missing, unexpected = self.control_model.x_embedder.load_state_dict(model.diffusion_model.x_embedder.state_dict(), strict=False)
super().pre_run(model, percent_to_timestep_function)
def copy(self):
c = ControlNetSD35(None, global_average_pooling=self.global_average_pooling, load_device=self.load_device, manual_cast_dtype=self.manual_cast_dtype)
c.control_model = self.control_model
c.control_model_wrapped = self.control_model_wrapped
self.copy_to(c)
return c
def load_controlnet_sd35(sd, model_options={}):
control_type = -1
if "control_type" in sd:
control_type = round(sd.pop("control_type").item())
# blur_cnet = control_type == 0
canny_cnet = control_type == 1
depth_cnet = control_type == 2
new_sd = {}
for k in comfy.utils.MMDIT_MAP_BASIC:
if k[1] in sd:
new_sd[k[0]] = sd.pop(k[1])
for k in sd:
new_sd[k] = sd[k]
sd = new_sd
y_emb_shape = sd["y_embedder.mlp.0.weight"].shape
depth = y_emb_shape[0] // 64
hidden_size = 64 * depth
num_heads = depth
head_dim = hidden_size // num_heads
num_blocks = comfy.model_detection.count_blocks(new_sd, 'transformer_blocks.{}.')
load_device = comfy.model_management.get_torch_device()
offload_device = comfy.model_management.unet_offload_device()
unet_dtype = comfy.model_management.unet_dtype(model_params=-1)
manual_cast_dtype = comfy.model_management.unet_manual_cast(unet_dtype, load_device)
operations = model_options.get("custom_operations", None)
if operations is None:
operations = comfy.ops.pick_operations(unet_dtype, manual_cast_dtype, disable_fast_fp8=True)
control_model = comfy.cldm.dit_embedder.ControlNetEmbedder(img_size=None,
patch_size=2,
in_chans=16,
num_layers=num_blocks,
main_model_double=depth,
double_y_emb=y_emb_shape[0] == y_emb_shape[1],
attention_head_dim=head_dim,
num_attention_heads=num_heads,
adm_in_channels=2048,
device=offload_device,
dtype=unet_dtype,
operations=operations)
control_model = controlnet_load_state_dict(control_model, sd)
latent_format = comfy.latent_formats.SD3()
preprocess_image = lambda a: a
if canny_cnet:
preprocess_image = lambda a: (a * 255 * 0.5 + 0.5)
elif depth_cnet:
preprocess_image = lambda a: 1.0 - a
control = ControlNetSD35(control_model, compression_ratio=1, latent_format=latent_format, load_device=load_device, manual_cast_dtype=manual_cast_dtype, preprocess_image=preprocess_image)
return control
def load_controlnet_hunyuandit(controlnet_data, model_options={}):
model_config, operations, load_device, unet_dtype, manual_cast_dtype, offload_device = controlnet_config(controlnet_data, model_options=model_options)
control_model = comfy.ldm.hydit.controlnet.HunYuanControlNet(operations=operations, device=offload_device, dtype=unet_dtype)
control_model = controlnet_load_state_dict(control_model, controlnet_data)
latent_format = comfy.latent_formats.SDXL()
extra_conds = ['text_embedding_mask', 'encoder_hidden_states_t5', 'text_embedding_mask_t5', 'image_meta_size', 'style', 'cos_cis_img', 'sin_cis_img']
control = ControlNet(control_model, compression_ratio=1, latent_format=latent_format, load_device=load_device, manual_cast_dtype=manual_cast_dtype, extra_conds=extra_conds, strength_type=StrengthType.CONSTANT)
return control
def load_controlnet_flux_xlabs_mistoline(sd, mistoline=False, model_options={}):
model_config, operations, load_device, unet_dtype, manual_cast_dtype, offload_device = controlnet_config(sd, model_options=model_options)
control_model = comfy.ldm.flux.controlnet.ControlNetFlux(mistoline=mistoline, operations=operations, device=offload_device, dtype=unet_dtype, **model_config.unet_config)
control_model = controlnet_load_state_dict(control_model, sd)
extra_conds = ['y', 'guidance']
control = ControlNet(control_model, load_device=load_device, manual_cast_dtype=manual_cast_dtype, extra_conds=extra_conds)
return control
def load_controlnet_flux_instantx(sd, model_options={}):
new_sd = comfy.model_detection.convert_diffusers_mmdit(sd, "")
model_config, operations, load_device, unet_dtype, manual_cast_dtype, offload_device = controlnet_config(new_sd, model_options=model_options)
for k in sd:
new_sd[k] = sd[k]
num_union_modes = 0
union_cnet = "controlnet_mode_embedder.weight"
if union_cnet in new_sd:
num_union_modes = new_sd[union_cnet].shape[0]
control_latent_channels = new_sd.get("pos_embed_input.weight").shape[1] // 4
concat_mask = False
if control_latent_channels == 17:
concat_mask = True
control_model = comfy.ldm.flux.controlnet.ControlNetFlux(latent_input=True, num_union_modes=num_union_modes, control_latent_channels=control_latent_channels, operations=operations, device=offload_device, dtype=unet_dtype, **model_config.unet_config)
control_model = controlnet_load_state_dict(control_model, new_sd)
latent_format = comfy.latent_formats.Flux()
extra_conds = ['y', 'guidance']
control = ControlNet(control_model, compression_ratio=1, latent_format=latent_format, concat_mask=concat_mask, load_device=load_device, manual_cast_dtype=manual_cast_dtype, extra_conds=extra_conds)
return control
def load_controlnet_qwen_instantx(sd, model_options={}):
model_config, operations, load_device, unet_dtype, manual_cast_dtype, offload_device = controlnet_config(sd, model_options=model_options)
control_model = comfy.ldm.qwen_image.controlnet.QwenImageControlNetModel(operations=operations, device=offload_device, dtype=unet_dtype, **model_config.unet_config)
control_model = controlnet_load_state_dict(control_model, sd)
latent_format = comfy.latent_formats.Wan21()
extra_conds = []
control = ControlNet(control_model, compression_ratio=1, latent_format=latent_format, load_device=load_device, manual_cast_dtype=manual_cast_dtype, extra_conds=extra_conds)
return control
def convert_mistoline(sd):
return comfy.utils.state_dict_prefix_replace(sd, {"single_controlnet_blocks.": "controlnet_single_blocks."})
def load_controlnet_state_dict(state_dict, model=None, model_options={}):
controlnet_data = state_dict
if 'after_proj_list.18.bias' in controlnet_data.keys(): #Hunyuan DiT
return load_controlnet_hunyuandit(controlnet_data, model_options=model_options)
if "lora_controlnet" in controlnet_data:
return ControlLora(controlnet_data, model_options=model_options)
controlnet_config = None
supported_inference_dtypes = None
if "controlnet_cond_embedding.conv_in.weight" in controlnet_data: #diffusers format
controlnet_config = comfy.model_detection.unet_config_from_diffusers_unet(controlnet_data)
diffusers_keys = comfy.utils.unet_to_diffusers(controlnet_config)
diffusers_keys["controlnet_mid_block.weight"] = "middle_block_out.0.weight"
diffusers_keys["controlnet_mid_block.bias"] = "middle_block_out.0.bias"
count = 0
loop = True
while loop:
suffix = [".weight", ".bias"]
for s in suffix:
k_in = "controlnet_down_blocks.{}{}".format(count, s)
k_out = "zero_convs.{}.0{}".format(count, s)
if k_in not in controlnet_data:
loop = False
break
diffusers_keys[k_in] = k_out
count += 1
count = 0
loop = True
while loop:
suffix = [".weight", ".bias"]
for s in suffix:
if count == 0:
k_in = "controlnet_cond_embedding.conv_in{}".format(s)
else:
k_in = "controlnet_cond_embedding.blocks.{}{}".format(count - 1, s)
k_out = "input_hint_block.{}{}".format(count * 2, s)
if k_in not in controlnet_data:
k_in = "controlnet_cond_embedding.conv_out{}".format(s)
loop = False
diffusers_keys[k_in] = k_out
count += 1
new_sd = {}
for k in diffusers_keys:
if k in controlnet_data:
new_sd[diffusers_keys[k]] = controlnet_data.pop(k)
if "control_add_embedding.linear_1.bias" in controlnet_data: #Union Controlnet
controlnet_config["union_controlnet_num_control_type"] = controlnet_data["task_embedding"].shape[0]
for k in list(controlnet_data.keys()):
new_k = k.replace('.attn.in_proj_', '.attn.in_proj.')
new_sd[new_k] = controlnet_data.pop(k)
leftover_keys = controlnet_data.keys()
if len(leftover_keys) > 0:
logging.warning("leftover keys: {}".format(leftover_keys))
controlnet_data = new_sd
elif "controlnet_blocks.0.weight" in controlnet_data:
if "double_blocks.0.img_attn.norm.key_norm.scale" in controlnet_data:
return load_controlnet_flux_xlabs_mistoline(controlnet_data, model_options=model_options)
elif "pos_embed_input.proj.weight" in controlnet_data:
if "transformer_blocks.0.adaLN_modulation.1.bias" in controlnet_data:
return load_controlnet_sd35(controlnet_data, model_options=model_options) #Stability sd3.5 format
else:
return load_controlnet_mmdit(controlnet_data, model_options=model_options) #SD3 diffusers controlnet
elif "transformer_blocks.0.img_mlp.net.0.proj.weight" in controlnet_data:
return load_controlnet_qwen_instantx(controlnet_data, model_options=model_options)
elif "controlnet_x_embedder.weight" in controlnet_data:
return load_controlnet_flux_instantx(controlnet_data, model_options=model_options)
elif "controlnet_blocks.0.linear.weight" in controlnet_data: #mistoline flux
return load_controlnet_flux_xlabs_mistoline(convert_mistoline(controlnet_data), mistoline=True, model_options=model_options)
pth_key = 'control_model.zero_convs.0.0.weight'
pth = False
key = 'zero_convs.0.0.weight'
if pth_key in controlnet_data:
pth = True
key = pth_key
prefix = "control_model."
elif key in controlnet_data:
prefix = ""
else:
net = load_t2i_adapter(controlnet_data, model_options=model_options)
if net is None:
logging.error("error could not detect control model type.")
return net
if controlnet_config is None:
model_config = comfy.model_detection.model_config_from_unet(controlnet_data, prefix, True)
supported_inference_dtypes = list(model_config.supported_inference_dtypes)
controlnet_config = model_config.unet_config
unet_dtype = model_options.get("dtype", None)
if unet_dtype is None:
weight_dtype = comfy.utils.weight_dtype(controlnet_data)
if supported_inference_dtypes is None:
supported_inference_dtypes = [comfy.model_management.unet_dtype()]
unet_dtype = comfy.model_management.unet_dtype(model_params=-1, supported_dtypes=supported_inference_dtypes, weight_dtype=weight_dtype)
load_device = comfy.model_management.get_torch_device()
manual_cast_dtype = comfy.model_management.unet_manual_cast(unet_dtype, load_device)
operations = model_options.get("custom_operations", None)
if operations is None:
operations = comfy.ops.pick_operations(unet_dtype, manual_cast_dtype)
controlnet_config["operations"] = operations
controlnet_config["dtype"] = unet_dtype
controlnet_config["device"] = comfy.model_management.unet_offload_device()
controlnet_config.pop("out_channels")
controlnet_config["hint_channels"] = controlnet_data["{}input_hint_block.0.weight".format(prefix)].shape[1]
control_model = comfy.cldm.cldm.ControlNet(**controlnet_config)
if pth:
if 'difference' in controlnet_data:
if model is not None:
comfy.model_management.load_models_gpu([model])
model_sd = model.model_state_dict()
for x in controlnet_data:
c_m = "control_model."
if x.startswith(c_m):
sd_key = "diffusion_model.{}".format(x[len(c_m):])
if sd_key in model_sd:
cd = controlnet_data[x]
cd += model_sd[sd_key].type(cd.dtype).to(cd.device)
else:
logging.warning("WARNING: Loaded a diff controlnet without a model. It will very likely not work.")
class WeightsLoader(torch.nn.Module):
pass
w = WeightsLoader()
w.control_model = control_model
missing, unexpected = w.load_state_dict(controlnet_data, strict=False)
else:
missing, unexpected = control_model.load_state_dict(controlnet_data, strict=False)
if len(missing) > 0:
logging.warning("missing controlnet keys: {}".format(missing))
if len(unexpected) > 0:
logging.debug("unexpected controlnet keys: {}".format(unexpected))
global_average_pooling = model_options.get("global_average_pooling", False)
control = ControlNet(control_model, global_average_pooling=global_average_pooling, load_device=load_device, manual_cast_dtype=manual_cast_dtype)
return control
def load_controlnet(ckpt_path, model=None, model_options={}):
model_options = model_options.copy()
if "global_average_pooling" not in model_options:
filename = os.path.splitext(ckpt_path)[0]
if filename.endswith("_shuffle") or filename.endswith("_shuffle_fp16"): #TODO: smarter way of enabling global_average_pooling
model_options["global_average_pooling"] = True
cnet = load_controlnet_state_dict(comfy.utils.load_torch_file(ckpt_path, safe_load=True), model=model, model_options=model_options)
if cnet is None:
logging.error("error checkpoint does not contain controlnet or t2i adapter data {}".format(ckpt_path))
return cnet
class T2IAdapter(ControlBase):
def __init__(self, t2i_model, channels_in, compression_ratio, upscale_algorithm, device=None):
super().__init__()
self.t2i_model = t2i_model
self.channels_in = channels_in
self.control_input = None
self.compression_ratio = compression_ratio
self.upscale_algorithm = upscale_algorithm
if device is None:
device = comfy.model_management.get_torch_device()
self.device = device
def scale_image_to(self, width, height):
unshuffle_amount = self.t2i_model.unshuffle_amount
width = math.ceil(width / unshuffle_amount) * unshuffle_amount
height = math.ceil(height / unshuffle_amount) * unshuffle_amount
return width, height
def get_control(self, x_noisy, t, cond, batched_number, transformer_options):
control_prev = None
if self.previous_controlnet is not None:
control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number, transformer_options)
if self.timestep_range is not None:
if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]:
if control_prev is not None:
return control_prev
else:
return None
if self.cond_hint is None or x_noisy.shape[2] * self.compression_ratio != self.cond_hint.shape[2] or x_noisy.shape[3] * self.compression_ratio != self.cond_hint.shape[3]:
if self.cond_hint is not None:
del self.cond_hint
self.control_input = None
self.cond_hint = None
width, height = self.scale_image_to(x_noisy.shape[3] * self.compression_ratio, x_noisy.shape[2] * self.compression_ratio)
self.cond_hint = comfy.utils.common_upscale(self.cond_hint_original, width, height, self.upscale_algorithm, "center").float().to(self.device)
if self.channels_in == 1 and self.cond_hint.shape[1] > 1:
self.cond_hint = torch.mean(self.cond_hint, 1, keepdim=True)
if x_noisy.shape[0] != self.cond_hint.shape[0]:
self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
if self.control_input is None:
self.t2i_model.to(x_noisy.dtype)
self.t2i_model.to(self.device)
self.control_input = self.t2i_model(self.cond_hint.to(x_noisy.dtype))
self.t2i_model.cpu()
control_input = {}
for k in self.control_input:
control_input[k] = list(map(lambda a: None if a is None else a.clone(), self.control_input[k]))
return self.control_merge(control_input, control_prev, x_noisy.dtype)
def copy(self):
c = T2IAdapter(self.t2i_model, self.channels_in, self.compression_ratio, self.upscale_algorithm)
self.copy_to(c)
return c
def load_t2i_adapter(t2i_data, model_options={}): #TODO: model_options
compression_ratio = 8
upscale_algorithm = 'nearest-exact'
if 'adapter' in t2i_data:
t2i_data = t2i_data['adapter']
if 'adapter.body.0.resnets.0.block1.weight' in t2i_data: #diffusers format
prefix_replace = {}
for i in range(4):
for j in range(2):
prefix_replace["adapter.body.{}.resnets.{}.".format(i, j)] = "body.{}.".format(i * 2 + j)
prefix_replace["adapter.body.{}.".format(i, )] = "body.{}.".format(i * 2)
prefix_replace["adapter."] = ""
t2i_data = comfy.utils.state_dict_prefix_replace(t2i_data, prefix_replace)
keys = t2i_data.keys()
if "body.0.in_conv.weight" in keys:
cin = t2i_data['body.0.in_conv.weight'].shape[1]
model_ad = comfy.t2i_adapter.adapter.Adapter_light(cin=cin, channels=[320, 640, 1280, 1280], nums_rb=4)
elif 'conv_in.weight' in keys:
cin = t2i_data['conv_in.weight'].shape[1]
channel = t2i_data['conv_in.weight'].shape[0]
ksize = t2i_data['body.0.block2.weight'].shape[2]
use_conv = False
down_opts = list(filter(lambda a: a.endswith("down_opt.op.weight"), keys))
if len(down_opts) > 0:
use_conv = True
xl = False
if cin == 256 or cin == 768:
xl = True
model_ad = comfy.t2i_adapter.adapter.Adapter(cin=cin, channels=[channel, channel*2, channel*4, channel*4][:4], nums_rb=2, ksize=ksize, sk=True, use_conv=use_conv, xl=xl)
elif "backbone.0.0.weight" in keys:
model_ad = comfy.ldm.cascade.controlnet.ControlNet(c_in=t2i_data['backbone.0.0.weight'].shape[1], proj_blocks=[0, 4, 8, 12, 51, 55, 59, 63])
compression_ratio = 32
upscale_algorithm = 'bilinear'
elif "backbone.10.blocks.0.weight" in keys:
model_ad = comfy.ldm.cascade.controlnet.ControlNet(c_in=t2i_data['backbone.0.weight'].shape[1], bottleneck_mode="large", proj_blocks=[0, 4, 8, 12, 51, 55, 59, 63])
compression_ratio = 1
upscale_algorithm = 'nearest-exact'
else:
return None
missing, unexpected = model_ad.load_state_dict(t2i_data)
if len(missing) > 0:
logging.warning("t2i missing {}".format(missing))
if len(unexpected) > 0:
logging.debug("t2i unexpected {}".format(unexpected))
return T2IAdapter(model_ad, model_ad.input_channels, compression_ratio, upscale_algorithm)
import re
import torch
import logging
# conversion code from https://github.com/huggingface/diffusers/blob/main/scripts/convert_diffusers_to_original_stable_diffusion.py
# ================#
# VAE Conversion #
# ================#
vae_conversion_map = [
# (stable-diffusion, HF Diffusers)
("nin_shortcut", "conv_shortcut"),
("norm_out", "conv_norm_out"),
("mid.attn_1.", "mid_block.attentions.0."),
]
for i in range(4):
# down_blocks have two resnets
for j in range(2):
hf_down_prefix = f"encoder.down_blocks.{i}.resnets.{j}."
sd_down_prefix = f"encoder.down.{i}.block.{j}."
vae_conversion_map.append((sd_down_prefix, hf_down_prefix))
if i < 3:
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0."
sd_downsample_prefix = f"down.{i}.downsample."
vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix))
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
sd_upsample_prefix = f"up.{3 - i}.upsample."
vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix))
# up_blocks have three resnets
# also, up blocks in hf are numbered in reverse from sd
for j in range(3):
hf_up_prefix = f"decoder.up_blocks.{i}.resnets.{j}."
sd_up_prefix = f"decoder.up.{3 - i}.block.{j}."
vae_conversion_map.append((sd_up_prefix, hf_up_prefix))
# this part accounts for mid blocks in both the encoder and the decoder
for i in range(2):
hf_mid_res_prefix = f"mid_block.resnets.{i}."
sd_mid_res_prefix = f"mid.block_{i + 1}."
vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix))
vae_conversion_map_attn = [
# (stable-diffusion, HF Diffusers)
("norm.", "group_norm."),
("q.", "query."),
("k.", "key."),
("v.", "value."),
("q.", "to_q."),
("k.", "to_k."),
("v.", "to_v."),
("proj_out.", "to_out.0."),
("proj_out.", "proj_attn."),
]
def reshape_weight_for_sd(w, conv3d=False):
# convert HF linear weights to SD conv2d weights
if conv3d:
return w.reshape(*w.shape, 1, 1, 1)
else:
return w.reshape(*w.shape, 1, 1)
def convert_vae_state_dict(vae_state_dict):
mapping = {k: k for k in vae_state_dict.keys()}
conv3d = False
for k, v in mapping.items():
for sd_part, hf_part in vae_conversion_map:
v = v.replace(hf_part, sd_part)
if v.endswith(".conv.weight"):
if not conv3d and vae_state_dict[k].ndim == 5:
conv3d = True
mapping[k] = v
for k, v in mapping.items():
if "attentions" in k:
for sd_part, hf_part in vae_conversion_map_attn:
v = v.replace(hf_part, sd_part)
mapping[k] = v
new_state_dict = {v: vae_state_dict[k] for k, v in mapping.items()}
weights_to_convert = ["q", "k", "v", "proj_out"]
for k, v in new_state_dict.items():
for weight_name in weights_to_convert:
if f"mid.attn_1.{weight_name}.weight" in k:
logging.debug(f"Reshaping {k} for SD format")
new_state_dict[k] = reshape_weight_for_sd(v, conv3d=conv3d)
return new_state_dict
# =========================#
# Text Encoder Conversion #
# =========================#
textenc_conversion_lst = [
# (stable-diffusion, HF Diffusers)
("resblocks.", "text_model.encoder.layers."),
("ln_1", "layer_norm1"),
("ln_2", "layer_norm2"),
(".c_fc.", ".fc1."),
(".c_proj.", ".fc2."),
(".attn", ".self_attn"),
("ln_final.", "transformer.text_model.final_layer_norm."),
("token_embedding.weight", "transformer.text_model.embeddings.token_embedding.weight"),
("positional_embedding", "transformer.text_model.embeddings.position_embedding.weight"),
]
protected = {re.escape(x[1]): x[0] for x in textenc_conversion_lst}
textenc_pattern = re.compile("|".join(protected.keys()))
# Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp
code2idx = {"q": 0, "k": 1, "v": 2}
# This function exists because at the time of writing torch.cat can't do fp8 with cuda
def cat_tensors(tensors):
x = 0
for t in tensors:
x += t.shape[0]
shape = [x] + list(tensors[0].shape)[1:]
out = torch.empty(shape, device=tensors[0].device, dtype=tensors[0].dtype)
x = 0
for t in tensors:
out[x:x + t.shape[0]] = t
x += t.shape[0]
return out
def convert_text_enc_state_dict_v20(text_enc_dict, prefix=""):
new_state_dict = {}
capture_qkv_weight = {}
capture_qkv_bias = {}
for k, v in text_enc_dict.items():
if not k.startswith(prefix):
continue
if (
k.endswith(".self_attn.q_proj.weight")
or k.endswith(".self_attn.k_proj.weight")
or k.endswith(".self_attn.v_proj.weight")
):
k_pre = k[: -len(".q_proj.weight")]
k_code = k[-len("q_proj.weight")]
if k_pre not in capture_qkv_weight:
capture_qkv_weight[k_pre] = [None, None, None]
capture_qkv_weight[k_pre][code2idx[k_code]] = v
continue
if (
k.endswith(".self_attn.q_proj.bias")
or k.endswith(".self_attn.k_proj.bias")
or k.endswith(".self_attn.v_proj.bias")
):
k_pre = k[: -len(".q_proj.bias")]
k_code = k[-len("q_proj.bias")]
if k_pre not in capture_qkv_bias:
capture_qkv_bias[k_pre] = [None, None, None]
capture_qkv_bias[k_pre][code2idx[k_code]] = v
continue
text_proj = "transformer.text_projection.weight"
if k.endswith(text_proj):
new_state_dict[k.replace(text_proj, "text_projection")] = v.transpose(0, 1).contiguous()
else:
relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k)
new_state_dict[relabelled_key] = v
for k_pre, tensors in capture_qkv_weight.items():
if None in tensors:
raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing")
relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k_pre)
new_state_dict[relabelled_key + ".in_proj_weight"] = cat_tensors(tensors)
for k_pre, tensors in capture_qkv_bias.items():
if None in tensors:
raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing")
relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k_pre)
new_state_dict[relabelled_key + ".in_proj_bias"] = cat_tensors(tensors)
return new_state_dict
def convert_text_enc_state_dict(text_enc_dict):
return text_enc_dict
import os
import comfy.sd
def first_file(path, filenames):
for f in filenames:
p = os.path.join(path, f)
if os.path.exists(p):
return p
return None
def load_diffusers(model_path, output_vae=True, output_clip=True, embedding_directory=None):
diffusion_model_names = ["diffusion_pytorch_model.fp16.safetensors", "diffusion_pytorch_model.safetensors", "diffusion_pytorch_model.fp16.bin", "diffusion_pytorch_model.bin"]
unet_path = first_file(os.path.join(model_path, "unet"), diffusion_model_names)
vae_path = first_file(os.path.join(model_path, "vae"), diffusion_model_names)
text_encoder_model_names = ["model.fp16.safetensors", "model.safetensors", "pytorch_model.fp16.bin", "pytorch_model.bin"]
text_encoder1_path = first_file(os.path.join(model_path, "text_encoder"), text_encoder_model_names)
text_encoder2_path = first_file(os.path.join(model_path, "text_encoder_2"), text_encoder_model_names)
text_encoder_paths = [text_encoder1_path]
if text_encoder2_path is not None:
text_encoder_paths.append(text_encoder2_path)
unet = comfy.sd.load_diffusion_model(unet_path)
clip = None
if output_clip:
clip = comfy.sd.load_clip(text_encoder_paths, embedding_directory=embedding_directory)
vae = None
if output_vae:
sd = comfy.utils.load_torch_file(vae_path)
vae = comfy.sd.VAE(sd=sd)
return (unet, clip, vae)
#code taken from: https://github.com/wl-zhao/UniPC and modified
import torch
import math
import logging
from tqdm.auto import trange
class NoiseScheduleVP:
def __init__(
self,
schedule='discrete',
betas=None,
alphas_cumprod=None,
continuous_beta_0=0.1,
continuous_beta_1=20.,
):
r"""Create a wrapper class for the forward SDE (VP type).
***
Update: We support discrete-time diffusion models by implementing a picewise linear interpolation for log_alpha_t.
We recommend to use schedule='discrete' for the discrete-time diffusion models, especially for high-resolution images.
***
The forward SDE ensures that the condition distribution q_{t|0}(x_t | x_0) = N ( alpha_t * x_0, sigma_t^2 * I ).
We further define lambda_t = log(alpha_t) - log(sigma_t), which is the half-logSNR (described in the DPM-Solver paper).
Therefore, we implement the functions for computing alpha_t, sigma_t and lambda_t. For t in [0, T], we have:
log_alpha_t = self.marginal_log_mean_coeff(t)
sigma_t = self.marginal_std(t)
lambda_t = self.marginal_lambda(t)
Moreover, as lambda(t) is an invertible function, we also support its inverse function:
t = self.inverse_lambda(lambda_t)
===============================================================
We support both discrete-time DPMs (trained on n = 0, 1, ..., N-1) and continuous-time DPMs (trained on t in [t_0, T]).
1. For discrete-time DPMs:
For discrete-time DPMs trained on n = 0, 1, ..., N-1, we convert the discrete steps to continuous time steps by:
t_i = (i + 1) / N
e.g. for N = 1000, we have t_0 = 1e-3 and T = t_{N-1} = 1.
We solve the corresponding diffusion ODE from time T = 1 to time t_0 = 1e-3.
Args:
betas: A `torch.Tensor`. The beta array for the discrete-time DPM. (See the original DDPM paper for details)
alphas_cumprod: A `torch.Tensor`. The cumprod alphas for the discrete-time DPM. (See the original DDPM paper for details)
Note that we always have alphas_cumprod = cumprod(betas). Therefore, we only need to set one of `betas` and `alphas_cumprod`.
**Important**: Please pay special attention for the args for `alphas_cumprod`:
The `alphas_cumprod` is the \hat{alpha_n} arrays in the notations of DDPM. Specifically, DDPMs assume that
q_{t_n | 0}(x_{t_n} | x_0) = N ( \sqrt{\hat{alpha_n}} * x_0, (1 - \hat{alpha_n}) * I ).
Therefore, the notation \hat{alpha_n} is different from the notation alpha_t in DPM-Solver. In fact, we have
alpha_{t_n} = \sqrt{\hat{alpha_n}},
and
log(alpha_{t_n}) = 0.5 * log(\hat{alpha_n}).
2. For continuous-time DPMs:
We support two types of VPSDEs: linear (DDPM) and cosine (improved-DDPM). The hyperparameters for the noise
schedule are the default settings in DDPM and improved-DDPM:
Args:
beta_min: A `float` number. The smallest beta for the linear schedule.
beta_max: A `float` number. The largest beta for the linear schedule.
cosine_s: A `float` number. The hyperparameter in the cosine schedule.
cosine_beta_max: A `float` number. The hyperparameter in the cosine schedule.
T: A `float` number. The ending time of the forward process.
===============================================================
Args:
schedule: A `str`. The noise schedule of the forward SDE. 'discrete' for discrete-time DPMs,
'linear' or 'cosine' for continuous-time DPMs.
Returns:
A wrapper object of the forward SDE (VP type).
===============================================================
Example:
# For discrete-time DPMs, given betas (the beta array for n = 0, 1, ..., N - 1):
>>> ns = NoiseScheduleVP('discrete', betas=betas)
# For discrete-time DPMs, given alphas_cumprod (the \hat{alpha_n} array for n = 0, 1, ..., N - 1):
>>> ns = NoiseScheduleVP('discrete', alphas_cumprod=alphas_cumprod)
# For continuous-time DPMs (VPSDE), linear schedule:
>>> ns = NoiseScheduleVP('linear', continuous_beta_0=0.1, continuous_beta_1=20.)
"""
if schedule not in ['discrete', 'linear', 'cosine']:
raise ValueError("Unsupported noise schedule {}. The schedule needs to be 'discrete' or 'linear' or 'cosine'".format(schedule))
self.schedule = schedule
if schedule == 'discrete':
if betas is not None:
log_alphas = 0.5 * torch.log(1 - betas).cumsum(dim=0)
else:
assert alphas_cumprod is not None
log_alphas = 0.5 * torch.log(alphas_cumprod)
self.total_N = len(log_alphas)
self.T = 1.
self.t_array = torch.linspace(0., 1., self.total_N + 1)[1:].reshape((1, -1))
self.log_alpha_array = log_alphas.reshape((1, -1,))
else:
self.total_N = 1000
self.beta_0 = continuous_beta_0
self.beta_1 = continuous_beta_1
self.cosine_s = 0.008
self.cosine_beta_max = 999.
self.cosine_t_max = math.atan(self.cosine_beta_max * (1. + self.cosine_s) / math.pi) * 2. * (1. + self.cosine_s) / math.pi - self.cosine_s
self.cosine_log_alpha_0 = math.log(math.cos(self.cosine_s / (1. + self.cosine_s) * math.pi / 2.))
self.schedule = schedule
if schedule == 'cosine':
# For the cosine schedule, T = 1 will have numerical issues. So we manually set the ending time T.
# Note that T = 0.9946 may be not the optimal setting. However, we find it works well.
self.T = 0.9946
else:
self.T = 1.
def marginal_log_mean_coeff(self, t):
"""
Compute log(alpha_t) of a given continuous-time label t in [0, T].
"""
if self.schedule == 'discrete':
return interpolate_fn(t.reshape((-1, 1)), self.t_array.to(t.device), self.log_alpha_array.to(t.device)).reshape((-1))
elif self.schedule == 'linear':
return -0.25 * t ** 2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0
elif self.schedule == 'cosine':
log_alpha_fn = lambda s: torch.log(torch.cos((s + self.cosine_s) / (1. + self.cosine_s) * math.pi / 2.))
log_alpha_t = log_alpha_fn(t) - self.cosine_log_alpha_0
return log_alpha_t
def marginal_alpha(self, t):
"""
Compute alpha_t of a given continuous-time label t in [0, T].
"""
return torch.exp(self.marginal_log_mean_coeff(t))
def marginal_std(self, t):
"""
Compute sigma_t of a given continuous-time label t in [0, T].
"""
return torch.sqrt(1. - torch.exp(2. * self.marginal_log_mean_coeff(t)))
def marginal_lambda(self, t):
"""
Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T].
"""
log_mean_coeff = self.marginal_log_mean_coeff(t)
log_std = 0.5 * torch.log(1. - torch.exp(2. * log_mean_coeff))
return log_mean_coeff - log_std
def inverse_lambda(self, lamb):
"""
Compute the continuous-time label t in [0, T] of a given half-logSNR lambda_t.
"""
if self.schedule == 'linear':
tmp = 2. * (self.beta_1 - self.beta_0) * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
Delta = self.beta_0**2 + tmp
return tmp / (torch.sqrt(Delta) + self.beta_0) / (self.beta_1 - self.beta_0)
elif self.schedule == 'discrete':
log_alpha = -0.5 * torch.logaddexp(torch.zeros((1,)).to(lamb.device), -2. * lamb)
t = interpolate_fn(log_alpha.reshape((-1, 1)), torch.flip(self.log_alpha_array.to(lamb.device), [1]), torch.flip(self.t_array.to(lamb.device), [1]))
return t.reshape((-1,))
else:
log_alpha = -0.5 * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
t_fn = lambda log_alpha_t: torch.arccos(torch.exp(log_alpha_t + self.cosine_log_alpha_0)) * 2. * (1. + self.cosine_s) / math.pi - self.cosine_s
t = t_fn(log_alpha)
return t
def model_wrapper(
model,
noise_schedule,
model_type="noise",
model_kwargs={},
guidance_type="uncond",
condition=None,
unconditional_condition=None,
guidance_scale=1.,
classifier_fn=None,
classifier_kwargs={},
):
"""Create a wrapper function for the noise prediction model.
DPM-Solver needs to solve the continuous-time diffusion ODEs. For DPMs trained on discrete-time labels, we need to
firstly wrap the model function to a noise prediction model that accepts the continuous time as the input.
We support four types of the diffusion model by setting `model_type`:
1. "noise": noise prediction model. (Trained by predicting noise).
2. "x_start": data prediction model. (Trained by predicting the data x_0 at time 0).
3. "v": velocity prediction model. (Trained by predicting the velocity).
The "v" prediction is derivation detailed in Appendix D of [1], and is used in Imagen-Video [2].
[1] Salimans, Tim, and Jonathan Ho. "Progressive distillation for fast sampling of diffusion models."
arXiv preprint arXiv:2202.00512 (2022).
[2] Ho, Jonathan, et al. "Imagen Video: High Definition Video Generation with Diffusion Models."
arXiv preprint arXiv:2210.02303 (2022).
4. "score": marginal score function. (Trained by denoising score matching).
Note that the score function and the noise prediction model follows a simple relationship:
```
noise(x_t, t) = -sigma_t * score(x_t, t)
```
We support three types of guided sampling by DPMs by setting `guidance_type`:
1. "uncond": unconditional sampling by DPMs.
The input `model` has the following format:
``
model(x, t_input, **model_kwargs) -> noise | x_start | v | score
``
2. "classifier": classifier guidance sampling [3] by DPMs and another classifier.
The input `model` has the following format:
``
model(x, t_input, **model_kwargs) -> noise | x_start | v | score
``
The input `classifier_fn` has the following format:
``
classifier_fn(x, t_input, cond, **classifier_kwargs) -> logits(x, t_input, cond)
``
[3] P. Dhariwal and A. Q. Nichol, "Diffusion models beat GANs on image synthesis,"
in Advances in Neural Information Processing Systems, vol. 34, 2021, pp. 8780-8794.
3. "classifier-free": classifier-free guidance sampling by conditional DPMs.
The input `model` has the following format:
``
model(x, t_input, cond, **model_kwargs) -> noise | x_start | v | score
``
And if cond == `unconditional_condition`, the model output is the unconditional DPM output.
[4] Ho, Jonathan, and Tim Salimans. "Classifier-free diffusion guidance."
arXiv preprint arXiv:2207.12598 (2022).
The `t_input` is the time label of the model, which may be discrete-time labels (i.e. 0 to 999)
or continuous-time labels (i.e. epsilon to T).
We wrap the model function to accept only `x` and `t_continuous` as inputs, and outputs the predicted noise:
``
def model_fn(x, t_continuous) -> noise:
t_input = get_model_input_time(t_continuous)
return noise_pred(model, x, t_input, **model_kwargs)
``
where `t_continuous` is the continuous time labels (i.e. epsilon to T). And we use `model_fn` for DPM-Solver.
===============================================================
Args:
model: A diffusion model with the corresponding format described above.
noise_schedule: A noise schedule object, such as NoiseScheduleVP.
model_type: A `str`. The parameterization type of the diffusion model.
"noise" or "x_start" or "v" or "score".
model_kwargs: A `dict`. A dict for the other inputs of the model function.
guidance_type: A `str`. The type of the guidance for sampling.
"uncond" or "classifier" or "classifier-free".
condition: A pytorch tensor. The condition for the guided sampling.
Only used for "classifier" or "classifier-free" guidance type.
unconditional_condition: A pytorch tensor. The condition for the unconditional sampling.
Only used for "classifier-free" guidance type.
guidance_scale: A `float`. The scale for the guided sampling.
classifier_fn: A classifier function. Only used for the classifier guidance.
classifier_kwargs: A `dict`. A dict for the other inputs of the classifier function.
Returns:
A noise prediction model that accepts the noised data and the continuous time as the inputs.
"""
def get_model_input_time(t_continuous):
"""
Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time.
For discrete-time DPMs, we convert `t_continuous` in [1 / N, 1] to `t_input` in [0, 1000 * (N - 1) / N].
For continuous-time DPMs, we just use `t_continuous`.
"""
if noise_schedule.schedule == 'discrete':
return (t_continuous - 1. / noise_schedule.total_N) * 1000.
else:
return t_continuous
def noise_pred_fn(x, t_continuous, cond=None):
if t_continuous.reshape((-1,)).shape[0] == 1:
t_continuous = t_continuous.expand((x.shape[0]))
t_input = get_model_input_time(t_continuous)
output = model(x, t_input, **model_kwargs)
if model_type == "noise":
return output
elif model_type == "x_start":
alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
dims = x.dim()
return (x - expand_dims(alpha_t, dims) * output) / expand_dims(sigma_t, dims)
elif model_type == "v":
alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
dims = x.dim()
return expand_dims(alpha_t, dims) * output + expand_dims(sigma_t, dims) * x
elif model_type == "score":
sigma_t = noise_schedule.marginal_std(t_continuous)
dims = x.dim()
return -expand_dims(sigma_t, dims) * output
def cond_grad_fn(x, t_input):
"""
Compute the gradient of the classifier, i.e. nabla_{x} log p_t(cond | x_t).
"""
with torch.enable_grad():
x_in = x.detach().requires_grad_(True)
log_prob = classifier_fn(x_in, t_input, condition, **classifier_kwargs)
return torch.autograd.grad(log_prob.sum(), x_in)[0]
def model_fn(x, t_continuous):
"""
The noise predicition model function that is used for DPM-Solver.
"""
if t_continuous.reshape((-1,)).shape[0] == 1:
t_continuous = t_continuous.expand((x.shape[0]))
if guidance_type == "uncond":
return noise_pred_fn(x, t_continuous)
elif guidance_type == "classifier":
assert classifier_fn is not None
t_input = get_model_input_time(t_continuous)
cond_grad = cond_grad_fn(x, t_input)
sigma_t = noise_schedule.marginal_std(t_continuous)
noise = noise_pred_fn(x, t_continuous)
return noise - guidance_scale * expand_dims(sigma_t, dims=cond_grad.dim()) * cond_grad
elif guidance_type == "classifier-free":
if guidance_scale == 1. or unconditional_condition is None:
return noise_pred_fn(x, t_continuous, cond=condition)
else:
x_in = torch.cat([x] * 2)
t_in = torch.cat([t_continuous] * 2)
c_in = torch.cat([unconditional_condition, condition])
noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2)
return noise_uncond + guidance_scale * (noise - noise_uncond)
assert model_type in ["noise", "x_start", "v"]
assert guidance_type in ["uncond", "classifier", "classifier-free"]
return model_fn
class UniPC:
def __init__(
self,
model_fn,
noise_schedule,
predict_x0=True,
thresholding=False,
max_val=1.,
variant='bh1',
):
"""Construct a UniPC.
We support both data_prediction and noise_prediction.
"""
self.model = model_fn
self.noise_schedule = noise_schedule
self.variant = variant
self.predict_x0 = predict_x0
self.thresholding = thresholding
self.max_val = max_val
def dynamic_thresholding_fn(self, x0, t=None):
"""
The dynamic thresholding method.
"""
dims = x0.dim()
p = self.dynamic_thresholding_ratio
s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1)
s = expand_dims(torch.maximum(s, self.thresholding_max_val * torch.ones_like(s).to(s.device)), dims)
x0 = torch.clamp(x0, -s, s) / s
return x0
def noise_prediction_fn(self, x, t):
"""
Return the noise prediction model.
"""
return self.model(x, t)
def data_prediction_fn(self, x, t):
"""
Return the data prediction model (with thresholding).
"""
noise = self.noise_prediction_fn(x, t)
dims = x.dim()
alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t)
x0 = (x - expand_dims(sigma_t, dims) * noise) / expand_dims(alpha_t, dims)
if self.thresholding:
p = 0.995 # A hyperparameter in the paper of "Imagen" [1].
s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1)
s = expand_dims(torch.maximum(s, self.max_val * torch.ones_like(s).to(s.device)), dims)
x0 = torch.clamp(x0, -s, s) / s
return x0
def model_fn(self, x, t):
"""
Convert the model to the noise prediction model or the data prediction model.
"""
if self.predict_x0:
return self.data_prediction_fn(x, t)
else:
return self.noise_prediction_fn(x, t)
def get_time_steps(self, skip_type, t_T, t_0, N, device):
"""Compute the intermediate time steps for sampling.
"""
if skip_type == 'logSNR':
lambda_T = self.noise_schedule.marginal_lambda(torch.tensor(t_T).to(device))
lambda_0 = self.noise_schedule.marginal_lambda(torch.tensor(t_0).to(device))
logSNR_steps = torch.linspace(lambda_T.cpu().item(), lambda_0.cpu().item(), N + 1).to(device)
return self.noise_schedule.inverse_lambda(logSNR_steps)
elif skip_type == 'time_uniform':
return torch.linspace(t_T, t_0, N + 1).to(device)
elif skip_type == 'time_quadratic':
t_order = 2
t = torch.linspace(t_T**(1. / t_order), t_0**(1. / t_order), N + 1).pow(t_order).to(device)
return t
else:
raise ValueError("Unsupported skip_type {}, need to be 'logSNR' or 'time_uniform' or 'time_quadratic'".format(skip_type))
def get_orders_and_timesteps_for_singlestep_solver(self, steps, order, skip_type, t_T, t_0, device):
"""
Get the order of each step for sampling by the singlestep DPM-Solver.
"""
if order == 3:
K = steps // 3 + 1
if steps % 3 == 0:
orders = [3,] * (K - 2) + [2, 1]
elif steps % 3 == 1:
orders = [3,] * (K - 1) + [1]
else:
orders = [3,] * (K - 1) + [2]
elif order == 2:
if steps % 2 == 0:
K = steps // 2
orders = [2,] * K
else:
K = steps // 2 + 1
orders = [2,] * (K - 1) + [1]
elif order == 1:
K = steps
orders = [1,] * steps
else:
raise ValueError("'order' must be '1' or '2' or '3'.")
if skip_type == 'logSNR':
# To reproduce the results in DPM-Solver paper
timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, K, device)
else:
timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, steps, device)[torch.cumsum(torch.tensor([0,] + orders), 0).to(device)]
return timesteps_outer, orders
def denoise_to_zero_fn(self, x, s):
"""
Denoise at the final step, which is equivalent to solve the ODE from lambda_s to infty by first-order discretization.
"""
return self.data_prediction_fn(x, s)
def multistep_uni_pc_update(self, x, model_prev_list, t_prev_list, t, order, **kwargs):
if len(t.shape) == 0:
t = t.view(-1)
if 'bh' in self.variant:
return self.multistep_uni_pc_bh_update(x, model_prev_list, t_prev_list, t, order, **kwargs)
else:
assert self.variant == 'vary_coeff'
return self.multistep_uni_pc_vary_update(x, model_prev_list, t_prev_list, t, order, **kwargs)
def multistep_uni_pc_vary_update(self, x, model_prev_list, t_prev_list, t, order, use_corrector=True):
logging.info(f'using unified predictor-corrector with order {order} (solver type: vary coeff)')
ns = self.noise_schedule
assert order <= len(model_prev_list)
# first compute rks
t_prev_0 = t_prev_list[-1]
lambda_prev_0 = ns.marginal_lambda(t_prev_0)
lambda_t = ns.marginal_lambda(t)
model_prev_0 = model_prev_list[-1]
sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
log_alpha_t = ns.marginal_log_mean_coeff(t)
alpha_t = torch.exp(log_alpha_t)
h = lambda_t - lambda_prev_0
rks = []
D1s = []
for i in range(1, order):
t_prev_i = t_prev_list[-(i + 1)]
model_prev_i = model_prev_list[-(i + 1)]
lambda_prev_i = ns.marginal_lambda(t_prev_i)
rk = (lambda_prev_i - lambda_prev_0) / h
rks.append(rk)
D1s.append((model_prev_i - model_prev_0) / rk)
rks.append(1.)
rks = torch.tensor(rks, device=x.device)
K = len(rks)
# build C matrix
C = []
col = torch.ones_like(rks)
for k in range(1, K + 1):
C.append(col)
col = col * rks / (k + 1)
C = torch.stack(C, dim=1)
if len(D1s) > 0:
D1s = torch.stack(D1s, dim=1) # (B, K)
C_inv_p = torch.linalg.inv(C[:-1, :-1])
A_p = C_inv_p
if use_corrector:
C_inv = torch.linalg.inv(C)
A_c = C_inv
hh = -h if self.predict_x0 else h
h_phi_1 = torch.expm1(hh)
h_phi_ks = []
factorial_k = 1
h_phi_k = h_phi_1
for k in range(1, K + 2):
h_phi_ks.append(h_phi_k)
h_phi_k = h_phi_k / hh - 1 / factorial_k
factorial_k *= (k + 1)
model_t = None
if self.predict_x0:
x_t_ = (
sigma_t / sigma_prev_0 * x
- alpha_t * h_phi_1 * model_prev_0
)
# now predictor
x_t = x_t_
if len(D1s) > 0:
# compute the residuals for predictor
for k in range(K - 1):
x_t = x_t - alpha_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_p[k])
# now corrector
if use_corrector:
model_t = self.model_fn(x_t, t)
D1_t = (model_t - model_prev_0)
x_t = x_t_
k = 0
for k in range(K - 1):
x_t = x_t - alpha_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_c[k][:-1])
x_t = x_t - alpha_t * h_phi_ks[K] * (D1_t * A_c[k][-1])
else:
log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
x_t_ = (
(torch.exp(log_alpha_t - log_alpha_prev_0)) * x
- (sigma_t * h_phi_1) * model_prev_0
)
# now predictor
x_t = x_t_
if len(D1s) > 0:
# compute the residuals for predictor
for k in range(K - 1):
x_t = x_t - sigma_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_p[k])
# now corrector
if use_corrector:
model_t = self.model_fn(x_t, t)
D1_t = (model_t - model_prev_0)
x_t = x_t_
k = 0
for k in range(K - 1):
x_t = x_t - sigma_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_c[k][:-1])
x_t = x_t - sigma_t * h_phi_ks[K] * (D1_t * A_c[k][-1])
return x_t, model_t
def multistep_uni_pc_bh_update(self, x, model_prev_list, t_prev_list, t, order, x_t=None, use_corrector=True):
# print(f'using unified predictor-corrector with order {order} (solver type: B(h))')
ns = self.noise_schedule
assert order <= len(model_prev_list)
dims = x.dim()
# first compute rks
t_prev_0 = t_prev_list[-1]
lambda_prev_0 = ns.marginal_lambda(t_prev_0)
lambda_t = ns.marginal_lambda(t)
model_prev_0 = model_prev_list[-1]
sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
alpha_t = torch.exp(log_alpha_t)
h = lambda_t - lambda_prev_0
rks = []
D1s = []
for i in range(1, order):
t_prev_i = t_prev_list[-(i + 1)]
model_prev_i = model_prev_list[-(i + 1)]
lambda_prev_i = ns.marginal_lambda(t_prev_i)
rk = ((lambda_prev_i - lambda_prev_0) / h)[0]
rks.append(rk)
D1s.append((model_prev_i - model_prev_0) / rk)
rks.append(1.)
rks = torch.tensor(rks, device=x.device)
R = []
b = []
hh = -h[0] if self.predict_x0 else h[0]
h_phi_1 = torch.expm1(hh) # h\phi_1(h) = e^h - 1
h_phi_k = h_phi_1 / hh - 1
factorial_i = 1
if self.variant == 'bh1':
B_h = hh
elif self.variant == 'bh2':
B_h = torch.expm1(hh)
else:
raise NotImplementedError()
for i in range(1, order + 1):
R.append(torch.pow(rks, i - 1))
b.append(h_phi_k * factorial_i / B_h)
factorial_i *= (i + 1)
h_phi_k = h_phi_k / hh - 1 / factorial_i
R = torch.stack(R)
b = torch.tensor(b, device=x.device)
# now predictor
use_predictor = len(D1s) > 0 and x_t is None
if len(D1s) > 0:
D1s = torch.stack(D1s, dim=1) # (B, K)
if x_t is None:
# for order 2, we use a simplified version
if order == 2:
rhos_p = torch.tensor([0.5], device=b.device)
else:
rhos_p = torch.linalg.solve(R[:-1, :-1], b[:-1])
else:
D1s = None
if use_corrector:
# print('using corrector')
# for order 1, we use a simplified version
if order == 1:
rhos_c = torch.tensor([0.5], device=b.device)
else:
rhos_c = torch.linalg.solve(R, b)
model_t = None
if self.predict_x0:
x_t_ = (
expand_dims(sigma_t / sigma_prev_0, dims) * x
- expand_dims(alpha_t * h_phi_1, dims)* model_prev_0
)
if x_t is None:
if use_predictor:
pred_res = torch.tensordot(D1s, rhos_p, dims=([1], [0])) # torch.einsum('k,bkchw->bchw', rhos_p, D1s)
else:
pred_res = 0
x_t = x_t_ - expand_dims(alpha_t * B_h, dims) * pred_res
if use_corrector:
model_t = self.model_fn(x_t, t)
if D1s is not None:
corr_res = torch.tensordot(D1s, rhos_c[:-1], dims=([1], [0])) # torch.einsum('k,bkchw->bchw', rhos_c[:-1], D1s)
else:
corr_res = 0
D1_t = (model_t - model_prev_0)
x_t = x_t_ - expand_dims(alpha_t * B_h, dims) * (corr_res + rhos_c[-1] * D1_t)
else:
x_t_ = (
expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
- expand_dims(sigma_t * h_phi_1, dims) * model_prev_0
)
if x_t is None:
if use_predictor:
pred_res = torch.einsum('k,bkchw->bchw', rhos_p, D1s)
else:
pred_res = 0
x_t = x_t_ - expand_dims(sigma_t * B_h, dims) * pred_res
if use_corrector:
model_t = self.model_fn(x_t, t)
if D1s is not None:
corr_res = torch.einsum('k,bkchw->bchw', rhos_c[:-1], D1s)
else:
corr_res = 0
D1_t = (model_t - model_prev_0)
x_t = x_t_ - expand_dims(sigma_t * B_h, dims) * (corr_res + rhos_c[-1] * D1_t)
return x_t, model_t
def sample(self, x, timesteps, t_start=None, t_end=None, order=3, skip_type='time_uniform',
method='singlestep', lower_order_final=True, denoise_to_zero=False, solver_type='dpm_solver',
atol=0.0078, rtol=0.05, corrector=False, callback=None, disable_pbar=False
):
# t_0 = 1. / self.noise_schedule.total_N if t_end is None else t_end
# t_T = self.noise_schedule.T if t_start is None else t_start
steps = len(timesteps) - 1
if method == 'multistep':
assert steps >= order
# timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, device=device)
assert timesteps.shape[0] - 1 == steps
# with torch.no_grad():
for step_index in trange(steps, disable=disable_pbar):
if step_index == 0:
vec_t = timesteps[0].expand((x.shape[0]))
model_prev_list = [self.model_fn(x, vec_t)]
t_prev_list = [vec_t]
elif step_index < order:
init_order = step_index
# Init the first `order` values by lower order multistep DPM-Solver.
# for init_order in range(1, order):
vec_t = timesteps[init_order].expand(x.shape[0])
x, model_x = self.multistep_uni_pc_update(x, model_prev_list, t_prev_list, vec_t, init_order, use_corrector=True)
if model_x is None:
model_x = self.model_fn(x, vec_t)
model_prev_list.append(model_x)
t_prev_list.append(vec_t)
else:
extra_final_step = 0
if step_index == (steps - 1):
extra_final_step = 1
for step in range(step_index, step_index + 1 + extra_final_step):
vec_t = timesteps[step].expand(x.shape[0])
if lower_order_final:
step_order = min(order, steps + 1 - step)
else:
step_order = order
# print('this step order:', step_order)
if step == steps:
# print('do not run corrector at the last step')
use_corrector = False
else:
use_corrector = True
x, model_x = self.multistep_uni_pc_update(x, model_prev_list, t_prev_list, vec_t, step_order, use_corrector=use_corrector)
for i in range(order - 1):
t_prev_list[i] = t_prev_list[i + 1]
model_prev_list[i] = model_prev_list[i + 1]
t_prev_list[-1] = vec_t
# We do not need to evaluate the final model value.
if step < steps:
if model_x is None:
model_x = self.model_fn(x, vec_t)
model_prev_list[-1] = model_x
if callback is not None:
callback({'x': x, 'i': step_index, 'denoised': model_prev_list[-1]})
else:
raise NotImplementedError()
# if denoise_to_zero:
# x = self.denoise_to_zero_fn(x, torch.ones((x.shape[0],)).to(device) * t_0)
return x
#############################################################
# other utility functions
#############################################################
def interpolate_fn(x, xp, yp):
"""
A piecewise linear function y = f(x), using xp and yp as keypoints.
We implement f(x) in a differentiable way (i.e. applicable for autograd).
The function f(x) is well-defined for all x-axis. (For x beyond the bounds of xp, we use the outmost points of xp to define the linear function.)
Args:
x: PyTorch tensor with shape [N, C], where N is the batch size, C is the number of channels (we use C = 1 for DPM-Solver).
xp: PyTorch tensor with shape [C, K], where K is the number of keypoints.
yp: PyTorch tensor with shape [C, K].
Returns:
The function values f(x), with shape [N, C].
"""
N, K = x.shape[0], xp.shape[1]
all_x = torch.cat([x.unsqueeze(2), xp.unsqueeze(0).repeat((N, 1, 1))], dim=2)
sorted_all_x, x_indices = torch.sort(all_x, dim=2)
x_idx = torch.argmin(x_indices, dim=2)
cand_start_idx = x_idx - 1
start_idx = torch.where(
torch.eq(x_idx, 0),
torch.tensor(1, device=x.device),
torch.where(
torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
),
)
end_idx = torch.where(torch.eq(start_idx, cand_start_idx), start_idx + 2, start_idx + 1)
start_x = torch.gather(sorted_all_x, dim=2, index=start_idx.unsqueeze(2)).squeeze(2)
end_x = torch.gather(sorted_all_x, dim=2, index=end_idx.unsqueeze(2)).squeeze(2)
start_idx2 = torch.where(
torch.eq(x_idx, 0),
torch.tensor(0, device=x.device),
torch.where(
torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
),
)
y_positions_expanded = yp.unsqueeze(0).expand(N, -1, -1)
start_y = torch.gather(y_positions_expanded, dim=2, index=start_idx2.unsqueeze(2)).squeeze(2)
end_y = torch.gather(y_positions_expanded, dim=2, index=(start_idx2 + 1).unsqueeze(2)).squeeze(2)
cand = start_y + (x - start_x) * (end_y - start_y) / (end_x - start_x)
return cand
def expand_dims(v, dims):
"""
Expand the tensor `v` to the dim `dims`.
Args:
`v`: a PyTorch tensor with shape [N].
`dim`: a `int`.
Returns:
a PyTorch tensor with shape [N, 1, 1, ..., 1] and the total dimension is `dims`.
"""
return v[(...,) + (None,)*(dims - 1)]
class SigmaConvert:
schedule = ""
def marginal_log_mean_coeff(self, sigma):
return 0.5 * torch.log(1 / ((sigma * sigma) + 1))
def marginal_alpha(self, t):
return torch.exp(self.marginal_log_mean_coeff(t))
def marginal_std(self, t):
return torch.sqrt(1. - torch.exp(2. * self.marginal_log_mean_coeff(t)))
def marginal_lambda(self, t):
"""
Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T].
"""
log_mean_coeff = self.marginal_log_mean_coeff(t)
log_std = 0.5 * torch.log(1. - torch.exp(2. * log_mean_coeff))
return log_mean_coeff - log_std
def predict_eps_sigma(model, input, sigma_in, **kwargs):
sigma = sigma_in.view(sigma_in.shape[:1] + (1,) * (input.ndim - 1))
input = input * ((sigma ** 2 + 1.0) ** 0.5)
return (input - model(input, sigma_in, **kwargs)) / sigma
def sample_unipc(model, noise, sigmas, extra_args=None, callback=None, disable=False, variant='bh1'):
timesteps = sigmas.clone()
if sigmas[-1] == 0:
timesteps = sigmas[:]
timesteps[-1] = 0.001
else:
timesteps = sigmas.clone()
ns = SigmaConvert()
noise = noise / torch.sqrt(1.0 + timesteps[0] ** 2.0)
model_type = "noise"
model_fn = model_wrapper(
lambda input, sigma, **kwargs: predict_eps_sigma(model, input, sigma, **kwargs),
ns,
model_type=model_type,
guidance_type="uncond",
model_kwargs=extra_args,
)
order = min(3, len(timesteps) - 2)
uni_pc = UniPC(model_fn, ns, predict_x0=True, thresholding=False, variant=variant)
x = uni_pc.sample(noise, timesteps=timesteps, skip_type="time_uniform", method="multistep", order=order, lower_order_final=True, callback=callback, disable_pbar=disable)
x /= ns.marginal_alpha(timesteps[-1])
return x
def sample_unipc_bh2(model, noise, sigmas, extra_args=None, callback=None, disable=False):
return sample_unipc(model, noise, sigmas, extra_args, callback, disable, variant='bh2')
import torch
def calc_mantissa(abs_x, exponent, normal_mask, MANTISSA_BITS, EXPONENT_BIAS, generator=None):
mantissa_scaled = torch.where(
normal_mask,
(abs_x / (2.0 ** (exponent - EXPONENT_BIAS)) - 1.0) * (2**MANTISSA_BITS),
(abs_x / (2.0 ** (-EXPONENT_BIAS + 1 - MANTISSA_BITS)))
)
mantissa_scaled += torch.rand(mantissa_scaled.size(), dtype=mantissa_scaled.dtype, layout=mantissa_scaled.layout, device=mantissa_scaled.device, generator=generator)
return mantissa_scaled.floor() / (2**MANTISSA_BITS)
#Not 100% sure about this
def manual_stochastic_round_to_float8(x, dtype, generator=None):
if dtype == torch.float8_e4m3fn:
EXPONENT_BITS, MANTISSA_BITS, EXPONENT_BIAS = 4, 3, 7
elif dtype == torch.float8_e5m2:
EXPONENT_BITS, MANTISSA_BITS, EXPONENT_BIAS = 5, 2, 15
else:
raise ValueError("Unsupported dtype")
x = x.half()
sign = torch.sign(x)
abs_x = x.abs()
sign = torch.where(abs_x == 0, 0, sign)
# Combine exponent calculation and clamping
exponent = torch.clamp(
torch.floor(torch.log2(abs_x)) + EXPONENT_BIAS,
0, 2**EXPONENT_BITS - 1
)
# Combine mantissa calculation and rounding
normal_mask = ~(exponent == 0)
abs_x[:] = calc_mantissa(abs_x, exponent, normal_mask, MANTISSA_BITS, EXPONENT_BIAS, generator=generator)
sign *= torch.where(
normal_mask,
(2.0 ** (exponent - EXPONENT_BIAS)) * (1.0 + abs_x),
(2.0 ** (-EXPONENT_BIAS + 1)) * abs_x
)
inf = torch.finfo(dtype)
torch.clamp(sign, min=inf.min, max=inf.max, out=sign)
return sign
def stochastic_rounding(value, dtype, seed=0):
if dtype == torch.float32:
return value.to(dtype=torch.float32)
if dtype == torch.float16:
return value.to(dtype=torch.float16)
if dtype == torch.bfloat16:
return value.to(dtype=torch.bfloat16)
if dtype == torch.float8_e4m3fn or dtype == torch.float8_e5m2:
generator = torch.Generator(device=value.device)
generator.manual_seed(seed)
output = torch.empty_like(value, dtype=dtype)
num_slices = max(1, (value.numel() / (4096 * 4096)))
slice_size = max(1, round(value.shape[0] / num_slices))
for i in range(0, value.shape[0], slice_size):
output[i:i+slice_size].copy_(manual_stochastic_round_to_float8(value[i:i+slice_size], dtype, generator=generator))
return output
return value.to(dtype=dtype)
import math
import torch
from torch import nn
from .ldm.modules.attention import CrossAttention, FeedForward
import comfy.ops
ops = comfy.ops.manual_cast
class GatedCrossAttentionDense(nn.Module):
def __init__(self, query_dim, context_dim, n_heads, d_head):
super().__init__()
self.attn = CrossAttention(
query_dim=query_dim,
context_dim=context_dim,
heads=n_heads,
dim_head=d_head,
operations=ops)
self.ff = FeedForward(query_dim, glu=True)
self.norm1 = ops.LayerNorm(query_dim)
self.norm2 = ops.LayerNorm(query_dim)
self.register_parameter('alpha_attn', nn.Parameter(torch.tensor(0.)))
self.register_parameter('alpha_dense', nn.Parameter(torch.tensor(0.)))
# this can be useful: we can externally change magnitude of tanh(alpha)
# for example, when it is set to 0, then the entire model is same as
# original one
self.scale = 1
def forward(self, x, objs):
x = x + self.scale * \
torch.tanh(self.alpha_attn) * self.attn(self.norm1(x), objs, objs)
x = x + self.scale * \
torch.tanh(self.alpha_dense) * self.ff(self.norm2(x))
return x
class GatedSelfAttentionDense(nn.Module):
def __init__(self, query_dim, context_dim, n_heads, d_head):
super().__init__()
# we need a linear projection since we need cat visual feature and obj
# feature
self.linear = ops.Linear(context_dim, query_dim)
self.attn = CrossAttention(
query_dim=query_dim,
context_dim=query_dim,
heads=n_heads,
dim_head=d_head,
operations=ops)
self.ff = FeedForward(query_dim, glu=True)
self.norm1 = ops.LayerNorm(query_dim)
self.norm2 = ops.LayerNorm(query_dim)
self.register_parameter('alpha_attn', nn.Parameter(torch.tensor(0.)))
self.register_parameter('alpha_dense', nn.Parameter(torch.tensor(0.)))
# this can be useful: we can externally change magnitude of tanh(alpha)
# for example, when it is set to 0, then the entire model is same as
# original one
self.scale = 1
def forward(self, x, objs):
N_visual = x.shape[1]
objs = self.linear(objs)
x = x + self.scale * torch.tanh(self.alpha_attn) * self.attn(
self.norm1(torch.cat([x, objs], dim=1)))[:, 0:N_visual, :]
x = x + self.scale * \
torch.tanh(self.alpha_dense) * self.ff(self.norm2(x))
return x
class GatedSelfAttentionDense2(nn.Module):
def __init__(self, query_dim, context_dim, n_heads, d_head):
super().__init__()
# we need a linear projection since we need cat visual feature and obj
# feature
self.linear = ops.Linear(context_dim, query_dim)
self.attn = CrossAttention(
query_dim=query_dim, context_dim=query_dim, dim_head=d_head, operations=ops)
self.ff = FeedForward(query_dim, glu=True)
self.norm1 = ops.LayerNorm(query_dim)
self.norm2 = ops.LayerNorm(query_dim)
self.register_parameter('alpha_attn', nn.Parameter(torch.tensor(0.)))
self.register_parameter('alpha_dense', nn.Parameter(torch.tensor(0.)))
# this can be useful: we can externally change magnitude of tanh(alpha)
# for example, when it is set to 0, then the entire model is same as
# original one
self.scale = 1
def forward(self, x, objs):
B, N_visual, _ = x.shape
B, N_ground, _ = objs.shape
objs = self.linear(objs)
# sanity check
size_v = math.sqrt(N_visual)
size_g = math.sqrt(N_ground)
assert int(size_v) == size_v, "Visual tokens must be square rootable"
assert int(size_g) == size_g, "Grounding tokens must be square rootable"
size_v = int(size_v)
size_g = int(size_g)
# select grounding token and resize it to visual token size as residual
out = self.attn(self.norm1(torch.cat([x, objs], dim=1)))[
:, N_visual:, :]
out = out.permute(0, 2, 1).reshape(B, -1, size_g, size_g)
out = torch.nn.functional.interpolate(
out, (size_v, size_v), mode='bicubic')
residual = out.reshape(B, -1, N_visual).permute(0, 2, 1)
# add residual to visual feature
x = x + self.scale * torch.tanh(self.alpha_attn) * residual
x = x + self.scale * \
torch.tanh(self.alpha_dense) * self.ff(self.norm2(x))
return x
class FourierEmbedder():
def __init__(self, num_freqs=64, temperature=100):
self.num_freqs = num_freqs
self.temperature = temperature
self.freq_bands = temperature ** (torch.arange(num_freqs) / num_freqs)
@torch.no_grad()
def __call__(self, x, cat_dim=-1):
"x: arbitrary shape of tensor. dim: cat dim"
out = []
for freq in self.freq_bands:
out.append(torch.sin(freq * x))
out.append(torch.cos(freq * x))
return torch.cat(out, cat_dim)
class PositionNet(nn.Module):
def __init__(self, in_dim, out_dim, fourier_freqs=8):
super().__init__()
self.in_dim = in_dim
self.out_dim = out_dim
self.fourier_embedder = FourierEmbedder(num_freqs=fourier_freqs)
self.position_dim = fourier_freqs * 2 * 4 # 2 is sin&cos, 4 is xyxy
self.linears = nn.Sequential(
ops.Linear(self.in_dim + self.position_dim, 512),
nn.SiLU(),
ops.Linear(512, 512),
nn.SiLU(),
ops.Linear(512, out_dim),
)
self.null_positive_feature = torch.nn.Parameter(
torch.zeros([self.in_dim]))
self.null_position_feature = torch.nn.Parameter(
torch.zeros([self.position_dim]))
def forward(self, boxes, masks, positive_embeddings):
B, N, _ = boxes.shape
masks = masks.unsqueeze(-1)
positive_embeddings = positive_embeddings
# embedding position (it may includes padding as placeholder)
xyxy_embedding = self.fourier_embedder(boxes) # B*N*4 --> B*N*C
# learnable null embedding
positive_null = self.null_positive_feature.to(device=boxes.device, dtype=boxes.dtype).view(1, 1, -1)
xyxy_null = self.null_position_feature.to(device=boxes.device, dtype=boxes.dtype).view(1, 1, -1)
# replace padding with learnable null embedding
positive_embeddings = positive_embeddings * \
masks + (1 - masks) * positive_null
xyxy_embedding = xyxy_embedding * masks + (1 - masks) * xyxy_null
objs = self.linears(
torch.cat([positive_embeddings, xyxy_embedding], dim=-1))
assert objs.shape == torch.Size([B, N, self.out_dim])
return objs
class Gligen(nn.Module):
def __init__(self, modules, position_net, key_dim):
super().__init__()
self.module_list = nn.ModuleList(modules)
self.position_net = position_net
self.key_dim = key_dim
self.max_objs = 30
self.current_device = torch.device("cpu")
def _set_position(self, boxes, masks, positive_embeddings):
objs = self.position_net(boxes, masks, positive_embeddings)
def func(x, extra_options):
key = extra_options["transformer_index"]
module = self.module_list[key]
return module(x, objs.to(device=x.device, dtype=x.dtype))
return func
def set_position(self, latent_image_shape, position_params, device):
batch, c, h, w = latent_image_shape
masks = torch.zeros([self.max_objs], device="cpu")
boxes = []
positive_embeddings = []
for p in position_params:
x1 = (p[4]) / w
y1 = (p[3]) / h
x2 = (p[4] + p[2]) / w
y2 = (p[3] + p[1]) / h
masks[len(boxes)] = 1.0
boxes += [torch.tensor((x1, y1, x2, y2)).unsqueeze(0)]
positive_embeddings += [p[0]]
append_boxes = []
append_conds = []
if len(boxes) < self.max_objs:
append_boxes = [torch.zeros(
[self.max_objs - len(boxes), 4], device="cpu")]
append_conds = [torch.zeros(
[self.max_objs - len(boxes), self.key_dim], device="cpu")]
box_out = torch.cat(
boxes + append_boxes).unsqueeze(0).repeat(batch, 1, 1)
masks = masks.unsqueeze(0).repeat(batch, 1)
conds = torch.cat(positive_embeddings +
append_conds).unsqueeze(0).repeat(batch, 1, 1)
return self._set_position(
box_out.to(device),
masks.to(device),
conds.to(device))
def set_empty(self, latent_image_shape, device):
batch, c, h, w = latent_image_shape
masks = torch.zeros([self.max_objs], device="cpu").repeat(batch, 1)
box_out = torch.zeros([self.max_objs, 4],
device="cpu").repeat(batch, 1, 1)
conds = torch.zeros([self.max_objs, self.key_dim],
device="cpu").repeat(batch, 1, 1)
return self._set_position(
box_out.to(device),
masks.to(device),
conds.to(device))
def load_gligen(sd):
sd_k = sd.keys()
output_list = []
key_dim = 768
for a in ["input_blocks", "middle_block", "output_blocks"]:
for b in range(20):
k_temp = filter(lambda k: "{}.{}.".format(a, b)
in k and ".fuser." in k, sd_k)
k_temp = map(lambda k: (k, k.split(".fuser.")[-1]), k_temp)
n_sd = {}
for k in k_temp:
n_sd[k[1]] = sd[k[0]]
if len(n_sd) > 0:
query_dim = n_sd["linear.weight"].shape[0]
key_dim = n_sd["linear.weight"].shape[1]
if key_dim == 768: # SD1.x
n_heads = 8
d_head = query_dim // n_heads
else:
d_head = 64
n_heads = query_dim // d_head
gated = GatedSelfAttentionDense(
query_dim, key_dim, n_heads, d_head)
gated.load_state_dict(n_sd, strict=False)
output_list.append(gated)
if "position_net.null_positive_feature" in sd_k:
in_dim = sd["position_net.null_positive_feature"].shape[0]
out_dim = sd["position_net.linears.4.weight"].shape[0]
class WeightsLoader(torch.nn.Module):
pass
w = WeightsLoader()
w.position_net = PositionNet(in_dim, out_dim)
w.load_state_dict(sd, strict=False)
gligen = Gligen(output_list, w.position_net, key_dim)
return gligen
from __future__ import annotations
from typing import TYPE_CHECKING, Callable
import enum
import math
import torch
import numpy as np
import itertools
import logging
if TYPE_CHECKING:
from comfy.model_patcher import ModelPatcher, PatcherInjection
from comfy.model_base import BaseModel
from comfy.sd import CLIP
import comfy.lora
import comfy.model_management
import comfy.patcher_extension
from node_helpers import conditioning_set_values
# #######################################################################################################
# Hooks explanation
# -------------------
# The purpose of hooks is to allow conds to influence sampling without the need for ComfyUI core code to
# make explicit special cases like it does for ControlNet and GLIGEN.
#
# This is necessary for nodes/features that are intended for use with masked or scheduled conds, or those
# that should run special code when a 'marked' cond is used in sampling.
# #######################################################################################################
class EnumHookMode(enum.Enum):
'''
Priority of hook memory optimization vs. speed, mostly related to WeightHooks.
MinVram: No caching will occur for any operations related to hooks.
MaxSpeed: Excess VRAM (and RAM, once VRAM is sufficiently depleted) will be used to cache hook weights when switching hook groups.
'''
MinVram = "minvram"
MaxSpeed = "maxspeed"
class EnumHookType(enum.Enum):
'''
Hook types, each of which has different expected behavior.
'''
Weight = "weight"
ObjectPatch = "object_patch"
AdditionalModels = "add_models"
TransformerOptions = "transformer_options"
Injections = "add_injections"
class EnumWeightTarget(enum.Enum):
Model = "model"
Clip = "clip"
class EnumHookScope(enum.Enum):
'''
Determines if hook should be limited in its influence over sampling.
AllConditioning: hook will affect all conds used in sampling.
HookedOnly: hook will only affect the conds it was attached to.
'''
AllConditioning = "all_conditioning"
HookedOnly = "hooked_only"
class _HookRef:
pass
def default_should_register(hook: Hook, model: ModelPatcher, model_options: dict, target_dict: dict[str], registered: HookGroup):
'''Example for how custom_should_register function can look like.'''
return True
def create_target_dict(target: EnumWeightTarget=None, **kwargs) -> dict[str]:
'''Creates base dictionary for use with Hooks' target param.'''
d = {}
if target is not None:
d['target'] = target
d.update(kwargs)
return d
class Hook:
def __init__(self, hook_type: EnumHookType=None, hook_ref: _HookRef=None, hook_id: str=None,
hook_keyframe: HookKeyframeGroup=None, hook_scope=EnumHookScope.AllConditioning):
self.hook_type = hook_type
'''Enum identifying the general class of this hook.'''
self.hook_ref = hook_ref if hook_ref else _HookRef()
'''Reference shared between hook clones that have the same value. Should NOT be modified.'''
self.hook_id = hook_id
'''Optional string ID to identify hook; useful if need to consolidate duplicates at registration time.'''
self.hook_keyframe = hook_keyframe if hook_keyframe else HookKeyframeGroup()
'''Keyframe storage that can be referenced to get strength for current sampling step.'''
self.hook_scope = hook_scope
'''Scope of where this hook should apply in terms of the conds used in sampling run.'''
self.custom_should_register = default_should_register
'''Can be overriden with a compatible function to decide if this hook should be registered without the need to override .should_register'''
@property
def strength(self):
return self.hook_keyframe.strength
def initialize_timesteps(self, model: BaseModel):
self.reset()
self.hook_keyframe.initialize_timesteps(model)
def reset(self):
self.hook_keyframe.reset()
def clone(self):
c: Hook = self.__class__()
c.hook_type = self.hook_type
c.hook_ref = self.hook_ref
c.hook_id = self.hook_id
c.hook_keyframe = self.hook_keyframe
c.hook_scope = self.hook_scope
c.custom_should_register = self.custom_should_register
return c
def should_register(self, model: ModelPatcher, model_options: dict, target_dict: dict[str], registered: HookGroup):
return self.custom_should_register(self, model, model_options, target_dict, registered)
def add_hook_patches(self, model: ModelPatcher, model_options: dict, target_dict: dict[str], registered: HookGroup):
raise NotImplementedError("add_hook_patches should be defined for Hook subclasses")
def __eq__(self, other: Hook):
return self.__class__ == other.__class__ and self.hook_ref == other.hook_ref
def __hash__(self):
return hash(self.hook_ref)
class WeightHook(Hook):
'''
Hook responsible for tracking weights to be applied to some model/clip.
Note, value of hook_scope is ignored and is treated as HookedOnly.
'''
def __init__(self, strength_model=1.0, strength_clip=1.0):
super().__init__(hook_type=EnumHookType.Weight, hook_scope=EnumHookScope.HookedOnly)
self.weights: dict = None
self.weights_clip: dict = None
self.need_weight_init = True
self._strength_model = strength_model
self._strength_clip = strength_clip
self.hook_scope = EnumHookScope.HookedOnly # this value does not matter for WeightHooks, just for docs
@property
def strength_model(self):
return self._strength_model * self.strength
@property
def strength_clip(self):
return self._strength_clip * self.strength
def add_hook_patches(self, model: ModelPatcher, model_options: dict, target_dict: dict[str], registered: HookGroup):
if not self.should_register(model, model_options, target_dict, registered):
return False
weights = None
target = target_dict.get('target', None)
if target == EnumWeightTarget.Clip:
strength = self._strength_clip
else:
strength = self._strength_model
if self.need_weight_init:
key_map = {}
if target == EnumWeightTarget.Clip:
key_map = comfy.lora.model_lora_keys_clip(model.model, key_map)
else:
key_map = comfy.lora.model_lora_keys_unet(model.model, key_map)
weights = comfy.lora.load_lora(self.weights, key_map, log_missing=False)
else:
if target == EnumWeightTarget.Clip:
weights = self.weights_clip
else:
weights = self.weights
model.add_hook_patches(hook=self, patches=weights, strength_patch=strength)
registered.add(self)
return True
# TODO: add logs about any keys that were not applied
def clone(self):
c: WeightHook = super().clone()
c.weights = self.weights
c.weights_clip = self.weights_clip
c.need_weight_init = self.need_weight_init
c._strength_model = self._strength_model
c._strength_clip = self._strength_clip
return c
class ObjectPatchHook(Hook):
def __init__(self, object_patches: dict[str]=None,
hook_scope=EnumHookScope.AllConditioning):
super().__init__(hook_type=EnumHookType.ObjectPatch)
self.object_patches = object_patches
self.hook_scope = hook_scope
def clone(self):
c: ObjectPatchHook = super().clone()
c.object_patches = self.object_patches
return c
def add_hook_patches(self, model: ModelPatcher, model_options: dict, target_dict: dict[str], registered: HookGroup):
raise NotImplementedError("ObjectPatchHook is not supported yet in ComfyUI.")
class AdditionalModelsHook(Hook):
'''
Hook responsible for telling model management any additional models that should be loaded.
Note, value of hook_scope is ignored and is treated as AllConditioning.
'''
def __init__(self, models: list[ModelPatcher]=None, key: str=None):
super().__init__(hook_type=EnumHookType.AdditionalModels)
self.models = models
self.key = key
def clone(self):
c: AdditionalModelsHook = super().clone()
c.models = self.models.copy() if self.models else self.models
c.key = self.key
return c
def add_hook_patches(self, model: ModelPatcher, model_options: dict, target_dict: dict[str], registered: HookGroup):
if not self.should_register(model, model_options, target_dict, registered):
return False
registered.add(self)
return True
class TransformerOptionsHook(Hook):
'''
Hook responsible for adding wrappers, callbacks, patches, or anything else related to transformer_options.
'''
def __init__(self, transformers_dict: dict[str, dict[str, dict[str, list[Callable]]]]=None,
hook_scope=EnumHookScope.AllConditioning):
super().__init__(hook_type=EnumHookType.TransformerOptions)
self.transformers_dict = transformers_dict
self.hook_scope = hook_scope
self._skip_adding = False
'''Internal value used to avoid double load of transformer_options when hook_scope is AllConditioning.'''
def clone(self):
c: TransformerOptionsHook = super().clone()
c.transformers_dict = self.transformers_dict
c._skip_adding = self._skip_adding
return c
def add_hook_patches(self, model: ModelPatcher, model_options: dict, target_dict: dict[str], registered: HookGroup):
if not self.should_register(model, model_options, target_dict, registered):
return False
# NOTE: to_load_options will be used to manually load patches/wrappers/callbacks from hooks
self._skip_adding = False
if self.hook_scope == EnumHookScope.AllConditioning:
add_model_options = {"transformer_options": self.transformers_dict,
"to_load_options": self.transformers_dict}
# skip_adding if included in AllConditioning to avoid double loading
self._skip_adding = True
else:
add_model_options = {"to_load_options": self.transformers_dict}
registered.add(self)
comfy.patcher_extension.merge_nested_dicts(model_options, add_model_options, copy_dict1=False)
return True
def on_apply_hooks(self, model: ModelPatcher, transformer_options: dict[str]):
if not self._skip_adding:
comfy.patcher_extension.merge_nested_dicts(transformer_options, self.transformers_dict, copy_dict1=False)
WrapperHook = TransformerOptionsHook
'''Only here for backwards compatibility, WrapperHook is identical to TransformerOptionsHook.'''
class InjectionsHook(Hook):
def __init__(self, key: str=None, injections: list[PatcherInjection]=None,
hook_scope=EnumHookScope.AllConditioning):
super().__init__(hook_type=EnumHookType.Injections)
self.key = key
self.injections = injections
self.hook_scope = hook_scope
def clone(self):
c: InjectionsHook = super().clone()
c.key = self.key
c.injections = self.injections.copy() if self.injections else self.injections
return c
def add_hook_patches(self, model: ModelPatcher, model_options: dict, target_dict: dict[str], registered: HookGroup):
raise NotImplementedError("InjectionsHook is not supported yet in ComfyUI.")
class HookGroup:
'''
Stores groups of hooks, and allows them to be queried by type.
To prevent breaking their functionality, never modify the underlying self.hooks or self._hook_dict vars directly;
always use the provided functions on HookGroup.
'''
def __init__(self):
self.hooks: list[Hook] = []
self._hook_dict: dict[EnumHookType, list[Hook]] = {}
def __len__(self):
return len(self.hooks)
def add(self, hook: Hook):
if hook not in self.hooks:
self.hooks.append(hook)
self._hook_dict.setdefault(hook.hook_type, []).append(hook)
def remove(self, hook: Hook):
if hook in self.hooks:
self.hooks.remove(hook)
self._hook_dict[hook.hook_type].remove(hook)
def get_type(self, hook_type: EnumHookType):
return self._hook_dict.get(hook_type, [])
def contains(self, hook: Hook):
return hook in self.hooks
def is_subset_of(self, other: HookGroup):
self_hooks = set(self.hooks)
other_hooks = set(other.hooks)
return self_hooks.issubset(other_hooks)
def new_with_common_hooks(self, other: HookGroup):
c = HookGroup()
for hook in self.hooks:
if other.contains(hook):
c.add(hook.clone())
return c
def clone(self):
c = HookGroup()
for hook in self.hooks:
c.add(hook.clone())
return c
def clone_and_combine(self, other: HookGroup):
c = self.clone()
if other is not None:
for hook in other.hooks:
c.add(hook.clone())
return c
def set_keyframes_on_hooks(self, hook_kf: HookKeyframeGroup):
if hook_kf is None:
hook_kf = HookKeyframeGroup()
else:
hook_kf = hook_kf.clone()
for hook in self.hooks:
hook.hook_keyframe = hook_kf
def get_hooks_for_clip_schedule(self):
scheduled_hooks: dict[WeightHook, list[tuple[tuple[float,float], HookKeyframe]]] = {}
# only care about WeightHooks, for now
for hook in self.get_type(EnumHookType.Weight):
hook: WeightHook
hook_schedule = []
# if no hook keyframes, assign default value
if len(hook.hook_keyframe.keyframes) == 0:
hook_schedule.append(((0.0, 1.0), None))
scheduled_hooks[hook] = hook_schedule
continue
# find ranges of values
prev_keyframe = hook.hook_keyframe.keyframes[0]
for keyframe in hook.hook_keyframe.keyframes:
if keyframe.start_percent > prev_keyframe.start_percent and not math.isclose(keyframe.strength, prev_keyframe.strength):
hook_schedule.append(((prev_keyframe.start_percent, keyframe.start_percent), prev_keyframe))
prev_keyframe = keyframe
elif keyframe.start_percent == prev_keyframe.start_percent:
prev_keyframe = keyframe
# create final range, assuming last start_percent was not 1.0
if not math.isclose(prev_keyframe.start_percent, 1.0):
hook_schedule.append(((prev_keyframe.start_percent, 1.0), prev_keyframe))
scheduled_hooks[hook] = hook_schedule
# hooks should not have their schedules in a list of tuples
all_ranges: list[tuple[float, float]] = []
for range_kfs in scheduled_hooks.values():
for t_range, keyframe in range_kfs:
all_ranges.append(t_range)
# turn list of ranges into boundaries
boundaries_set = set(itertools.chain.from_iterable(all_ranges))
boundaries_set.add(0.0)
boundaries = sorted(boundaries_set)
real_ranges = [(boundaries[i], boundaries[i + 1]) for i in range(len(boundaries) - 1)]
# with real ranges defined, give appropriate hooks w/ keyframes for each range
scheduled_keyframes: list[tuple[tuple[float,float], list[tuple[WeightHook, HookKeyframe]]]] = []
for t_range in real_ranges:
hooks_schedule = []
for hook, val in scheduled_hooks.items():
keyframe = None
# check if is a keyframe that works for the current t_range
for stored_range, stored_kf in val:
# if stored start is less than current end, then fits - give it assigned keyframe
if stored_range[0] < t_range[1] and stored_range[1] > t_range[0]:
keyframe = stored_kf
break
hooks_schedule.append((hook, keyframe))
scheduled_keyframes.append((t_range, hooks_schedule))
return scheduled_keyframes
def reset(self):
for hook in self.hooks:
hook.reset()
@staticmethod
def combine_all_hooks(hooks_list: list[HookGroup], require_count=0) -> HookGroup:
actual: list[HookGroup] = []
for group in hooks_list:
if group is not None:
actual.append(group)
if len(actual) < require_count:
raise Exception(f"Need at least {require_count} hooks to combine, but only had {len(actual)}.")
# if no hooks, then return None
if len(actual) == 0:
return None
# if only 1 hook, just return itself without cloning
elif len(actual) == 1:
return actual[0]
final_hook: HookGroup = None
for hook in actual:
if final_hook is None:
final_hook = hook.clone()
else:
final_hook = final_hook.clone_and_combine(hook)
return final_hook
class HookKeyframe:
def __init__(self, strength: float, start_percent=0.0, guarantee_steps=1):
self.strength = strength
# scheduling
self.start_percent = float(start_percent)
self.start_t = 999999999.9
self.guarantee_steps = guarantee_steps
def get_effective_guarantee_steps(self, max_sigma: torch.Tensor):
'''If keyframe starts before current sampling range (max_sigma), treat as 0.'''
if self.start_t > max_sigma:
return 0
return self.guarantee_steps
def clone(self):
c = HookKeyframe(strength=self.strength,
start_percent=self.start_percent, guarantee_steps=self.guarantee_steps)
c.start_t = self.start_t
return c
class HookKeyframeGroup:
def __init__(self):
self.keyframes: list[HookKeyframe] = []
self._current_keyframe: HookKeyframe = None
self._current_used_steps = 0
self._current_index = 0
self._current_strength = None
self._curr_t = -1.
# properties shadow those of HookWeightsKeyframe
@property
def strength(self):
if self._current_keyframe is not None:
return self._current_keyframe.strength
return 1.0
def reset(self):
self._current_keyframe = None
self._current_used_steps = 0
self._current_index = 0
self._current_strength = None
self.curr_t = -1.
self._set_first_as_current()
def add(self, keyframe: HookKeyframe):
# add to end of list, then sort
self.keyframes.append(keyframe)
self.keyframes = get_sorted_list_via_attr(self.keyframes, "start_percent")
self._set_first_as_current()
def _set_first_as_current(self):
if len(self.keyframes) > 0:
self._current_keyframe = self.keyframes[0]
else:
self._current_keyframe = None
def has_guarantee_steps(self):
for kf in self.keyframes:
if kf.guarantee_steps > 0:
return True
return False
def has_index(self, index: int):
return index >= 0 and index < len(self.keyframes)
def is_empty(self):
return len(self.keyframes) == 0
def clone(self):
c = HookKeyframeGroup()
for keyframe in self.keyframes:
c.keyframes.append(keyframe.clone())
c._set_first_as_current()
return c
def initialize_timesteps(self, model: BaseModel):
for keyframe in self.keyframes:
keyframe.start_t = model.model_sampling.percent_to_sigma(keyframe.start_percent)
def prepare_current_keyframe(self, curr_t: float, transformer_options: dict[str, torch.Tensor]) -> bool:
if self.is_empty():
return False
if curr_t == self._curr_t:
return False
max_sigma = torch.max(transformer_options["sample_sigmas"])
prev_index = self._current_index
prev_strength = self._current_strength
# if met guaranteed steps, look for next keyframe in case need to switch
if self._current_used_steps >= self._current_keyframe.get_effective_guarantee_steps(max_sigma):
# if has next index, loop through and see if need to switch
if self.has_index(self._current_index+1):
for i in range(self._current_index+1, len(self.keyframes)):
eval_c = self.keyframes[i]
# check if start_t is greater or equal to curr_t
# NOTE: t is in terms of sigmas, not percent, so bigger number = earlier step in sampling
if eval_c.start_t >= curr_t:
self._current_index = i
self._current_strength = eval_c.strength
self._current_keyframe = eval_c
self._current_used_steps = 0
# if guarantee_steps greater than zero, stop searching for other keyframes
if self._current_keyframe.get_effective_guarantee_steps(max_sigma) > 0:
break
# if eval_c is outside the percent range, stop looking further
else: break
# update steps current context is used
self._current_used_steps += 1
# update current timestep this was performed on
self._curr_t = curr_t
# return True if keyframe changed, False if no change
return prev_index != self._current_index and prev_strength != self._current_strength
class InterpolationMethod:
LINEAR = "linear"
EASE_IN = "ease_in"
EASE_OUT = "ease_out"
EASE_IN_OUT = "ease_in_out"
_LIST = [LINEAR, EASE_IN, EASE_OUT, EASE_IN_OUT]
@classmethod
def get_weights(cls, num_from: float, num_to: float, length: int, method: str, reverse=False):
diff = num_to - num_from
if method == cls.LINEAR:
weights = torch.linspace(num_from, num_to, length)
elif method == cls.EASE_IN:
index = torch.linspace(0, 1, length)
weights = diff * np.power(index, 2) + num_from
elif method == cls.EASE_OUT:
index = torch.linspace(0, 1, length)
weights = diff * (1 - np.power(1 - index, 2)) + num_from
elif method == cls.EASE_IN_OUT:
index = torch.linspace(0, 1, length)
weights = diff * ((1 - np.cos(index * np.pi)) / 2) + num_from
else:
raise ValueError(f"Unrecognized interpolation method '{method}'.")
if reverse:
weights = weights.flip(dims=(0,))
return weights
def get_sorted_list_via_attr(objects: list, attr: str) -> list:
if not objects:
return objects
elif len(objects) <= 1:
return [x for x in objects]
# now that we know we have to sort, do it following these rules:
# a) if objects have same value of attribute, maintain their relative order
# b) perform sorting of the groups of objects with same attributes
unique_attrs = {}
for o in objects:
val_attr = getattr(o, attr)
attr_list: list = unique_attrs.get(val_attr, list())
attr_list.append(o)
if val_attr not in unique_attrs:
unique_attrs[val_attr] = attr_list
# now that we have the unique attr values grouped together in relative order, sort them by key
sorted_attrs = dict(sorted(unique_attrs.items()))
# now flatten out the dict into a list to return
sorted_list = []
for object_list in sorted_attrs.values():
sorted_list.extend(object_list)
return sorted_list
def create_transformer_options_from_hooks(model: ModelPatcher, hooks: HookGroup, transformer_options: dict[str]=None):
# if no hooks or is not a ModelPatcher for sampling, return empty dict
if hooks is None or model.is_clip:
return {}
if transformer_options is None:
transformer_options = {}
for hook in hooks.get_type(EnumHookType.TransformerOptions):
hook: TransformerOptionsHook
hook.on_apply_hooks(model, transformer_options)
return transformer_options
def create_hook_lora(lora: dict[str, torch.Tensor], strength_model: float, strength_clip: float):
hook_group = HookGroup()
hook = WeightHook(strength_model=strength_model, strength_clip=strength_clip)
hook_group.add(hook)
hook.weights = lora
return hook_group
def create_hook_model_as_lora(weights_model, weights_clip, strength_model: float, strength_clip: float):
hook_group = HookGroup()
hook = WeightHook(strength_model=strength_model, strength_clip=strength_clip)
hook_group.add(hook)
patches_model = None
patches_clip = None
if weights_model is not None:
patches_model = {}
for key in weights_model:
patches_model[key] = ("model_as_lora", (weights_model[key],))
if weights_clip is not None:
patches_clip = {}
for key in weights_clip:
patches_clip[key] = ("model_as_lora", (weights_clip[key],))
hook.weights = patches_model
hook.weights_clip = patches_clip
hook.need_weight_init = False
return hook_group
def get_patch_weights_from_model(model: ModelPatcher, discard_model_sampling=True):
if model is None:
return None
patches_model: dict[str, torch.Tensor] = model.model.state_dict()
if discard_model_sampling:
# do not include ANY model_sampling components of the model that should act as a patch
for key in list(patches_model.keys()):
if key.startswith("model_sampling"):
patches_model.pop(key, None)
return patches_model
# NOTE: this function shows how to register weight hooks directly on the ModelPatchers
def load_hook_lora_for_models(model: ModelPatcher, clip: CLIP, lora: dict[str, torch.Tensor],
strength_model: float, strength_clip: float):
key_map = {}
if model is not None:
key_map = comfy.lora.model_lora_keys_unet(model.model, key_map)
if clip is not None:
key_map = comfy.lora.model_lora_keys_clip(clip.cond_stage_model, key_map)
hook_group = HookGroup()
hook = WeightHook()
hook_group.add(hook)
loaded: dict[str] = comfy.lora.load_lora(lora, key_map)
if model is not None:
new_modelpatcher = model.clone()
k = new_modelpatcher.add_hook_patches(hook=hook, patches=loaded, strength_patch=strength_model)
else:
k = ()
new_modelpatcher = None
if clip is not None:
new_clip = clip.clone()
k1 = new_clip.patcher.add_hook_patches(hook=hook, patches=loaded, strength_patch=strength_clip)
else:
k1 = ()
new_clip = None
k = set(k)
k1 = set(k1)
for x in loaded:
if (x not in k) and (x not in k1):
logging.warning(f"NOT LOADED {x}")
return (new_modelpatcher, new_clip, hook_group)
def _combine_hooks_from_values(c_dict: dict[str, HookGroup], values: dict[str, HookGroup], cache: dict[tuple[HookGroup, HookGroup], HookGroup]):
hooks_key = 'hooks'
# if hooks only exist in one dict, do what's needed so that it ends up in c_dict
if hooks_key not in values:
return
if hooks_key not in c_dict:
hooks_value = values.get(hooks_key, None)
if hooks_value is not None:
c_dict[hooks_key] = hooks_value
return
# otherwise, need to combine with minimum duplication via cache
hooks_tuple = (c_dict[hooks_key], values[hooks_key])
cached_hooks = cache.get(hooks_tuple, None)
if cached_hooks is None:
new_hooks = hooks_tuple[0].clone_and_combine(hooks_tuple[1])
cache[hooks_tuple] = new_hooks
c_dict[hooks_key] = new_hooks
else:
c_dict[hooks_key] = cache[hooks_tuple]
def conditioning_set_values_with_hooks(conditioning, values={}, append_hooks=True,
cache: dict[tuple[HookGroup, HookGroup], HookGroup]=None):
c = []
if cache is None:
cache = {}
for t in conditioning:
n = [t[0], t[1].copy()]
for k in values:
if append_hooks and k == 'hooks':
_combine_hooks_from_values(n[1], values, cache)
else:
n[1][k] = values[k]
c.append(n)
return c
def set_hooks_for_conditioning(cond, hooks: HookGroup, append_hooks=True, cache: dict[tuple[HookGroup, HookGroup], HookGroup]=None):
if hooks is None:
return cond
return conditioning_set_values_with_hooks(cond, {'hooks': hooks}, append_hooks=append_hooks, cache=cache)
def set_timesteps_for_conditioning(cond, timestep_range: tuple[float,float]):
if timestep_range is None:
return cond
return conditioning_set_values(cond, {"start_percent": timestep_range[0],
"end_percent": timestep_range[1]})
def set_mask_for_conditioning(cond, mask: torch.Tensor, set_cond_area: str, strength: float):
if mask is None:
return cond
set_area_to_bounds = False
if set_cond_area != 'default':
set_area_to_bounds = True
if len(mask.shape) < 3:
mask = mask.unsqueeze(0)
return conditioning_set_values(cond, {'mask': mask,
'set_area_to_bounds': set_area_to_bounds,
'mask_strength': strength})
def combine_conditioning(conds: list):
combined_conds = []
for cond in conds:
combined_conds.extend(cond)
return combined_conds
def combine_with_new_conds(conds: list, new_conds: list):
combined_conds = []
for c, new_c in zip(conds, new_conds):
combined_conds.append(combine_conditioning([c, new_c]))
return combined_conds
def set_conds_props(conds: list, strength: float, set_cond_area: str,
mask: torch.Tensor=None, hooks: HookGroup=None, timesteps_range: tuple[float,float]=None, append_hooks=True):
final_conds = []
cache = {}
for c in conds:
# first, apply lora_hook to conditioning, if provided
c = set_hooks_for_conditioning(c, hooks, append_hooks=append_hooks, cache=cache)
# next, apply mask to conditioning
c = set_mask_for_conditioning(cond=c, mask=mask, strength=strength, set_cond_area=set_cond_area)
# apply timesteps, if present
c = set_timesteps_for_conditioning(cond=c, timestep_range=timesteps_range)
# finally, apply mask to conditioning and store
final_conds.append(c)
return final_conds
def set_conds_props_and_combine(conds: list, new_conds: list, strength: float=1.0, set_cond_area: str="default",
mask: torch.Tensor=None, hooks: HookGroup=None, timesteps_range: tuple[float,float]=None, append_hooks=True):
combined_conds = []
cache = {}
for c, masked_c in zip(conds, new_conds):
# first, apply lora_hook to new conditioning, if provided
masked_c = set_hooks_for_conditioning(masked_c, hooks, append_hooks=append_hooks, cache=cache)
# next, apply mask to new conditioning, if provided
masked_c = set_mask_for_conditioning(cond=masked_c, mask=mask, set_cond_area=set_cond_area, strength=strength)
# apply timesteps, if present
masked_c = set_timesteps_for_conditioning(cond=masked_c, timestep_range=timesteps_range)
# finally, combine with existing conditioning and store
combined_conds.append(combine_conditioning([c, masked_c]))
return combined_conds
def set_default_conds_and_combine(conds: list, new_conds: list,
hooks: HookGroup=None, timesteps_range: tuple[float,float]=None, append_hooks=True):
combined_conds = []
cache = {}
for c, new_c in zip(conds, new_conds):
# first, apply lora_hook to new conditioning, if provided
new_c = set_hooks_for_conditioning(new_c, hooks, append_hooks=append_hooks, cache=cache)
# next, add default_cond key to cond so that during sampling, it can be identified
new_c = conditioning_set_values(new_c, {'default': True})
# apply timesteps, if present
new_c = set_timesteps_for_conditioning(cond=new_c, timestep_range=timesteps_range)
# finally, combine with existing conditioning and store
combined_conds.append(combine_conditioning([c, new_c]))
return combined_conds
import torch
from comfy.text_encoders.bert import BertAttention
import comfy.model_management
from comfy.ldm.modules.attention import optimized_attention_for_device
class Dino2AttentionOutput(torch.nn.Module):
def __init__(self, input_dim, output_dim, layer_norm_eps, dtype, device, operations):
super().__init__()
self.dense = operations.Linear(input_dim, output_dim, dtype=dtype, device=device)
def forward(self, x):
return self.dense(x)
class Dino2AttentionBlock(torch.nn.Module):
def __init__(self, embed_dim, heads, layer_norm_eps, dtype, device, operations):
super().__init__()
self.attention = BertAttention(embed_dim, heads, dtype, device, operations)
self.output = Dino2AttentionOutput(embed_dim, embed_dim, layer_norm_eps, dtype, device, operations)
def forward(self, x, mask, optimized_attention):
return self.output(self.attention(x, mask, optimized_attention))
class LayerScale(torch.nn.Module):
def __init__(self, dim, dtype, device, operations):
super().__init__()
self.lambda1 = torch.nn.Parameter(torch.empty(dim, device=device, dtype=dtype))
def forward(self, x):
return x * comfy.model_management.cast_to_device(self.lambda1, x.device, x.dtype)
class SwiGLUFFN(torch.nn.Module):
def __init__(self, dim, dtype, device, operations):
super().__init__()
in_features = out_features = dim
hidden_features = int(dim * 4)
hidden_features = (int(hidden_features * 2 / 3) + 7) // 8 * 8
self.weights_in = operations.Linear(in_features, 2 * hidden_features, bias=True, device=device, dtype=dtype)
self.weights_out = operations.Linear(hidden_features, out_features, bias=True, device=device, dtype=dtype)
def forward(self, x):
x = self.weights_in(x)
x1, x2 = x.chunk(2, dim=-1)
x = torch.nn.functional.silu(x1) * x2
return self.weights_out(x)
class Dino2Block(torch.nn.Module):
def __init__(self, dim, num_heads, layer_norm_eps, dtype, device, operations):
super().__init__()
self.attention = Dino2AttentionBlock(dim, num_heads, layer_norm_eps, dtype, device, operations)
self.layer_scale1 = LayerScale(dim, dtype, device, operations)
self.layer_scale2 = LayerScale(dim, dtype, device, operations)
self.mlp = SwiGLUFFN(dim, dtype, device, operations)
self.norm1 = operations.LayerNorm(dim, eps=layer_norm_eps, dtype=dtype, device=device)
self.norm2 = operations.LayerNorm(dim, eps=layer_norm_eps, dtype=dtype, device=device)
def forward(self, x, optimized_attention):
x = x + self.layer_scale1(self.attention(self.norm1(x), None, optimized_attention))
x = x + self.layer_scale2(self.mlp(self.norm2(x)))
return x
class Dino2Encoder(torch.nn.Module):
def __init__(self, dim, num_heads, layer_norm_eps, num_layers, dtype, device, operations):
super().__init__()
self.layer = torch.nn.ModuleList([Dino2Block(dim, num_heads, layer_norm_eps, dtype, device, operations) for _ in range(num_layers)])
def forward(self, x, intermediate_output=None):
optimized_attention = optimized_attention_for_device(x.device, False, small_input=True)
if intermediate_output is not None:
if intermediate_output < 0:
intermediate_output = len(self.layer) + intermediate_output
intermediate = None
for i, l in enumerate(self.layer):
x = l(x, optimized_attention)
if i == intermediate_output:
intermediate = x.clone()
return x, intermediate
class Dino2PatchEmbeddings(torch.nn.Module):
def __init__(self, dim, num_channels=3, patch_size=14, image_size=518, dtype=None, device=None, operations=None):
super().__init__()
self.projection = operations.Conv2d(
in_channels=num_channels,
out_channels=dim,
kernel_size=patch_size,
stride=patch_size,
bias=True,
dtype=dtype,
device=device
)
def forward(self, pixel_values):
return self.projection(pixel_values).flatten(2).transpose(1, 2)
class Dino2Embeddings(torch.nn.Module):
def __init__(self, dim, dtype, device, operations):
super().__init__()
patch_size = 14
image_size = 518
self.patch_embeddings = Dino2PatchEmbeddings(dim, patch_size=patch_size, image_size=image_size, dtype=dtype, device=device, operations=operations)
self.position_embeddings = torch.nn.Parameter(torch.empty(1, (image_size // patch_size) ** 2 + 1, dim, dtype=dtype, device=device))
self.cls_token = torch.nn.Parameter(torch.empty(1, 1, dim, dtype=dtype, device=device))
self.mask_token = torch.nn.Parameter(torch.empty(1, dim, dtype=dtype, device=device))
def forward(self, pixel_values):
x = self.patch_embeddings(pixel_values)
# TODO: mask_token?
x = torch.cat((self.cls_token.to(device=x.device, dtype=x.dtype).expand(x.shape[0], -1, -1), x), dim=1)
x = x + comfy.model_management.cast_to_device(self.position_embeddings, x.device, x.dtype)
return x
class Dinov2Model(torch.nn.Module):
def __init__(self, config_dict, dtype, device, operations):
super().__init__()
num_layers = config_dict["num_hidden_layers"]
dim = config_dict["hidden_size"]
heads = config_dict["num_attention_heads"]
layer_norm_eps = config_dict["layer_norm_eps"]
self.embeddings = Dino2Embeddings(dim, dtype, device, operations)
self.encoder = Dino2Encoder(dim, heads, layer_norm_eps, num_layers, dtype, device, operations)
self.layernorm = operations.LayerNorm(dim, eps=layer_norm_eps, dtype=dtype, device=device)
def forward(self, pixel_values, attention_mask=None, intermediate_output=None):
x = self.embeddings(pixel_values)
x, i = self.encoder(x, intermediate_output=intermediate_output)
x = self.layernorm(x)
pooled_output = x[:, 0, :]
return x, i, pooled_output, None
{
"attention_probs_dropout_prob": 0.0,
"drop_path_rate": 0.0,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.0,
"hidden_size": 1536,
"image_size": 518,
"initializer_range": 0.02,
"layer_norm_eps": 1e-06,
"layerscale_value": 1.0,
"mlp_ratio": 4,
"model_type": "dinov2",
"num_attention_heads": 24,
"num_channels": 3,
"num_hidden_layers": 40,
"patch_size": 14,
"qkv_bias": true,
"use_swiglu_ffn": true,
"image_mean": [0.485, 0.456, 0.406],
"image_std": [0.229, 0.224, 0.225]
}
#Taken from: https://github.com/zju-pi/diff-sampler/blob/main/gits-main/solver_utils.py
#under Apache 2 license
import torch
import numpy as np
# A pytorch reimplementation of DEIS (https://github.com/qsh-zh/deis).
#############################
### Utils for DEIS solver ###
#############################
#----------------------------------------------------------------------------
# Transfer from the input time (sigma) used in EDM to that (t) used in DEIS.
def edm2t(edm_steps, epsilon_s=1e-3, sigma_min=0.002, sigma_max=80):
vp_sigma_inv = lambda beta_d, beta_min: lambda sigma: ((beta_min ** 2 + 2 * beta_d * (sigma ** 2 + 1).log()).sqrt() - beta_min) / beta_d
vp_beta_d = 2 * (np.log(torch.tensor(sigma_min).cpu() ** 2 + 1) / epsilon_s - np.log(torch.tensor(sigma_max).cpu() ** 2 + 1)) / (epsilon_s - 1)
vp_beta_min = np.log(torch.tensor(sigma_max).cpu() ** 2 + 1) - 0.5 * vp_beta_d
t_steps = vp_sigma_inv(vp_beta_d.clone().detach().cpu(), vp_beta_min.clone().detach().cpu())(edm_steps.clone().detach().cpu())
return t_steps, vp_beta_min, vp_beta_d + vp_beta_min
#----------------------------------------------------------------------------
def cal_poly(prev_t, j, taus):
poly = 1
for k in range(prev_t.shape[0]):
if k == j:
continue
poly *= (taus - prev_t[k]) / (prev_t[j] - prev_t[k])
return poly
#----------------------------------------------------------------------------
# Transfer from t to alpha_t.
def t2alpha_fn(beta_0, beta_1, t):
return torch.exp(-0.5 * t ** 2 * (beta_1 - beta_0) - t * beta_0)
#----------------------------------------------------------------------------
def cal_intergrand(beta_0, beta_1, taus):
with torch.inference_mode(mode=False):
taus = taus.clone()
beta_0 = beta_0.clone()
beta_1 = beta_1.clone()
with torch.enable_grad():
taus.requires_grad_(True)
alpha = t2alpha_fn(beta_0, beta_1, taus)
log_alpha = alpha.log()
log_alpha.sum().backward()
d_log_alpha_dtau = taus.grad
integrand = -0.5 * d_log_alpha_dtau / torch.sqrt(alpha * (1 - alpha))
return integrand
#----------------------------------------------------------------------------
def get_deis_coeff_list(t_steps, max_order, N=10000, deis_mode='tab'):
"""
Get the coefficient list for DEIS sampling.
Args:
t_steps: A pytorch tensor. The time steps for sampling.
max_order: A `int`. Maximum order of the solver. 1 <= max_order <= 4
N: A `int`. Use how many points to perform the numerical integration when deis_mode=='tab'.
deis_mode: A `str`. Select between 'tab' and 'rhoab'. Type of DEIS.
Returns:
A pytorch tensor. A batch of generated samples or sampling trajectories if return_inters=True.
"""
if deis_mode == 'tab':
t_steps, beta_0, beta_1 = edm2t(t_steps)
C = []
for i, (t_cur, t_next) in enumerate(zip(t_steps[:-1], t_steps[1:])):
order = min(i+1, max_order)
if order == 1:
C.append([])
else:
taus = torch.linspace(t_cur, t_next, N) # split the interval for integral appximation
dtau = (t_next - t_cur) / N
prev_t = t_steps[[i - k for k in range(order)]]
coeff_temp = []
integrand = cal_intergrand(beta_0, beta_1, taus)
for j in range(order):
poly = cal_poly(prev_t, j, taus)
coeff_temp.append(torch.sum(integrand * poly) * dtau)
C.append(coeff_temp)
elif deis_mode == 'rhoab':
# Analytical solution, second order
def get_def_intergral_2(a, b, start, end, c):
coeff = (end**3 - start**3) / 3 - (end**2 - start**2) * (a + b) / 2 + (end - start) * a * b
return coeff / ((c - a) * (c - b))
# Analytical solution, third order
def get_def_intergral_3(a, b, c, start, end, d):
coeff = (end**4 - start**4) / 4 - (end**3 - start**3) * (a + b + c) / 3 \
+ (end**2 - start**2) * (a*b + a*c + b*c) / 2 - (end - start) * a * b * c
return coeff / ((d - a) * (d - b) * (d - c))
C = []
for i, (t_cur, t_next) in enumerate(zip(t_steps[:-1], t_steps[1:])):
order = min(i, max_order)
if order == 0:
C.append([])
else:
prev_t = t_steps[[i - k for k in range(order+1)]]
if order == 1:
coeff_cur = ((t_next - prev_t[1])**2 - (t_cur - prev_t[1])**2) / (2 * (t_cur - prev_t[1]))
coeff_prev1 = (t_next - t_cur)**2 / (2 * (prev_t[1] - t_cur))
coeff_temp = [coeff_cur, coeff_prev1]
elif order == 2:
coeff_cur = get_def_intergral_2(prev_t[1], prev_t[2], t_cur, t_next, t_cur)
coeff_prev1 = get_def_intergral_2(t_cur, prev_t[2], t_cur, t_next, prev_t[1])
coeff_prev2 = get_def_intergral_2(t_cur, prev_t[1], t_cur, t_next, prev_t[2])
coeff_temp = [coeff_cur, coeff_prev1, coeff_prev2]
elif order == 3:
coeff_cur = get_def_intergral_3(prev_t[1], prev_t[2], prev_t[3], t_cur, t_next, t_cur)
coeff_prev1 = get_def_intergral_3(t_cur, prev_t[2], prev_t[3], t_cur, t_next, prev_t[1])
coeff_prev2 = get_def_intergral_3(t_cur, prev_t[1], prev_t[3], t_cur, t_next, prev_t[2])
coeff_prev3 = get_def_intergral_3(t_cur, prev_t[1], prev_t[2], t_cur, t_next, prev_t[3])
coeff_temp = [coeff_cur, coeff_prev1, coeff_prev2, coeff_prev3]
C.append(coeff_temp)
return C
# SA-Solver: Stochastic Adams Solver (NeurIPS 2023, arXiv:2309.05019)
# Conference: https://proceedings.neurips.cc/paper_files/paper/2023/file/f4a6806490d31216a3ba667eb240c897-Paper-Conference.pdf
# Codebase ref: https://github.com/scxue/SA-Solver
import math
from typing import Union, Callable
import torch
def compute_exponential_coeffs(s: torch.Tensor, t: torch.Tensor, solver_order: int, tau_t: float) -> torch.Tensor:
"""Compute (1 + tau^2) * integral of exp((1 + tau^2) * x) * x^p dx from s to t with exp((1 + tau^2) * t) factored out, using integration by parts.
Integral of exp((1 + tau^2) * x) * x^p dx
= product_terms[p] - (p / (1 + tau^2)) * integral of exp((1 + tau^2) * x) * x^(p-1) dx,
with base case p=0 where integral equals product_terms[0].
where
product_terms[p] = x^p * exp((1 + tau^2) * x) / (1 + tau^2).
Construct a recursive coefficient matrix following the above recursive relation to compute all integral terms up to p = (solver_order - 1).
Return coefficients used by the SA-Solver in data prediction mode.
Args:
s: Start time s.
t: End time t.
solver_order: Current order of the solver.
tau_t: Stochastic strength parameter in the SDE.
Returns:
Exponential coefficients used in data prediction, with exp((1 + tau^2) * t) factored out, ordered from p=0 to p=solver_order−1, shape (solver_order,).
"""
tau_mul = 1 + tau_t ** 2
h = t - s
p = torch.arange(solver_order, dtype=s.dtype, device=s.device)
# product_terms after factoring out exp((1 + tau^2) * t)
# Includes (1 + tau^2) factor from outside the integral
product_terms_factored = (t ** p - s ** p * (-tau_mul * h).exp())
# Lower triangular recursive coefficient matrix
# Accumulates recursive coefficients based on p / (1 + tau^2)
recursive_depth_mat = p.unsqueeze(1) - p.unsqueeze(0)
log_factorial = (p + 1).lgamma()
recursive_coeff_mat = log_factorial.unsqueeze(1) - log_factorial.unsqueeze(0)
if tau_t > 0:
recursive_coeff_mat = recursive_coeff_mat - (recursive_depth_mat * math.log(tau_mul))
signs = torch.where(recursive_depth_mat % 2 == 0, 1.0, -1.0)
recursive_coeff_mat = (recursive_coeff_mat.exp() * signs).tril()
return recursive_coeff_mat @ product_terms_factored
def compute_simple_stochastic_adams_b_coeffs(sigma_next: torch.Tensor, curr_lambdas: torch.Tensor, lambda_s: torch.Tensor, lambda_t: torch.Tensor, tau_t: float, is_corrector_step: bool = False) -> torch.Tensor:
"""Compute simple order-2 b coefficients from SA-Solver paper (Appendix D. Implementation Details)."""
tau_mul = 1 + tau_t ** 2
h = lambda_t - lambda_s
alpha_t = sigma_next * lambda_t.exp()
if is_corrector_step:
# Simplified 1-step (order-2) corrector
b_1 = alpha_t * (0.5 * tau_mul * h)
b_2 = alpha_t * (-h * tau_mul).expm1().neg() - b_1
else:
# Simplified 2-step predictor
b_2 = alpha_t * (0.5 * tau_mul * h ** 2) / (curr_lambdas[-2] - lambda_s)
b_1 = alpha_t * (-h * tau_mul).expm1().neg() - b_2
return torch.stack([b_2, b_1])
def compute_stochastic_adams_b_coeffs(sigma_next: torch.Tensor, curr_lambdas: torch.Tensor, lambda_s: torch.Tensor, lambda_t: torch.Tensor, tau_t: float, simple_order_2: bool = False, is_corrector_step: bool = False) -> torch.Tensor:
"""Compute b_i coefficients for the SA-Solver (see eqs. 15 and 18).
The solver order corresponds to the number of input lambdas (half-logSNR points).
Args:
sigma_next: Sigma at end time t.
curr_lambdas: Lambda time points used to construct the Lagrange basis, shape (N,).
lambda_s: Lambda at start time s.
lambda_t: Lambda at end time t.
tau_t: Stochastic strength parameter in the SDE.
simple_order_2: Whether to enable the simple order-2 scheme.
is_corrector_step: Flag for corrector step in simple order-2 mode.
Returns:
b_i coefficients for the SA-Solver, shape (N,), where N is the solver order.
"""
num_timesteps = curr_lambdas.shape[0]
if simple_order_2 and num_timesteps == 2:
return compute_simple_stochastic_adams_b_coeffs(sigma_next, curr_lambdas, lambda_s, lambda_t, tau_t, is_corrector_step)
# Compute coefficients by solving a linear system from Lagrange basis interpolation
exp_integral_coeffs = compute_exponential_coeffs(lambda_s, lambda_t, num_timesteps, tau_t)
vandermonde_matrix_T = torch.vander(curr_lambdas, num_timesteps, increasing=True).T
lagrange_integrals = torch.linalg.solve(vandermonde_matrix_T, exp_integral_coeffs)
# (sigma_t * exp(-tau^2 * lambda_t)) * exp((1 + tau^2) * lambda_t)
# = sigma_t * exp(lambda_t) = alpha_t
# exp((1 + tau^2) * lambda_t) is extracted from the integral
alpha_t = sigma_next * lambda_t.exp()
return alpha_t * lagrange_integrals
def get_tau_interval_func(start_sigma: float, end_sigma: float, eta: float = 1.0) -> Callable[[Union[torch.Tensor, float]], float]:
"""Return a function that controls the stochasticity of SA-Solver.
When eta = 0, SA-Solver runs as ODE. The official approach uses
time t to determine the SDE interval, while here we use sigma instead.
See:
https://github.com/scxue/SA-Solver/blob/main/README.md
"""
def tau_func(sigma: Union[torch.Tensor, float]) -> float:
if eta <= 0:
return 0.0 # ODE
if isinstance(sigma, torch.Tensor):
sigma = sigma.item()
return eta if start_sigma >= sigma >= end_sigma else 0.0
return tau_func
import math
from functools import partial
from scipy import integrate
import torch
from torch import nn
import torchsde
from tqdm.auto import trange, tqdm
from . import utils
from . import deis
from . import sa_solver
import comfy.model_patcher
import comfy.model_sampling
def append_zero(x):
return torch.cat([x, x.new_zeros([1])])
def get_sigmas_karras(n, sigma_min, sigma_max, rho=7., device='cpu'):
"""Constructs the noise schedule of Karras et al. (2022)."""
ramp = torch.linspace(0, 1, n, device=device)
min_inv_rho = sigma_min ** (1 / rho)
max_inv_rho = sigma_max ** (1 / rho)
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
return append_zero(sigmas).to(device)
def get_sigmas_exponential(n, sigma_min, sigma_max, device='cpu'):
"""Constructs an exponential noise schedule."""
sigmas = torch.linspace(math.log(sigma_max), math.log(sigma_min), n, device=device).exp()
return append_zero(sigmas)
def get_sigmas_polyexponential(n, sigma_min, sigma_max, rho=1., device='cpu'):
"""Constructs an polynomial in log sigma noise schedule."""
ramp = torch.linspace(1, 0, n, device=device) ** rho
sigmas = torch.exp(ramp * (math.log(sigma_max) - math.log(sigma_min)) + math.log(sigma_min))
return append_zero(sigmas)
def get_sigmas_vp(n, beta_d=19.9, beta_min=0.1, eps_s=1e-3, device='cpu'):
"""Constructs a continuous VP noise schedule."""
t = torch.linspace(1, eps_s, n, device=device)
sigmas = torch.sqrt(torch.special.expm1(beta_d * t ** 2 / 2 + beta_min * t))
return append_zero(sigmas)
def get_sigmas_laplace(n, sigma_min, sigma_max, mu=0., beta=0.5, device='cpu'):
"""Constructs the noise schedule proposed by Tiankai et al. (2024). """
epsilon = 1e-5 # avoid log(0)
x = torch.linspace(0, 1, n, device=device)
clamp = lambda x: torch.clamp(x, min=sigma_min, max=sigma_max)
lmb = mu - beta * torch.sign(0.5-x) * torch.log(1 - 2 * torch.abs(0.5-x) + epsilon)
sigmas = clamp(torch.exp(lmb))
return sigmas
def to_d(x, sigma, denoised):
"""Converts a denoiser output to a Karras ODE derivative."""
return (x - denoised) / utils.append_dims(sigma, x.ndim)
def get_ancestral_step(sigma_from, sigma_to, eta=1.):
"""Calculates the noise level (sigma_down) to step down to and the amount
of noise to add (sigma_up) when doing an ancestral sampling step."""
if not eta:
return sigma_to, 0.
sigma_up = min(sigma_to, eta * (sigma_to ** 2 * (sigma_from ** 2 - sigma_to ** 2) / sigma_from ** 2) ** 0.5)
sigma_down = (sigma_to ** 2 - sigma_up ** 2) ** 0.5
return sigma_down, sigma_up
def default_noise_sampler(x, seed=None):
if seed is not None:
generator = torch.Generator(device=x.device)
generator.manual_seed(seed)
else:
generator = None
return lambda sigma, sigma_next: torch.randn(x.size(), dtype=x.dtype, layout=x.layout, device=x.device, generator=generator)
class BatchedBrownianTree:
"""A wrapper around torchsde.BrownianTree that enables batches of entropy."""
def __init__(self, x, t0, t1, seed=None, **kwargs):
self.cpu_tree = True
if "cpu" in kwargs:
self.cpu_tree = kwargs.pop("cpu")
t0, t1, self.sign = self.sort(t0, t1)
w0 = kwargs.get('w0', torch.zeros_like(x))
if seed is None:
seed = torch.randint(0, 2 ** 63 - 1, []).item()
self.batched = True
try:
assert len(seed) == x.shape[0]
w0 = w0[0]
except TypeError:
seed = [seed]
self.batched = False
if self.cpu_tree:
self.trees = [torchsde.BrownianTree(t0.cpu(), w0.cpu(), t1.cpu(), entropy=s, **kwargs) for s in seed]
else:
self.trees = [torchsde.BrownianTree(t0, w0, t1, entropy=s, **kwargs) for s in seed]
@staticmethod
def sort(a, b):
return (a, b, 1) if a < b else (b, a, -1)
def __call__(self, t0, t1):
t0, t1, sign = self.sort(t0, t1)
if self.cpu_tree:
w = torch.stack([tree(t0.cpu().float(), t1.cpu().float()).to(t0.dtype).to(t0.device) for tree in self.trees]) * (self.sign * sign)
else:
w = torch.stack([tree(t0, t1) for tree in self.trees]) * (self.sign * sign)
return w if self.batched else w[0]
class BrownianTreeNoiseSampler:
"""A noise sampler backed by a torchsde.BrownianTree.
Args:
x (Tensor): The tensor whose shape, device and dtype to use to generate
random samples.
sigma_min (float): The low end of the valid interval.
sigma_max (float): The high end of the valid interval.
seed (int or List[int]): The random seed. If a list of seeds is
supplied instead of a single integer, then the noise sampler will
use one BrownianTree per batch item, each with its own seed.
transform (callable): A function that maps sigma to the sampler's
internal timestep.
"""
def __init__(self, x, sigma_min, sigma_max, seed=None, transform=lambda x: x, cpu=False):
self.transform = transform
t0, t1 = self.transform(torch.as_tensor(sigma_min)), self.transform(torch.as_tensor(sigma_max))
self.tree = BatchedBrownianTree(x, t0, t1, seed, cpu=cpu)
def __call__(self, sigma, sigma_next):
t0, t1 = self.transform(torch.as_tensor(sigma)), self.transform(torch.as_tensor(sigma_next))
return self.tree(t0, t1) / (t1 - t0).abs().sqrt()
def sigma_to_half_log_snr(sigma, model_sampling):
"""Convert sigma to half-logSNR log(alpha_t / sigma_t)."""
if isinstance(model_sampling, comfy.model_sampling.CONST):
# log((1 - t) / t) = log((1 - sigma) / sigma)
return sigma.logit().neg()
return sigma.log().neg()
def half_log_snr_to_sigma(half_log_snr, model_sampling):
"""Convert half-logSNR log(alpha_t / sigma_t) to sigma."""
if isinstance(model_sampling, comfy.model_sampling.CONST):
# 1 / (1 + exp(half_log_snr))
return half_log_snr.neg().sigmoid()
return half_log_snr.neg().exp()
def offset_first_sigma_for_snr(sigmas, model_sampling, percent_offset=1e-4):
"""Adjust the first sigma to avoid invalid logSNR."""
if len(sigmas) <= 1:
return sigmas
if isinstance(model_sampling, comfy.model_sampling.CONST):
if sigmas[0] >= 1:
sigmas = sigmas.clone()
sigmas[0] = model_sampling.percent_to_sigma(percent_offset)
return sigmas
@torch.no_grad()
def sample_euler(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
"""Implements Algorithm 2 (Euler steps) from Karras et al. (2022)."""
extra_args = {} if extra_args is None else extra_args
s_in = x.new_ones([x.shape[0]])
for i in trange(len(sigmas) - 1, disable=disable):
if s_churn > 0:
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
sigma_hat = sigmas[i] * (gamma + 1)
else:
gamma = 0
sigma_hat = sigmas[i]
if gamma > 0:
eps = torch.randn_like(x) * s_noise
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
denoised = model(x, sigma_hat * s_in, **extra_args)
d = to_d(x, sigma_hat, denoised)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
dt = sigmas[i + 1] - sigma_hat
# Euler method
x = x + d * dt
return x
@torch.no_grad()
def sample_euler_ancestral(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
if isinstance(model.inner_model.inner_model.model_sampling, comfy.model_sampling.CONST):
return sample_euler_ancestral_RF(model, x, sigmas, extra_args, callback, disable, eta, s_noise, noise_sampler)
"""Ancestral sampling with Euler method steps."""
extra_args = {} if extra_args is None else extra_args
seed = extra_args.get("seed", None)
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
s_in = x.new_ones([x.shape[0]])
for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args)
sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
if sigma_down == 0:
x = denoised
else:
d = to_d(x, sigmas[i], denoised)
# Euler method
dt = sigma_down - sigmas[i]
x = x + d * dt + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
return x
@torch.no_grad()
def sample_euler_ancestral_RF(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1.0, s_noise=1., noise_sampler=None):
"""Ancestral sampling with Euler method steps."""
extra_args = {} if extra_args is None else extra_args
seed = extra_args.get("seed", None)
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
s_in = x.new_ones([x.shape[0]])
for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args)
# sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
if sigmas[i + 1] == 0:
x = denoised
else:
downstep_ratio = 1 + (sigmas[i + 1] / sigmas[i] - 1) * eta
sigma_down = sigmas[i + 1] * downstep_ratio
alpha_ip1 = 1 - sigmas[i + 1]
alpha_down = 1 - sigma_down
renoise_coeff = (sigmas[i + 1]**2 - sigma_down**2 * alpha_ip1**2 / alpha_down**2)**0.5
# Euler method
sigma_down_i_ratio = sigma_down / sigmas[i]
x = sigma_down_i_ratio * x + (1 - sigma_down_i_ratio) * denoised
if eta > 0:
x = (alpha_ip1 / alpha_down) * x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * renoise_coeff
return x
@torch.no_grad()
def sample_heun(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
"""Implements Algorithm 2 (Heun steps) from Karras et al. (2022)."""
extra_args = {} if extra_args is None else extra_args
s_in = x.new_ones([x.shape[0]])
for i in trange(len(sigmas) - 1, disable=disable):
if s_churn > 0:
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
sigma_hat = sigmas[i] * (gamma + 1)
else:
gamma = 0
sigma_hat = sigmas[i]
sigma_hat = sigmas[i] * (gamma + 1)
if gamma > 0:
eps = torch.randn_like(x) * s_noise
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
denoised = model(x, sigma_hat * s_in, **extra_args)
d = to_d(x, sigma_hat, denoised)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
dt = sigmas[i + 1] - sigma_hat
if sigmas[i + 1] == 0:
# Euler method
x = x + d * dt
else:
# Heun's method
x_2 = x + d * dt
denoised_2 = model(x_2, sigmas[i + 1] * s_in, **extra_args)
d_2 = to_d(x_2, sigmas[i + 1], denoised_2)
d_prime = (d + d_2) / 2
x = x + d_prime * dt
return x
@torch.no_grad()
def sample_dpm_2(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
"""A sampler inspired by DPM-Solver-2 and Algorithm 2 from Karras et al. (2022)."""
extra_args = {} if extra_args is None else extra_args
s_in = x.new_ones([x.shape[0]])
for i in trange(len(sigmas) - 1, disable=disable):
if s_churn > 0:
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
sigma_hat = sigmas[i] * (gamma + 1)
else:
gamma = 0
sigma_hat = sigmas[i]
if gamma > 0:
eps = torch.randn_like(x) * s_noise
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
denoised = model(x, sigma_hat * s_in, **extra_args)
d = to_d(x, sigma_hat, denoised)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
if sigmas[i + 1] == 0:
# Euler method
dt = sigmas[i + 1] - sigma_hat
x = x + d * dt
else:
# DPM-Solver-2
sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
dt_1 = sigma_mid - sigma_hat
dt_2 = sigmas[i + 1] - sigma_hat
x_2 = x + d * dt_1
denoised_2 = model(x_2, sigma_mid * s_in, **extra_args)
d_2 = to_d(x_2, sigma_mid, denoised_2)
x = x + d_2 * dt_2
return x
@torch.no_grad()
def sample_dpm_2_ancestral(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
if isinstance(model.inner_model.inner_model.model_sampling, comfy.model_sampling.CONST):
return sample_dpm_2_ancestral_RF(model, x, sigmas, extra_args, callback, disable, eta, s_noise, noise_sampler)
"""Ancestral sampling with DPM-Solver second-order steps."""
extra_args = {} if extra_args is None else extra_args
seed = extra_args.get("seed", None)
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
s_in = x.new_ones([x.shape[0]])
for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args)
sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
d = to_d(x, sigmas[i], denoised)
if sigma_down == 0:
# Euler method
dt = sigma_down - sigmas[i]
x = x + d * dt
else:
# DPM-Solver-2
sigma_mid = sigmas[i].log().lerp(sigma_down.log(), 0.5).exp()
dt_1 = sigma_mid - sigmas[i]
dt_2 = sigma_down - sigmas[i]
x_2 = x + d * dt_1
denoised_2 = model(x_2, sigma_mid * s_in, **extra_args)
d_2 = to_d(x_2, sigma_mid, denoised_2)
x = x + d_2 * dt_2
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
return x
@torch.no_grad()
def sample_dpm_2_ancestral_RF(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
"""Ancestral sampling with DPM-Solver second-order steps."""
extra_args = {} if extra_args is None else extra_args
seed = extra_args.get("seed", None)
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
s_in = x.new_ones([x.shape[0]])
for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args)
downstep_ratio = 1 + (sigmas[i+1]/sigmas[i] - 1) * eta
sigma_down = sigmas[i+1] * downstep_ratio
alpha_ip1 = 1 - sigmas[i+1]
alpha_down = 1 - sigma_down
renoise_coeff = (sigmas[i+1]**2 - sigma_down**2*alpha_ip1**2/alpha_down**2)**0.5
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
d = to_d(x, sigmas[i], denoised)
if sigma_down == 0:
# Euler method
dt = sigma_down - sigmas[i]
x = x + d * dt
else:
# DPM-Solver-2
sigma_mid = sigmas[i].log().lerp(sigma_down.log(), 0.5).exp()
dt_1 = sigma_mid - sigmas[i]
dt_2 = sigma_down - sigmas[i]
x_2 = x + d * dt_1
denoised_2 = model(x_2, sigma_mid * s_in, **extra_args)
d_2 = to_d(x_2, sigma_mid, denoised_2)
x = x + d_2 * dt_2
x = (alpha_ip1/alpha_down) * x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * renoise_coeff
return x
def linear_multistep_coeff(order, t, i, j):
if order - 1 > i:
raise ValueError(f'Order {order} too high for step {i}')
def fn(tau):
prod = 1.
for k in range(order):
if j == k:
continue
prod *= (tau - t[i - k]) / (t[i - j] - t[i - k])
return prod
return integrate.quad(fn, t[i], t[i + 1], epsrel=1e-4)[0]
@torch.no_grad()
def sample_lms(model, x, sigmas, extra_args=None, callback=None, disable=None, order=4):
extra_args = {} if extra_args is None else extra_args
s_in = x.new_ones([x.shape[0]])
sigmas_cpu = sigmas.detach().cpu().numpy()
ds = []
for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args)
d = to_d(x, sigmas[i], denoised)
ds.append(d)
if len(ds) > order:
ds.pop(0)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
if sigmas[i + 1] == 0:
# Denoising step
x = denoised
else:
cur_order = min(i + 1, order)
coeffs = [linear_multistep_coeff(cur_order, sigmas_cpu, i, j) for j in range(cur_order)]
x = x + sum(coeff * d for coeff, d in zip(coeffs, reversed(ds)))
return x
class PIDStepSizeController:
"""A PID controller for ODE adaptive step size control."""
def __init__(self, h, pcoeff, icoeff, dcoeff, order=1, accept_safety=0.81, eps=1e-8):
self.h = h
self.b1 = (pcoeff + icoeff + dcoeff) / order
self.b2 = -(pcoeff + 2 * dcoeff) / order
self.b3 = dcoeff / order
self.accept_safety = accept_safety
self.eps = eps
self.errs = []
def limiter(self, x):
return 1 + math.atan(x - 1)
def propose_step(self, error):
inv_error = 1 / (float(error) + self.eps)
if not self.errs:
self.errs = [inv_error, inv_error, inv_error]
self.errs[0] = inv_error
factor = self.errs[0] ** self.b1 * self.errs[1] ** self.b2 * self.errs[2] ** self.b3
factor = self.limiter(factor)
accept = factor >= self.accept_safety
if accept:
self.errs[2] = self.errs[1]
self.errs[1] = self.errs[0]
self.h *= factor
return accept
class DPMSolver(nn.Module):
"""DPM-Solver. See https://arxiv.org/abs/2206.00927."""
def __init__(self, model, extra_args=None, eps_callback=None, info_callback=None):
super().__init__()
self.model = model
self.extra_args = {} if extra_args is None else extra_args
self.eps_callback = eps_callback
self.info_callback = info_callback
def t(self, sigma):
return -sigma.log()
def sigma(self, t):
return t.neg().exp()
def eps(self, eps_cache, key, x, t, *args, **kwargs):
if key in eps_cache:
return eps_cache[key], eps_cache
sigma = self.sigma(t) * x.new_ones([x.shape[0]])
eps = (x - self.model(x, sigma, *args, **self.extra_args, **kwargs)) / self.sigma(t)
if self.eps_callback is not None:
self.eps_callback()
return eps, {key: eps, **eps_cache}
def dpm_solver_1_step(self, x, t, t_next, eps_cache=None):
eps_cache = {} if eps_cache is None else eps_cache
h = t_next - t
eps, eps_cache = self.eps(eps_cache, 'eps', x, t)
x_1 = x - self.sigma(t_next) * h.expm1() * eps
return x_1, eps_cache
def dpm_solver_2_step(self, x, t, t_next, r1=1 / 2, eps_cache=None):
eps_cache = {} if eps_cache is None else eps_cache
h = t_next - t
eps, eps_cache = self.eps(eps_cache, 'eps', x, t)
s1 = t + r1 * h
u1 = x - self.sigma(s1) * (r1 * h).expm1() * eps
eps_r1, eps_cache = self.eps(eps_cache, 'eps_r1', u1, s1)
x_2 = x - self.sigma(t_next) * h.expm1() * eps - self.sigma(t_next) / (2 * r1) * h.expm1() * (eps_r1 - eps)
return x_2, eps_cache
def dpm_solver_3_step(self, x, t, t_next, r1=1 / 3, r2=2 / 3, eps_cache=None):
eps_cache = {} if eps_cache is None else eps_cache
h = t_next - t
eps, eps_cache = self.eps(eps_cache, 'eps', x, t)
s1 = t + r1 * h
s2 = t + r2 * h
u1 = x - self.sigma(s1) * (r1 * h).expm1() * eps
eps_r1, eps_cache = self.eps(eps_cache, 'eps_r1', u1, s1)
u2 = x - self.sigma(s2) * (r2 * h).expm1() * eps - self.sigma(s2) * (r2 / r1) * ((r2 * h).expm1() / (r2 * h) - 1) * (eps_r1 - eps)
eps_r2, eps_cache = self.eps(eps_cache, 'eps_r2', u2, s2)
x_3 = x - self.sigma(t_next) * h.expm1() * eps - self.sigma(t_next) / r2 * (h.expm1() / h - 1) * (eps_r2 - eps)
return x_3, eps_cache
def dpm_solver_fast(self, x, t_start, t_end, nfe, eta=0., s_noise=1., noise_sampler=None):
noise_sampler = default_noise_sampler(x, seed=self.extra_args.get("seed", None)) if noise_sampler is None else noise_sampler
if not t_end > t_start and eta:
raise ValueError('eta must be 0 for reverse sampling')
m = math.floor(nfe / 3) + 1
ts = torch.linspace(t_start, t_end, m + 1, device=x.device)
if nfe % 3 == 0:
orders = [3] * (m - 2) + [2, 1]
else:
orders = [3] * (m - 1) + [nfe % 3]
for i in range(len(orders)):
eps_cache = {}
t, t_next = ts[i], ts[i + 1]
if eta:
sd, su = get_ancestral_step(self.sigma(t), self.sigma(t_next), eta)
t_next_ = torch.minimum(t_end, self.t(sd))
su = (self.sigma(t_next) ** 2 - self.sigma(t_next_) ** 2) ** 0.5
else:
t_next_, su = t_next, 0.
eps, eps_cache = self.eps(eps_cache, 'eps', x, t)
denoised = x - self.sigma(t) * eps
if self.info_callback is not None:
self.info_callback({'x': x, 'i': i, 't': ts[i], 't_up': t, 'denoised': denoised})
if orders[i] == 1:
x, eps_cache = self.dpm_solver_1_step(x, t, t_next_, eps_cache=eps_cache)
elif orders[i] == 2:
x, eps_cache = self.dpm_solver_2_step(x, t, t_next_, eps_cache=eps_cache)
else:
x, eps_cache = self.dpm_solver_3_step(x, t, t_next_, eps_cache=eps_cache)
x = x + su * s_noise * noise_sampler(self.sigma(t), self.sigma(t_next))
return x
def dpm_solver_adaptive(self, x, t_start, t_end, order=3, rtol=0.05, atol=0.0078, h_init=0.05, pcoeff=0., icoeff=1., dcoeff=0., accept_safety=0.81, eta=0., s_noise=1., noise_sampler=None):
noise_sampler = default_noise_sampler(x, seed=self.extra_args.get("seed", None)) if noise_sampler is None else noise_sampler
if order not in {2, 3}:
raise ValueError('order should be 2 or 3')
forward = t_end > t_start
if not forward and eta:
raise ValueError('eta must be 0 for reverse sampling')
h_init = abs(h_init) * (1 if forward else -1)
atol = torch.tensor(atol)
rtol = torch.tensor(rtol)
s = t_start
x_prev = x
accept = True
pid = PIDStepSizeController(h_init, pcoeff, icoeff, dcoeff, 1.5 if eta else order, accept_safety)
info = {'steps': 0, 'nfe': 0, 'n_accept': 0, 'n_reject': 0}
while s < t_end - 1e-5 if forward else s > t_end + 1e-5:
eps_cache = {}
t = torch.minimum(t_end, s + pid.h) if forward else torch.maximum(t_end, s + pid.h)
if eta:
sd, su = get_ancestral_step(self.sigma(s), self.sigma(t), eta)
t_ = torch.minimum(t_end, self.t(sd))
su = (self.sigma(t) ** 2 - self.sigma(t_) ** 2) ** 0.5
else:
t_, su = t, 0.
eps, eps_cache = self.eps(eps_cache, 'eps', x, s)
denoised = x - self.sigma(s) * eps
if order == 2:
x_low, eps_cache = self.dpm_solver_1_step(x, s, t_, eps_cache=eps_cache)
x_high, eps_cache = self.dpm_solver_2_step(x, s, t_, eps_cache=eps_cache)
else:
x_low, eps_cache = self.dpm_solver_2_step(x, s, t_, r1=1 / 3, eps_cache=eps_cache)
x_high, eps_cache = self.dpm_solver_3_step(x, s, t_, eps_cache=eps_cache)
delta = torch.maximum(atol, rtol * torch.maximum(x_low.abs(), x_prev.abs()))
error = torch.linalg.norm((x_low - x_high) / delta) / x.numel() ** 0.5
accept = pid.propose_step(error)
if accept:
x_prev = x_low
x = x_high + su * s_noise * noise_sampler(self.sigma(s), self.sigma(t))
s = t
info['n_accept'] += 1
else:
info['n_reject'] += 1
info['nfe'] += order
info['steps'] += 1
if self.info_callback is not None:
self.info_callback({'x': x, 'i': info['steps'] - 1, 't': s, 't_up': s, 'denoised': denoised, 'error': error, 'h': pid.h, **info})
return x, info
@torch.no_grad()
def sample_dpm_fast(model, x, sigma_min, sigma_max, n, extra_args=None, callback=None, disable=None, eta=0., s_noise=1., noise_sampler=None):
"""DPM-Solver-Fast (fixed step size). See https://arxiv.org/abs/2206.00927."""
if sigma_min <= 0 or sigma_max <= 0:
raise ValueError('sigma_min and sigma_max must not be 0')
with tqdm(total=n, disable=disable) as pbar:
dpm_solver = DPMSolver(model, extra_args, eps_callback=pbar.update)
if callback is not None:
dpm_solver.info_callback = lambda info: callback({'sigma': dpm_solver.sigma(info['t']), 'sigma_hat': dpm_solver.sigma(info['t_up']), **info})
return dpm_solver.dpm_solver_fast(x, dpm_solver.t(torch.tensor(sigma_max)), dpm_solver.t(torch.tensor(sigma_min)), n, eta, s_noise, noise_sampler)
@torch.no_grad()
def sample_dpm_adaptive(model, x, sigma_min, sigma_max, extra_args=None, callback=None, disable=None, order=3, rtol=0.05, atol=0.0078, h_init=0.05, pcoeff=0., icoeff=1., dcoeff=0., accept_safety=0.81, eta=0., s_noise=1., noise_sampler=None, return_info=False):
"""DPM-Solver-12 and 23 (adaptive step size). See https://arxiv.org/abs/2206.00927."""
if sigma_min <= 0 or sigma_max <= 0:
raise ValueError('sigma_min and sigma_max must not be 0')
with tqdm(disable=disable) as pbar:
dpm_solver = DPMSolver(model, extra_args, eps_callback=pbar.update)
if callback is not None:
dpm_solver.info_callback = lambda info: callback({'sigma': dpm_solver.sigma(info['t']), 'sigma_hat': dpm_solver.sigma(info['t_up']), **info})
x, info = dpm_solver.dpm_solver_adaptive(x, dpm_solver.t(torch.tensor(sigma_max)), dpm_solver.t(torch.tensor(sigma_min)), order, rtol, atol, h_init, pcoeff, icoeff, dcoeff, accept_safety, eta, s_noise, noise_sampler)
if return_info:
return x, info
return x
@torch.no_grad()
def sample_dpmpp_2s_ancestral(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
if isinstance(model.inner_model.inner_model.model_sampling, comfy.model_sampling.CONST):
return sample_dpmpp_2s_ancestral_RF(model, x, sigmas, extra_args, callback, disable, eta, s_noise, noise_sampler)
"""Ancestral sampling with DPM-Solver++(2S) second-order steps."""
extra_args = {} if extra_args is None else extra_args
seed = extra_args.get("seed", None)
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
s_in = x.new_ones([x.shape[0]])
sigma_fn = lambda t: t.neg().exp()
t_fn = lambda sigma: sigma.log().neg()
for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args)
sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
if sigma_down == 0:
# Euler method
d = to_d(x, sigmas[i], denoised)
dt = sigma_down - sigmas[i]
x = x + d * dt
else:
# DPM-Solver++(2S)
t, t_next = t_fn(sigmas[i]), t_fn(sigma_down)
r = 1 / 2
h = t_next - t
s = t + r * h
x_2 = (sigma_fn(s) / sigma_fn(t)) * x - (-h * r).expm1() * denoised
denoised_2 = model(x_2, sigma_fn(s) * s_in, **extra_args)
x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised_2
# Noise addition
if sigmas[i + 1] > 0:
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
return x
@torch.no_grad()
def sample_dpmpp_2s_ancestral_RF(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
"""Ancestral sampling with DPM-Solver++(2S) second-order steps."""
extra_args = {} if extra_args is None else extra_args
seed = extra_args.get("seed", None)
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
s_in = x.new_ones([x.shape[0]])
sigma_fn = lambda lbda: (lbda.exp() + 1) ** -1
lambda_fn = lambda sigma: ((1-sigma)/sigma).log()
# logged_x = x.unsqueeze(0)
for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args)
downstep_ratio = 1 + (sigmas[i+1]/sigmas[i] - 1) * eta
sigma_down = sigmas[i+1] * downstep_ratio
alpha_ip1 = 1 - sigmas[i+1]
alpha_down = 1 - sigma_down
renoise_coeff = (sigmas[i+1]**2 - sigma_down**2*alpha_ip1**2/alpha_down**2)**0.5
# sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
if sigmas[i + 1] == 0:
# Euler method
d = to_d(x, sigmas[i], denoised)
dt = sigma_down - sigmas[i]
x = x + d * dt
else:
# DPM-Solver++(2S)
if sigmas[i] == 1.0:
sigma_s = 0.9999
else:
t_i, t_down = lambda_fn(sigmas[i]), lambda_fn(sigma_down)
r = 1 / 2
h = t_down - t_i
s = t_i + r * h
sigma_s = sigma_fn(s)
# sigma_s = sigmas[i+1]
sigma_s_i_ratio = sigma_s / sigmas[i]
u = sigma_s_i_ratio * x + (1 - sigma_s_i_ratio) * denoised
D_i = model(u, sigma_s * s_in, **extra_args)
sigma_down_i_ratio = sigma_down / sigmas[i]
x = sigma_down_i_ratio * x + (1 - sigma_down_i_ratio) * D_i
# print("sigma_i", sigmas[i], "sigma_ip1", sigmas[i+1],"sigma_down", sigma_down, "sigma_down_i_ratio", sigma_down_i_ratio, "sigma_s_i_ratio", sigma_s_i_ratio, "renoise_coeff", renoise_coeff)
# Noise addition
if sigmas[i + 1] > 0 and eta > 0:
x = (alpha_ip1/alpha_down) * x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * renoise_coeff
# logged_x = torch.cat((logged_x, x.unsqueeze(0)), dim=0)
return x
@torch.no_grad()
def sample_dpmpp_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=1 / 2):
"""DPM-Solver++ (stochastic)."""
if len(sigmas) <= 1:
return x
extra_args = {} if extra_args is None else extra_args
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
seed = extra_args.get("seed", None)
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler
s_in = x.new_ones([x.shape[0]])
model_sampling = model.inner_model.model_patcher.get_model_object('model_sampling')
sigma_fn = partial(half_log_snr_to_sigma, model_sampling=model_sampling)
lambda_fn = partial(sigma_to_half_log_snr, model_sampling=model_sampling)
sigmas = offset_first_sigma_for_snr(sigmas, model_sampling)
for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
if sigmas[i + 1] == 0:
# Denoising step
x = denoised
else:
# DPM-Solver++
lambda_s, lambda_t = lambda_fn(sigmas[i]), lambda_fn(sigmas[i + 1])
h = lambda_t - lambda_s
lambda_s_1 = lambda_s + r * h
fac = 1 / (2 * r)
sigma_s_1 = sigma_fn(lambda_s_1)
alpha_s = sigmas[i] * lambda_s.exp()
alpha_s_1 = sigma_s_1 * lambda_s_1.exp()
alpha_t = sigmas[i + 1] * lambda_t.exp()
# Step 1
sd, su = get_ancestral_step(lambda_s.neg().exp(), lambda_s_1.neg().exp(), eta)
lambda_s_1_ = sd.log().neg()
h_ = lambda_s_1_ - lambda_s
x_2 = (alpha_s_1 / alpha_s) * (-h_).exp() * x - alpha_s_1 * (-h_).expm1() * denoised
if eta > 0 and s_noise > 0:
x_2 = x_2 + alpha_s_1 * noise_sampler(sigmas[i], sigma_s_1) * s_noise * su
denoised_2 = model(x_2, sigma_s_1 * s_in, **extra_args)
# Step 2
sd, su = get_ancestral_step(lambda_s.neg().exp(), lambda_t.neg().exp(), eta)
lambda_t_ = sd.log().neg()
h_ = lambda_t_ - lambda_s
denoised_d = (1 - fac) * denoised + fac * denoised_2
x = (alpha_t / alpha_s) * (-h_).exp() * x - alpha_t * (-h_).expm1() * denoised_d
if eta > 0 and s_noise > 0:
x = x + alpha_t * noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * su
return x
@torch.no_grad()
def sample_dpmpp_2m(model, x, sigmas, extra_args=None, callback=None, disable=None):
"""DPM-Solver++(2M)."""
extra_args = {} if extra_args is None else extra_args
s_in = x.new_ones([x.shape[0]])
sigma_fn = lambda t: t.neg().exp()
t_fn = lambda sigma: sigma.log().neg()
old_denoised = None
for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1])
h = t_next - t
if old_denoised is None or sigmas[i + 1] == 0:
x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised
else:
h_last = t - t_fn(sigmas[i - 1])
r = h_last / h
denoised_d = (1 + 1 / (2 * r)) * denoised - (1 / (2 * r)) * old_denoised
x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised_d
old_denoised = denoised
return x
@torch.no_grad()
def sample_dpmpp_2m_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, solver_type='midpoint'):
"""DPM-Solver++(2M) SDE."""
if len(sigmas) <= 1:
return x
if solver_type not in {'heun', 'midpoint'}:
raise ValueError('solver_type must be \'heun\' or \'midpoint\'')
extra_args = {} if extra_args is None else extra_args
seed = extra_args.get("seed", None)
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler
s_in = x.new_ones([x.shape[0]])
model_sampling = model.inner_model.model_patcher.get_model_object('model_sampling')
lambda_fn = partial(sigma_to_half_log_snr, model_sampling=model_sampling)
sigmas = offset_first_sigma_for_snr(sigmas, model_sampling)
old_denoised = None
h, h_last = None, None
for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
if sigmas[i + 1] == 0:
# Denoising step
x = denoised
else:
# DPM-Solver++(2M) SDE
lambda_s, lambda_t = lambda_fn(sigmas[i]), lambda_fn(sigmas[i + 1])
h = lambda_t - lambda_s
h_eta = h * (eta + 1)
alpha_t = sigmas[i + 1] * lambda_t.exp()
x = sigmas[i + 1] / sigmas[i] * (-h * eta).exp() * x + alpha_t * (-h_eta).expm1().neg() * denoised
if old_denoised is not None:
r = h_last / h
if solver_type == 'heun':
x = x + alpha_t * ((-h_eta).expm1().neg() / (-h_eta) + 1) * (1 / r) * (denoised - old_denoised)
elif solver_type == 'midpoint':
x = x + 0.5 * alpha_t * (-h_eta).expm1().neg() * (1 / r) * (denoised - old_denoised)
if eta > 0 and s_noise > 0:
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * sigmas[i + 1] * (-2 * h * eta).expm1().neg().sqrt() * s_noise
old_denoised = denoised
h_last = h
return x
@torch.no_grad()
def sample_dpmpp_2m_sde_heun(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, solver_type='heun'):
return sample_dpmpp_2m_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler, solver_type=solver_type)
@torch.no_grad()
def sample_dpmpp_3m_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
"""DPM-Solver++(3M) SDE."""
if len(sigmas) <= 1:
return x
extra_args = {} if extra_args is None else extra_args
seed = extra_args.get("seed", None)
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler
s_in = x.new_ones([x.shape[0]])
model_sampling = model.inner_model.model_patcher.get_model_object('model_sampling')
lambda_fn = partial(sigma_to_half_log_snr, model_sampling=model_sampling)
sigmas = offset_first_sigma_for_snr(sigmas, model_sampling)
denoised_1, denoised_2 = None, None
h, h_1, h_2 = None, None, None
for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
if sigmas[i + 1] == 0:
# Denoising step
x = denoised
else:
lambda_s, lambda_t = lambda_fn(sigmas[i]), lambda_fn(sigmas[i + 1])
h = lambda_t - lambda_s
h_eta = h * (eta + 1)
alpha_t = sigmas[i + 1] * lambda_t.exp()
x = sigmas[i + 1] / sigmas[i] * (-h * eta).exp() * x + alpha_t * (-h_eta).expm1().neg() * denoised
if h_2 is not None:
# DPM-Solver++(3M) SDE
r0 = h_1 / h
r1 = h_2 / h
d1_0 = (denoised - denoised_1) / r0
d1_1 = (denoised_1 - denoised_2) / r1
d1 = d1_0 + (d1_0 - d1_1) * r0 / (r0 + r1)
d2 = (d1_0 - d1_1) / (r0 + r1)
phi_2 = h_eta.neg().expm1() / h_eta + 1
phi_3 = phi_2 / h_eta - 0.5
x = x + (alpha_t * phi_2) * d1 - (alpha_t * phi_3) * d2
elif h_1 is not None:
# DPM-Solver++(2M) SDE
r = h_1 / h
d = (denoised - denoised_1) / r
phi_2 = h_eta.neg().expm1() / h_eta + 1
x = x + (alpha_t * phi_2) * d
if eta > 0 and s_noise > 0:
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * sigmas[i + 1] * (-2 * h * eta).expm1().neg().sqrt() * s_noise
denoised_1, denoised_2 = denoised, denoised_1
h_1, h_2 = h, h_1
return x
@torch.no_grad()
def sample_dpmpp_3m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
if len(sigmas) <= 1:
return x
extra_args = {} if extra_args is None else extra_args
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler
return sample_dpmpp_3m_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler)
@torch.no_grad()
def sample_dpmpp_2m_sde_heun_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, solver_type='heun'):
if len(sigmas) <= 1:
return x
extra_args = {} if extra_args is None else extra_args
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler
return sample_dpmpp_2m_sde_heun(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler, solver_type=solver_type)
@torch.no_grad()
def sample_dpmpp_2m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, solver_type='midpoint'):
if len(sigmas) <= 1:
return x
extra_args = {} if extra_args is None else extra_args
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler
return sample_dpmpp_2m_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler, solver_type=solver_type)
@torch.no_grad()
def sample_dpmpp_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=1 / 2):
if len(sigmas) <= 1:
return x
extra_args = {} if extra_args is None else extra_args
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler
return sample_dpmpp_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler, r=r)
def DDPMSampler_step(x, sigma, sigma_prev, noise, noise_sampler):
alpha_cumprod = 1 / ((sigma * sigma) + 1)
alpha_cumprod_prev = 1 / ((sigma_prev * sigma_prev) + 1)
alpha = (alpha_cumprod / alpha_cumprod_prev)
mu = (1.0 / alpha).sqrt() * (x - (1 - alpha) * noise / (1 - alpha_cumprod).sqrt())
if sigma_prev > 0:
mu += ((1 - alpha) * (1. - alpha_cumprod_prev) / (1. - alpha_cumprod)).sqrt() * noise_sampler(sigma, sigma_prev)
return mu
def generic_step_sampler(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None, step_function=None):
extra_args = {} if extra_args is None else extra_args
seed = extra_args.get("seed", None)
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
s_in = x.new_ones([x.shape[0]])
for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
x = step_function(x / torch.sqrt(1.0 + sigmas[i] ** 2.0), sigmas[i], sigmas[i + 1], (x - denoised) / sigmas[i], noise_sampler)
if sigmas[i + 1] != 0:
x *= torch.sqrt(1.0 + sigmas[i + 1] ** 2.0)
return x
@torch.no_grad()
def sample_ddpm(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None):
return generic_step_sampler(model, x, sigmas, extra_args, callback, disable, noise_sampler, DDPMSampler_step)
@torch.no_grad()
def sample_lcm(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None):
extra_args = {} if extra_args is None else extra_args
seed = extra_args.get("seed", None)
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
s_in = x.new_ones([x.shape[0]])
for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
x = denoised
if sigmas[i + 1] > 0:
x = model.inner_model.inner_model.model_sampling.noise_scaling(sigmas[i + 1], noise_sampler(sigmas[i], sigmas[i + 1]), x)
return x
@torch.no_grad()
def sample_heunpp2(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
# From MIT licensed: https://github.com/Carzit/sd-webui-samplers-scheduler/
extra_args = {} if extra_args is None else extra_args
s_in = x.new_ones([x.shape[0]])
s_end = sigmas[-1]
for i in trange(len(sigmas) - 1, disable=disable):
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
eps = torch.randn_like(x) * s_noise
sigma_hat = sigmas[i] * (gamma + 1)
if gamma > 0:
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
denoised = model(x, sigma_hat * s_in, **extra_args)
d = to_d(x, sigma_hat, denoised)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
dt = sigmas[i + 1] - sigma_hat
if sigmas[i + 1] == s_end:
# Euler method
x = x + d * dt
elif sigmas[i + 2] == s_end:
# Heun's method
x_2 = x + d * dt
denoised_2 = model(x_2, sigmas[i + 1] * s_in, **extra_args)
d_2 = to_d(x_2, sigmas[i + 1], denoised_2)
w = 2 * sigmas[0]
w2 = sigmas[i+1]/w
w1 = 1 - w2
d_prime = d * w1 + d_2 * w2
x = x + d_prime * dt
else:
# Heun++
x_2 = x + d * dt
denoised_2 = model(x_2, sigmas[i + 1] * s_in, **extra_args)
d_2 = to_d(x_2, sigmas[i + 1], denoised_2)
dt_2 = sigmas[i + 2] - sigmas[i + 1]
x_3 = x_2 + d_2 * dt_2
denoised_3 = model(x_3, sigmas[i + 2] * s_in, **extra_args)
d_3 = to_d(x_3, sigmas[i + 2], denoised_3)
w = 3 * sigmas[0]
w2 = sigmas[i + 1] / w
w3 = sigmas[i + 2] / w
w1 = 1 - w2 - w3
d_prime = w1 * d + w2 * d_2 + w3 * d_3
x = x + d_prime * dt
return x
#From https://github.com/zju-pi/diff-sampler/blob/main/diff-solvers-main/solvers.py
#under Apache 2 license
def sample_ipndm(model, x, sigmas, extra_args=None, callback=None, disable=None, max_order=4):
extra_args = {} if extra_args is None else extra_args
s_in = x.new_ones([x.shape[0]])
x_next = x
buffer_model = []
for i in trange(len(sigmas) - 1, disable=disable):
t_cur = sigmas[i]
t_next = sigmas[i + 1]
x_cur = x_next
denoised = model(x_cur, t_cur * s_in, **extra_args)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
d_cur = (x_cur - denoised) / t_cur
order = min(max_order, i+1)
if t_next == 0: # Denoising step
x_next = denoised
elif order == 1: # First Euler step.
x_next = x_cur + (t_next - t_cur) * d_cur
elif order == 2: # Use one history point.
x_next = x_cur + (t_next - t_cur) * (3 * d_cur - buffer_model[-1]) / 2
elif order == 3: # Use two history points.
x_next = x_cur + (t_next - t_cur) * (23 * d_cur - 16 * buffer_model[-1] + 5 * buffer_model[-2]) / 12
elif order == 4: # Use three history points.
x_next = x_cur + (t_next - t_cur) * (55 * d_cur - 59 * buffer_model[-1] + 37 * buffer_model[-2] - 9 * buffer_model[-3]) / 24
if len(buffer_model) == max_order - 1:
for k in range(max_order - 2):
buffer_model[k] = buffer_model[k+1]
buffer_model[-1] = d_cur
else:
buffer_model.append(d_cur)
return x_next
#From https://github.com/zju-pi/diff-sampler/blob/main/diff-solvers-main/solvers.py
#under Apache 2 license
def sample_ipndm_v(model, x, sigmas, extra_args=None, callback=None, disable=None, max_order=4):
extra_args = {} if extra_args is None else extra_args
s_in = x.new_ones([x.shape[0]])
x_next = x
t_steps = sigmas
buffer_model = []
for i in trange(len(sigmas) - 1, disable=disable):
t_cur = sigmas[i]
t_next = sigmas[i + 1]
x_cur = x_next
denoised = model(x_cur, t_cur * s_in, **extra_args)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
d_cur = (x_cur - denoised) / t_cur
order = min(max_order, i+1)
if t_next == 0: # Denoising step
x_next = denoised
elif order == 1: # First Euler step.
x_next = x_cur + (t_next - t_cur) * d_cur
elif order == 2: # Use one history point.
h_n = (t_next - t_cur)
h_n_1 = (t_cur - t_steps[i-1])
coeff1 = (2 + (h_n / h_n_1)) / 2
coeff2 = -(h_n / h_n_1) / 2
x_next = x_cur + (t_next - t_cur) * (coeff1 * d_cur + coeff2 * buffer_model[-1])
elif order == 3: # Use two history points.
h_n = (t_next - t_cur)
h_n_1 = (t_cur - t_steps[i-1])
h_n_2 = (t_steps[i-1] - t_steps[i-2])
temp = (1 - h_n / (3 * (h_n + h_n_1)) * (h_n * (h_n + h_n_1)) / (h_n_1 * (h_n_1 + h_n_2))) / 2
coeff1 = (2 + (h_n / h_n_1)) / 2 + temp
coeff2 = -(h_n / h_n_1) / 2 - (1 + h_n_1 / h_n_2) * temp
coeff3 = temp * h_n_1 / h_n_2
x_next = x_cur + (t_next - t_cur) * (coeff1 * d_cur + coeff2 * buffer_model[-1] + coeff3 * buffer_model[-2])
elif order == 4: # Use three history points.
h_n = (t_next - t_cur)
h_n_1 = (t_cur - t_steps[i-1])
h_n_2 = (t_steps[i-1] - t_steps[i-2])
h_n_3 = (t_steps[i-2] - t_steps[i-3])
temp1 = (1 - h_n / (3 * (h_n + h_n_1)) * (h_n * (h_n + h_n_1)) / (h_n_1 * (h_n_1 + h_n_2))) / 2
temp2 = ((1 - h_n / (3 * (h_n + h_n_1))) / 2 + (1 - h_n / (2 * (h_n + h_n_1))) * h_n / (6 * (h_n + h_n_1 + h_n_2))) \
* (h_n * (h_n + h_n_1) * (h_n + h_n_1 + h_n_2)) / (h_n_1 * (h_n_1 + h_n_2) * (h_n_1 + h_n_2 + h_n_3))
coeff1 = (2 + (h_n / h_n_1)) / 2 + temp1 + temp2
coeff2 = -(h_n / h_n_1) / 2 - (1 + h_n_1 / h_n_2) * temp1 - (1 + (h_n_1 / h_n_2) + (h_n_1 * (h_n_1 + h_n_2) / (h_n_2 * (h_n_2 + h_n_3)))) * temp2
coeff3 = temp1 * h_n_1 / h_n_2 + ((h_n_1 / h_n_2) + (h_n_1 * (h_n_1 + h_n_2) / (h_n_2 * (h_n_2 + h_n_3))) * (1 + h_n_2 / h_n_3)) * temp2
coeff4 = -temp2 * (h_n_1 * (h_n_1 + h_n_2) / (h_n_2 * (h_n_2 + h_n_3))) * h_n_1 / h_n_2
x_next = x_cur + (t_next - t_cur) * (coeff1 * d_cur + coeff2 * buffer_model[-1] + coeff3 * buffer_model[-2] + coeff4 * buffer_model[-3])
if len(buffer_model) == max_order - 1:
for k in range(max_order - 2):
buffer_model[k] = buffer_model[k+1]
buffer_model[-1] = d_cur.detach()
else:
buffer_model.append(d_cur.detach())
return x_next
#From https://github.com/zju-pi/diff-sampler/blob/main/diff-solvers-main/solvers.py
#under Apache 2 license
@torch.no_grad()
def sample_deis(model, x, sigmas, extra_args=None, callback=None, disable=None, max_order=3, deis_mode='tab'):
extra_args = {} if extra_args is None else extra_args
s_in = x.new_ones([x.shape[0]])
x_next = x
t_steps = sigmas
coeff_list = deis.get_deis_coeff_list(t_steps, max_order, deis_mode=deis_mode)
buffer_model = []
for i in trange(len(sigmas) - 1, disable=disable):
t_cur = sigmas[i]
t_next = sigmas[i + 1]
x_cur = x_next
denoised = model(x_cur, t_cur * s_in, **extra_args)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
d_cur = (x_cur - denoised) / t_cur
order = min(max_order, i+1)
if t_next <= 0:
order = 1
if order == 1: # First Euler step.
x_next = x_cur + (t_next - t_cur) * d_cur
elif order == 2: # Use one history point.
coeff_cur, coeff_prev1 = coeff_list[i]
x_next = x_cur + coeff_cur * d_cur + coeff_prev1 * buffer_model[-1]
elif order == 3: # Use two history points.
coeff_cur, coeff_prev1, coeff_prev2 = coeff_list[i]
x_next = x_cur + coeff_cur * d_cur + coeff_prev1 * buffer_model[-1] + coeff_prev2 * buffer_model[-2]
elif order == 4: # Use three history points.
coeff_cur, coeff_prev1, coeff_prev2, coeff_prev3 = coeff_list[i]
x_next = x_cur + coeff_cur * d_cur + coeff_prev1 * buffer_model[-1] + coeff_prev2 * buffer_model[-2] + coeff_prev3 * buffer_model[-3]
if len(buffer_model) == max_order - 1:
for k in range(max_order - 2):
buffer_model[k] = buffer_model[k+1]
buffer_model[-1] = d_cur.detach()
else:
buffer_model.append(d_cur.detach())
return x_next
@torch.no_grad()
def sample_euler_ancestral_cfg_pp(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
"""Ancestral sampling with Euler method steps (CFG++)."""
extra_args = {} if extra_args is None else extra_args
seed = extra_args.get("seed", None)
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
model_sampling = model.inner_model.model_patcher.get_model_object("model_sampling")
lambda_fn = partial(sigma_to_half_log_snr, model_sampling=model_sampling)
uncond_denoised = None
def post_cfg_function(args):
nonlocal uncond_denoised
uncond_denoised = args["uncond_denoised"]
return args["denoised"]
model_options = extra_args.get("model_options", {}).copy()
extra_args["model_options"] = comfy.model_patcher.set_model_options_post_cfg_function(model_options, post_cfg_function, disable_cfg1_optimization=True)
s_in = x.new_ones([x.shape[0]])
for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
if sigmas[i + 1] == 0:
# Denoising step
x = denoised
else:
alpha_s = sigmas[i] * lambda_fn(sigmas[i]).exp()
alpha_t = sigmas[i + 1] * lambda_fn(sigmas[i + 1]).exp()
d = to_d(x, sigmas[i], alpha_s * uncond_denoised) # to noise
# DDIM stochastic sampling
sigma_down, sigma_up = get_ancestral_step(sigmas[i] / alpha_s, sigmas[i + 1] / alpha_t, eta=eta)
sigma_down = alpha_t * sigma_down
# Euler method
x = alpha_t * denoised + sigma_down * d
if eta > 0 and s_noise > 0:
x = x + alpha_t * noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
return x
@torch.no_grad()
def sample_euler_cfg_pp(model, x, sigmas, extra_args=None, callback=None, disable=None):
"""Euler method steps (CFG++)."""
return sample_euler_ancestral_cfg_pp(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=0.0, s_noise=0.0, noise_sampler=None)
@torch.no_grad()
def sample_dpmpp_2s_ancestral_cfg_pp(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
"""Ancestral sampling with DPM-Solver++(2S) second-order steps."""
extra_args = {} if extra_args is None else extra_args
seed = extra_args.get("seed", None)
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
temp = [0]
def post_cfg_function(args):
temp[0] = args["uncond_denoised"]
return args["denoised"]
model_options = extra_args.get("model_options", {}).copy()
extra_args["model_options"] = comfy.model_patcher.set_model_options_post_cfg_function(model_options, post_cfg_function, disable_cfg1_optimization=True)
s_in = x.new_ones([x.shape[0]])
sigma_fn = lambda t: t.neg().exp()
t_fn = lambda sigma: sigma.log().neg()
for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args)
sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
if sigma_down == 0:
# Euler method
d = to_d(x, sigmas[i], temp[0])
x = denoised + d * sigma_down
else:
# DPM-Solver++(2S)
t, t_next = t_fn(sigmas[i]), t_fn(sigma_down)
# r = torch.sinh(1 + (2 - eta) * (t_next - t) / (t - t_fn(sigma_up))) works only on non-cfgpp, weird
r = 1 / 2
h = t_next - t
s = t + r * h
x_2 = (sigma_fn(s) / sigma_fn(t)) * (x + (denoised - temp[0])) - (-h * r).expm1() * denoised
denoised_2 = model(x_2, sigma_fn(s) * s_in, **extra_args)
x = (sigma_fn(t_next) / sigma_fn(t)) * (x + (denoised - temp[0])) - (-h).expm1() * denoised_2
# Noise addition
if sigmas[i + 1] > 0:
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
return x
@torch.no_grad()
def sample_dpmpp_2m_cfg_pp(model, x, sigmas, extra_args=None, callback=None, disable=None):
"""DPM-Solver++(2M)."""
extra_args = {} if extra_args is None else extra_args
s_in = x.new_ones([x.shape[0]])
t_fn = lambda sigma: sigma.log().neg()
old_uncond_denoised = None
uncond_denoised = None
def post_cfg_function(args):
nonlocal uncond_denoised
uncond_denoised = args["uncond_denoised"]
return args["denoised"]
model_options = extra_args.get("model_options", {}).copy()
extra_args["model_options"] = comfy.model_patcher.set_model_options_post_cfg_function(model_options, post_cfg_function, disable_cfg1_optimization=True)
for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1])
h = t_next - t
if old_uncond_denoised is None or sigmas[i + 1] == 0:
denoised_mix = -torch.exp(-h) * uncond_denoised
else:
h_last = t - t_fn(sigmas[i - 1])
r = h_last / h
denoised_mix = -torch.exp(-h) * uncond_denoised - torch.expm1(-h) * (1 / (2 * r)) * (denoised - old_uncond_denoised)
x = denoised + denoised_mix + torch.exp(-h) * x
old_uncond_denoised = uncond_denoised
return x
@torch.no_grad()
def res_multistep(model, x, sigmas, extra_args=None, callback=None, disable=None, s_noise=1., noise_sampler=None, eta=1., cfg_pp=False):
extra_args = {} if extra_args is None else extra_args
seed = extra_args.get("seed", None)
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
s_in = x.new_ones([x.shape[0]])
sigma_fn = lambda t: t.neg().exp()
t_fn = lambda sigma: sigma.log().neg()
phi1_fn = lambda t: torch.expm1(t) / t
phi2_fn = lambda t: (phi1_fn(t) - 1.0) / t
old_sigma_down = None
old_denoised = None
uncond_denoised = None
def post_cfg_function(args):
nonlocal uncond_denoised
uncond_denoised = args["uncond_denoised"]
return args["denoised"]
if cfg_pp:
model_options = extra_args.get("model_options", {}).copy()
extra_args["model_options"] = comfy.model_patcher.set_model_options_post_cfg_function(model_options, post_cfg_function, disable_cfg1_optimization=True)
for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args)
sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
if callback is not None:
callback({"x": x, "i": i, "sigma": sigmas[i], "sigma_hat": sigmas[i], "denoised": denoised})
if sigma_down == 0 or old_denoised is None:
# Euler method
if cfg_pp:
d = to_d(x, sigmas[i], uncond_denoised)
x = denoised + d * sigma_down
else:
d = to_d(x, sigmas[i], denoised)
dt = sigma_down - sigmas[i]
x = x + d * dt
else:
# Second order multistep method in https://arxiv.org/pdf/2308.02157
t, t_old, t_next, t_prev = t_fn(sigmas[i]), t_fn(old_sigma_down), t_fn(sigma_down), t_fn(sigmas[i - 1])
h = t_next - t
c2 = (t_prev - t_old) / h
phi1_val, phi2_val = phi1_fn(-h), phi2_fn(-h)
b1 = torch.nan_to_num(phi1_val - phi2_val / c2, nan=0.0)
b2 = torch.nan_to_num(phi2_val / c2, nan=0.0)
if cfg_pp:
x = x + (denoised - uncond_denoised)
x = sigma_fn(h) * x + h * (b1 * uncond_denoised + b2 * old_denoised)
else:
x = sigma_fn(h) * x + h * (b1 * denoised + b2 * old_denoised)
# Noise addition
if sigmas[i + 1] > 0:
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
if cfg_pp:
old_denoised = uncond_denoised
else:
old_denoised = denoised
old_sigma_down = sigma_down
return x
@torch.no_grad()
def sample_res_multistep(model, x, sigmas, extra_args=None, callback=None, disable=None, s_noise=1., noise_sampler=None):
return res_multistep(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, s_noise=s_noise, noise_sampler=noise_sampler, eta=0., cfg_pp=False)
@torch.no_grad()
def sample_res_multistep_cfg_pp(model, x, sigmas, extra_args=None, callback=None, disable=None, s_noise=1., noise_sampler=None):
return res_multistep(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, s_noise=s_noise, noise_sampler=noise_sampler, eta=0., cfg_pp=True)
@torch.no_grad()
def sample_res_multistep_ancestral(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
return res_multistep(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, s_noise=s_noise, noise_sampler=noise_sampler, eta=eta, cfg_pp=False)
@torch.no_grad()
def sample_res_multistep_ancestral_cfg_pp(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
return res_multistep(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, s_noise=s_noise, noise_sampler=noise_sampler, eta=eta, cfg_pp=True)
@torch.no_grad()
def sample_gradient_estimation(model, x, sigmas, extra_args=None, callback=None, disable=None, ge_gamma=2., cfg_pp=False):
"""Gradient-estimation sampler. Paper: https://openreview.net/pdf?id=o2ND9v0CeK"""
extra_args = {} if extra_args is None else extra_args
s_in = x.new_ones([x.shape[0]])
old_d = None
uncond_denoised = None
def post_cfg_function(args):
nonlocal uncond_denoised
uncond_denoised = args["uncond_denoised"]
return args["denoised"]
if cfg_pp:
model_options = extra_args.get("model_options", {}).copy()
extra_args["model_options"] = comfy.model_patcher.set_model_options_post_cfg_function(model_options, post_cfg_function, disable_cfg1_optimization=True)
for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args)
if cfg_pp:
d = to_d(x, sigmas[i], uncond_denoised)
else:
d = to_d(x, sigmas[i], denoised)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
dt = sigmas[i + 1] - sigmas[i]
if sigmas[i + 1] == 0:
# Denoising step
x = denoised
else:
# Euler method
if cfg_pp:
x = denoised + d * sigmas[i + 1]
else:
x = x + d * dt
if i >= 1:
# Gradient estimation
d_bar = (ge_gamma - 1) * (d - old_d)
x = x + d_bar * dt
old_d = d
return x
@torch.no_grad()
def sample_gradient_estimation_cfg_pp(model, x, sigmas, extra_args=None, callback=None, disable=None, ge_gamma=2.):
return sample_gradient_estimation(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, ge_gamma=ge_gamma, cfg_pp=True)
@torch.no_grad()
def sample_er_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, s_noise=1.0, noise_sampler=None, noise_scaler=None, max_stage=3):
"""Extended Reverse-Time SDE solver (VP ER-SDE-Solver-3). arXiv: https://arxiv.org/abs/2309.06169.
Code reference: https://github.com/QinpengCui/ER-SDE-Solver/blob/main/er_sde_solver.py.
"""
extra_args = {} if extra_args is None else extra_args
seed = extra_args.get("seed", None)
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
s_in = x.new_ones([x.shape[0]])
def default_er_sde_noise_scaler(x):
return x * ((x ** 0.3).exp() + 10.0)
noise_scaler = default_er_sde_noise_scaler if noise_scaler is None else noise_scaler
num_integration_points = 200.0
point_indice = torch.arange(0, num_integration_points, dtype=torch.float32, device=x.device)
model_sampling = model.inner_model.model_patcher.get_model_object("model_sampling")
sigmas = offset_first_sigma_for_snr(sigmas, model_sampling)
half_log_snrs = sigma_to_half_log_snr(sigmas, model_sampling)
er_lambdas = half_log_snrs.neg().exp() # er_lambda_t = sigma_t / alpha_t
old_denoised = None
old_denoised_d = None
for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
stage_used = min(max_stage, i + 1)
if sigmas[i + 1] == 0:
x = denoised
else:
er_lambda_s, er_lambda_t = er_lambdas[i], er_lambdas[i + 1]
alpha_s = sigmas[i] / er_lambda_s
alpha_t = sigmas[i + 1] / er_lambda_t
r_alpha = alpha_t / alpha_s
r = noise_scaler(er_lambda_t) / noise_scaler(er_lambda_s)
# Stage 1 Euler
x = r_alpha * r * x + alpha_t * (1 - r) * denoised
if stage_used >= 2:
dt = er_lambda_t - er_lambda_s
lambda_step_size = -dt / num_integration_points
lambda_pos = er_lambda_t + point_indice * lambda_step_size
scaled_pos = noise_scaler(lambda_pos)
# Stage 2
s = torch.sum(1 / scaled_pos) * lambda_step_size
denoised_d = (denoised - old_denoised) / (er_lambda_s - er_lambdas[i - 1])
x = x + alpha_t * (dt + s * noise_scaler(er_lambda_t)) * denoised_d
if stage_used >= 3:
# Stage 3
s_u = torch.sum((lambda_pos - er_lambda_s) / scaled_pos) * lambda_step_size
denoised_u = (denoised_d - old_denoised_d) / ((er_lambda_s - er_lambdas[i - 2]) / 2)
x = x + alpha_t * ((dt ** 2) / 2 + s_u * noise_scaler(er_lambda_t)) * denoised_u
old_denoised_d = denoised_d
if s_noise > 0:
x = x + alpha_t * noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * (er_lambda_t ** 2 - er_lambda_s ** 2 * r ** 2).sqrt().nan_to_num(nan=0.0)
old_denoised = denoised
return x
@torch.no_grad()
def sample_seeds_2(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=0.5):
"""SEEDS-2 - Stochastic Explicit Exponential Derivative-free Solvers (VP Data Prediction) stage 2.
arXiv: https://arxiv.org/abs/2305.14267
"""
extra_args = {} if extra_args is None else extra_args
seed = extra_args.get("seed", None)
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
s_in = x.new_ones([x.shape[0]])
inject_noise = eta > 0 and s_noise > 0
model_sampling = model.inner_model.model_patcher.get_model_object('model_sampling')
sigma_fn = partial(half_log_snr_to_sigma, model_sampling=model_sampling)
lambda_fn = partial(sigma_to_half_log_snr, model_sampling=model_sampling)
sigmas = offset_first_sigma_for_snr(sigmas, model_sampling)
for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
if sigmas[i + 1] == 0:
x = denoised
else:
lambda_s, lambda_t = lambda_fn(sigmas[i]), lambda_fn(sigmas[i + 1])
h = lambda_t - lambda_s
h_eta = h * (eta + 1)
lambda_s_1 = lambda_s + r * h
fac = 1 / (2 * r)
sigma_s_1 = sigma_fn(lambda_s_1)
# alpha_t = sigma_t * exp(log(alpha_t / sigma_t)) = sigma_t * exp(lambda_t)
alpha_s_1 = sigma_s_1 * lambda_s_1.exp()
alpha_t = sigmas[i + 1] * lambda_t.exp()
coeff_1, coeff_2 = (-r * h_eta).expm1(), (-h_eta).expm1()
if inject_noise:
# 0 < r < 1
noise_coeff_1 = (-2 * r * h * eta).expm1().neg().sqrt()
noise_coeff_2 = (-r * h * eta).exp() * (-2 * (1 - r) * h * eta).expm1().neg().sqrt()
noise_1, noise_2 = noise_sampler(sigmas[i], sigma_s_1), noise_sampler(sigma_s_1, sigmas[i + 1])
# Step 1
x_2 = sigma_s_1 / sigmas[i] * (-r * h * eta).exp() * x - alpha_s_1 * coeff_1 * denoised
if inject_noise:
x_2 = x_2 + sigma_s_1 * (noise_coeff_1 * noise_1) * s_noise
denoised_2 = model(x_2, sigma_s_1 * s_in, **extra_args)
# Step 2
denoised_d = (1 - fac) * denoised + fac * denoised_2
x = sigmas[i + 1] / sigmas[i] * (-h * eta).exp() * x - alpha_t * coeff_2 * denoised_d
if inject_noise:
x = x + sigmas[i + 1] * (noise_coeff_2 * noise_1 + noise_coeff_1 * noise_2) * s_noise
return x
@torch.no_grad()
def sample_seeds_3(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r_1=1./3, r_2=2./3):
"""SEEDS-3 - Stochastic Explicit Exponential Derivative-free Solvers (VP Data Prediction) stage 3.
arXiv: https://arxiv.org/abs/2305.14267
"""
extra_args = {} if extra_args is None else extra_args
seed = extra_args.get("seed", None)
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
s_in = x.new_ones([x.shape[0]])
inject_noise = eta > 0 and s_noise > 0
model_sampling = model.inner_model.model_patcher.get_model_object('model_sampling')
sigma_fn = partial(half_log_snr_to_sigma, model_sampling=model_sampling)
lambda_fn = partial(sigma_to_half_log_snr, model_sampling=model_sampling)
sigmas = offset_first_sigma_for_snr(sigmas, model_sampling)
for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
if sigmas[i + 1] == 0:
x = denoised
else:
lambda_s, lambda_t = lambda_fn(sigmas[i]), lambda_fn(sigmas[i + 1])
h = lambda_t - lambda_s
h_eta = h * (eta + 1)
lambda_s_1 = lambda_s + r_1 * h
lambda_s_2 = lambda_s + r_2 * h
sigma_s_1, sigma_s_2 = sigma_fn(lambda_s_1), sigma_fn(lambda_s_2)
# alpha_t = sigma_t * exp(log(alpha_t / sigma_t)) = sigma_t * exp(lambda_t)
alpha_s_1 = sigma_s_1 * lambda_s_1.exp()
alpha_s_2 = sigma_s_2 * lambda_s_2.exp()
alpha_t = sigmas[i + 1] * lambda_t.exp()
coeff_1, coeff_2, coeff_3 = (-r_1 * h_eta).expm1(), (-r_2 * h_eta).expm1(), (-h_eta).expm1()
if inject_noise:
# 0 < r_1 < r_2 < 1
noise_coeff_1 = (-2 * r_1 * h * eta).expm1().neg().sqrt()
noise_coeff_2 = (-r_1 * h * eta).exp() * (-2 * (r_2 - r_1) * h * eta).expm1().neg().sqrt()
noise_coeff_3 = (-r_2 * h * eta).exp() * (-2 * (1 - r_2) * h * eta).expm1().neg().sqrt()
noise_1, noise_2, noise_3 = noise_sampler(sigmas[i], sigma_s_1), noise_sampler(sigma_s_1, sigma_s_2), noise_sampler(sigma_s_2, sigmas[i + 1])
# Step 1
x_2 = sigma_s_1 / sigmas[i] * (-r_1 * h * eta).exp() * x - alpha_s_1 * coeff_1 * denoised
if inject_noise:
x_2 = x_2 + sigma_s_1 * (noise_coeff_1 * noise_1) * s_noise
denoised_2 = model(x_2, sigma_s_1 * s_in, **extra_args)
# Step 2
x_3 = sigma_s_2 / sigmas[i] * (-r_2 * h * eta).exp() * x - alpha_s_2 * coeff_2 * denoised + (r_2 / r_1) * alpha_s_2 * (coeff_2 / (r_2 * h_eta) + 1) * (denoised_2 - denoised)
if inject_noise:
x_3 = x_3 + sigma_s_2 * (noise_coeff_2 * noise_1 + noise_coeff_1 * noise_2) * s_noise
denoised_3 = model(x_3, sigma_s_2 * s_in, **extra_args)
# Step 3
x = sigmas[i + 1] / sigmas[i] * (-h * eta).exp() * x - alpha_t * coeff_3 * denoised + (1. / r_2) * alpha_t * (coeff_3 / h_eta + 1) * (denoised_3 - denoised)
if inject_noise:
x = x + sigmas[i + 1] * (noise_coeff_3 * noise_1 + noise_coeff_2 * noise_2 + noise_coeff_1 * noise_3) * s_noise
return x
@torch.no_grad()
def sample_sa_solver(model, x, sigmas, extra_args=None, callback=None, disable=False, tau_func=None, s_noise=1.0, noise_sampler=None, predictor_order=3, corrector_order=4, use_pece=False, simple_order_2=False):
"""Stochastic Adams Solver with predictor-corrector method (NeurIPS 2023)."""
if len(sigmas) <= 1:
return x
extra_args = {} if extra_args is None else extra_args
seed = extra_args.get("seed", None)
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
s_in = x.new_ones([x.shape[0]])
model_sampling = model.inner_model.model_patcher.get_model_object("model_sampling")
sigmas = offset_first_sigma_for_snr(sigmas, model_sampling)
lambdas = sigma_to_half_log_snr(sigmas, model_sampling=model_sampling)
if tau_func is None:
# Use default interval for stochastic sampling
start_sigma = model_sampling.percent_to_sigma(0.2)
end_sigma = model_sampling.percent_to_sigma(0.8)
tau_func = sa_solver.get_tau_interval_func(start_sigma, end_sigma, eta=1.0)
max_used_order = max(predictor_order, corrector_order)
x_pred = x # x: current state, x_pred: predicted next state
h = 0.0
tau_t = 0.0
noise = 0.0
pred_list = []
# Lower order near the end to improve stability
lower_order_to_end = sigmas[-1].item() == 0
for i in trange(len(sigmas) - 1, disable=disable):
# Evaluation
denoised = model(x_pred, sigmas[i] * s_in, **extra_args)
if callback is not None:
callback({"x": x_pred, "i": i, "sigma": sigmas[i], "sigma_hat": sigmas[i], "denoised": denoised})
pred_list.append(denoised)
pred_list = pred_list[-max_used_order:]
predictor_order_used = min(predictor_order, len(pred_list))
if i == 0 or (sigmas[i + 1] == 0 and not use_pece):
corrector_order_used = 0
else:
corrector_order_used = min(corrector_order, len(pred_list))
if lower_order_to_end:
predictor_order_used = min(predictor_order_used, len(sigmas) - 2 - i)
corrector_order_used = min(corrector_order_used, len(sigmas) - 1 - i)
# Corrector
if corrector_order_used == 0:
# Update by the predicted state
x = x_pred
else:
curr_lambdas = lambdas[i - corrector_order_used + 1:i + 1]
b_coeffs = sa_solver.compute_stochastic_adams_b_coeffs(
sigmas[i],
curr_lambdas,
lambdas[i - 1],
lambdas[i],
tau_t,
simple_order_2,
is_corrector_step=True,
)
pred_mat = torch.stack(pred_list[-corrector_order_used:], dim=1) # (B, K, ...)
corr_res = torch.tensordot(pred_mat, b_coeffs, dims=([1], [0])) # (B, ...)
x = sigmas[i] / sigmas[i - 1] * (-(tau_t ** 2) * h).exp() * x + corr_res
if tau_t > 0 and s_noise > 0:
# The noise from the previous predictor step
x = x + noise
if use_pece:
# Evaluate the corrected state
denoised = model(x, sigmas[i] * s_in, **extra_args)
pred_list[-1] = denoised
# Predictor
if sigmas[i + 1] == 0:
# Denoising step
x = denoised
else:
tau_t = tau_func(sigmas[i + 1])
curr_lambdas = lambdas[i - predictor_order_used + 1:i + 1]
b_coeffs = sa_solver.compute_stochastic_adams_b_coeffs(
sigmas[i + 1],
curr_lambdas,
lambdas[i],
lambdas[i + 1],
tau_t,
simple_order_2,
is_corrector_step=False,
)
pred_mat = torch.stack(pred_list[-predictor_order_used:], dim=1) # (B, K, ...)
pred_res = torch.tensordot(pred_mat, b_coeffs, dims=([1], [0])) # (B, ...)
h = lambdas[i + 1] - lambdas[i]
x_pred = sigmas[i + 1] / sigmas[i] * (-(tau_t ** 2) * h).exp() * x + pred_res
if tau_t > 0 and s_noise > 0:
noise = noise_sampler(sigmas[i], sigmas[i + 1]) * sigmas[i + 1] * (-2 * tau_t ** 2 * h).expm1().neg().sqrt() * s_noise
x_pred = x_pred + noise
return x
@torch.no_grad()
def sample_sa_solver_pece(model, x, sigmas, extra_args=None, callback=None, disable=False, tau_func=None, s_noise=1.0, noise_sampler=None, predictor_order=3, corrector_order=4, simple_order_2=False):
"""Stochastic Adams Solver with PECE (Predict–Evaluate–Correct–Evaluate) mode (NeurIPS 2023)."""
return sample_sa_solver(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, tau_func=tau_func, s_noise=s_noise, noise_sampler=noise_sampler, predictor_order=predictor_order, corrector_order=corrector_order, use_pece=True, simple_order_2=simple_order_2)
from contextlib import contextmanager
import hashlib
import math
from pathlib import Path
import shutil
import urllib
import warnings
from PIL import Image
import torch
from torch import nn, optim
from torch.utils import data
def hf_datasets_augs_helper(examples, transform, image_key, mode='RGB'):
"""Apply passed in transforms for HuggingFace Datasets."""
images = [transform(image.convert(mode)) for image in examples[image_key]]
return {image_key: images}
def append_dims(x, target_dims):
"""Appends dimensions to the end of a tensor until it has target_dims dimensions."""
dims_to_append = target_dims - x.ndim
if dims_to_append < 0:
raise ValueError(f'input has {x.ndim} dims but target_dims is {target_dims}, which is less')
expanded = x[(...,) + (None,) * dims_to_append]
# MPS will get inf values if it tries to index into the new axes, but detaching fixes this.
# https://github.com/pytorch/pytorch/issues/84364
return expanded.detach().clone() if expanded.device.type == 'mps' else expanded
def n_params(module):
"""Returns the number of trainable parameters in a module."""
return sum(p.numel() for p in module.parameters())
def download_file(path, url, digest=None):
"""Downloads a file if it does not exist, optionally checking its SHA-256 hash."""
path = Path(path)
path.parent.mkdir(parents=True, exist_ok=True)
if not path.exists():
with urllib.request.urlopen(url) as response, open(path, 'wb') as f:
shutil.copyfileobj(response, f)
if digest is not None:
file_digest = hashlib.sha256(open(path, 'rb').read()).hexdigest()
if digest != file_digest:
raise OSError(f'hash of {path} (url: {url}) failed to validate')
return path
@contextmanager
def train_mode(model, mode=True):
"""A context manager that places a model into training mode and restores
the previous mode on exit."""
modes = [module.training for module in model.modules()]
try:
yield model.train(mode)
finally:
for i, module in enumerate(model.modules()):
module.training = modes[i]
def eval_mode(model):
"""A context manager that places a model into evaluation mode and restores
the previous mode on exit."""
return train_mode(model, False)
@torch.no_grad()
def ema_update(model, averaged_model, decay):
"""Incorporates updated model parameters into an exponential moving averaged
version of a model. It should be called after each optimizer step."""
model_params = dict(model.named_parameters())
averaged_params = dict(averaged_model.named_parameters())
assert model_params.keys() == averaged_params.keys()
for name, param in model_params.items():
averaged_params[name].mul_(decay).add_(param, alpha=1 - decay)
model_buffers = dict(model.named_buffers())
averaged_buffers = dict(averaged_model.named_buffers())
assert model_buffers.keys() == averaged_buffers.keys()
for name, buf in model_buffers.items():
averaged_buffers[name].copy_(buf)
class EMAWarmup:
"""Implements an EMA warmup using an inverse decay schedule.
If inv_gamma=1 and power=1, implements a simple average. inv_gamma=1, power=2/3 are
good values for models you plan to train for a million or more steps (reaches decay
factor 0.999 at 31.6K steps, 0.9999 at 1M steps), inv_gamma=1, power=3/4 for models
you plan to train for less (reaches decay factor 0.999 at 10K steps, 0.9999 at
215.4k steps).
Args:
inv_gamma (float): Inverse multiplicative factor of EMA warmup. Default: 1.
power (float): Exponential factor of EMA warmup. Default: 1.
min_value (float): The minimum EMA decay rate. Default: 0.
max_value (float): The maximum EMA decay rate. Default: 1.
start_at (int): The epoch to start averaging at. Default: 0.
last_epoch (int): The index of last epoch. Default: 0.
"""
def __init__(self, inv_gamma=1., power=1., min_value=0., max_value=1., start_at=0,
last_epoch=0):
self.inv_gamma = inv_gamma
self.power = power
self.min_value = min_value
self.max_value = max_value
self.start_at = start_at
self.last_epoch = last_epoch
def state_dict(self):
"""Returns the state of the class as a :class:`dict`."""
return dict(self.__dict__.items())
def load_state_dict(self, state_dict):
"""Loads the class's state.
Args:
state_dict (dict): scaler state. Should be an object returned
from a call to :meth:`state_dict`.
"""
self.__dict__.update(state_dict)
def get_value(self):
"""Gets the current EMA decay rate."""
epoch = max(0, self.last_epoch - self.start_at)
value = 1 - (1 + epoch / self.inv_gamma) ** -self.power
return 0. if epoch < 0 else min(self.max_value, max(self.min_value, value))
def step(self):
"""Updates the step count."""
self.last_epoch += 1
class InverseLR(optim.lr_scheduler._LRScheduler):
"""Implements an inverse decay learning rate schedule with an optional exponential
warmup. When last_epoch=-1, sets initial lr as lr.
inv_gamma is the number of steps/epochs required for the learning rate to decay to
(1 / 2)**power of its original value.
Args:
optimizer (Optimizer): Wrapped optimizer.
inv_gamma (float): Inverse multiplicative factor of learning rate decay. Default: 1.
power (float): Exponential factor of learning rate decay. Default: 1.
warmup (float): Exponential warmup factor (0 <= warmup < 1, 0 to disable)
Default: 0.
min_lr (float): The minimum learning rate. Default: 0.
last_epoch (int): The index of last epoch. Default: -1.
verbose (bool): If ``True``, prints a message to stdout for
each update. Default: ``False``.
"""
def __init__(self, optimizer, inv_gamma=1., power=1., warmup=0., min_lr=0.,
last_epoch=-1, verbose=False):
self.inv_gamma = inv_gamma
self.power = power
if not 0. <= warmup < 1:
raise ValueError('Invalid value for warmup')
self.warmup = warmup
self.min_lr = min_lr
super().__init__(optimizer, last_epoch, verbose)
def get_lr(self):
if not self._get_lr_called_within_step:
warnings.warn("To get the last learning rate computed by the scheduler, "
"please use `get_last_lr()`.")
return self._get_closed_form_lr()
def _get_closed_form_lr(self):
warmup = 1 - self.warmup ** (self.last_epoch + 1)
lr_mult = (1 + self.last_epoch / self.inv_gamma) ** -self.power
return [warmup * max(self.min_lr, base_lr * lr_mult)
for base_lr in self.base_lrs]
class ExponentialLR(optim.lr_scheduler._LRScheduler):
"""Implements an exponential learning rate schedule with an optional exponential
warmup. When last_epoch=-1, sets initial lr as lr. Decays the learning rate
continuously by decay (default 0.5) every num_steps steps.
Args:
optimizer (Optimizer): Wrapped optimizer.
num_steps (float): The number of steps to decay the learning rate by decay in.
decay (float): The factor by which to decay the learning rate every num_steps
steps. Default: 0.5.
warmup (float): Exponential warmup factor (0 <= warmup < 1, 0 to disable)
Default: 0.
min_lr (float): The minimum learning rate. Default: 0.
last_epoch (int): The index of last epoch. Default: -1.
verbose (bool): If ``True``, prints a message to stdout for
each update. Default: ``False``.
"""
def __init__(self, optimizer, num_steps, decay=0.5, warmup=0., min_lr=0.,
last_epoch=-1, verbose=False):
self.num_steps = num_steps
self.decay = decay
if not 0. <= warmup < 1:
raise ValueError('Invalid value for warmup')
self.warmup = warmup
self.min_lr = min_lr
super().__init__(optimizer, last_epoch, verbose)
def get_lr(self):
if not self._get_lr_called_within_step:
warnings.warn("To get the last learning rate computed by the scheduler, "
"please use `get_last_lr()`.")
return self._get_closed_form_lr()
def _get_closed_form_lr(self):
warmup = 1 - self.warmup ** (self.last_epoch + 1)
lr_mult = (self.decay ** (1 / self.num_steps)) ** self.last_epoch
return [warmup * max(self.min_lr, base_lr * lr_mult)
for base_lr in self.base_lrs]
def rand_log_normal(shape, loc=0., scale=1., device='cpu', dtype=torch.float32):
"""Draws samples from an lognormal distribution."""
return (torch.randn(shape, device=device, dtype=dtype) * scale + loc).exp()
def rand_log_logistic(shape, loc=0., scale=1., min_value=0., max_value=float('inf'), device='cpu', dtype=torch.float32):
"""Draws samples from an optionally truncated log-logistic distribution."""
min_value = torch.as_tensor(min_value, device=device, dtype=torch.float64)
max_value = torch.as_tensor(max_value, device=device, dtype=torch.float64)
min_cdf = min_value.log().sub(loc).div(scale).sigmoid()
max_cdf = max_value.log().sub(loc).div(scale).sigmoid()
u = torch.rand(shape, device=device, dtype=torch.float64) * (max_cdf - min_cdf) + min_cdf
return u.logit().mul(scale).add(loc).exp().to(dtype)
def rand_log_uniform(shape, min_value, max_value, device='cpu', dtype=torch.float32):
"""Draws samples from an log-uniform distribution."""
min_value = math.log(min_value)
max_value = math.log(max_value)
return (torch.rand(shape, device=device, dtype=dtype) * (max_value - min_value) + min_value).exp()
def rand_v_diffusion(shape, sigma_data=1., min_value=0., max_value=float('inf'), device='cpu', dtype=torch.float32):
"""Draws samples from a truncated v-diffusion training timestep distribution."""
min_cdf = math.atan(min_value / sigma_data) * 2 / math.pi
max_cdf = math.atan(max_value / sigma_data) * 2 / math.pi
u = torch.rand(shape, device=device, dtype=dtype) * (max_cdf - min_cdf) + min_cdf
return torch.tan(u * math.pi / 2) * sigma_data
def rand_split_log_normal(shape, loc, scale_1, scale_2, device='cpu', dtype=torch.float32):
"""Draws samples from a split lognormal distribution."""
n = torch.randn(shape, device=device, dtype=dtype).abs()
u = torch.rand(shape, device=device, dtype=dtype)
n_left = n * -scale_1 + loc
n_right = n * scale_2 + loc
ratio = scale_1 / (scale_1 + scale_2)
return torch.where(u < ratio, n_left, n_right).exp()
class FolderOfImages(data.Dataset):
"""Recursively finds all images in a directory. It does not support
classes/targets."""
IMG_EXTENSIONS = {'.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif', '.tiff', '.webp'}
def __init__(self, root, transform=None):
super().__init__()
self.root = Path(root)
self.transform = nn.Identity() if transform is None else transform
self.paths = sorted(path for path in self.root.rglob('*') if path.suffix.lower() in self.IMG_EXTENSIONS)
def __repr__(self):
return f'FolderOfImages(root="{self.root}", len: {len(self)})'
def __len__(self):
return len(self.paths)
def __getitem__(self, key):
path = self.paths[key]
with open(path, 'rb') as f:
image = Image.open(f).convert('RGB')
image = self.transform(image)
return image,
class CSVLogger:
def __init__(self, filename, columns):
self.filename = Path(filename)
self.columns = columns
if self.filename.exists():
self.file = open(self.filename, 'a')
else:
self.file = open(self.filename, 'w')
self.write(*self.columns)
def write(self, *args):
print(*args, sep=',', file=self.file, flush=True)
@contextmanager
def tf32_mode(cudnn=None, matmul=None):
"""A context manager that sets whether TF32 is allowed on cuDNN or matmul."""
cudnn_old = torch.backends.cudnn.allow_tf32
matmul_old = torch.backends.cuda.matmul.allow_tf32
try:
if cudnn is not None:
torch.backends.cudnn.allow_tf32 = cudnn
if matmul is not None:
torch.backends.cuda.matmul.allow_tf32 = matmul
yield
finally:
if cudnn is not None:
torch.backends.cudnn.allow_tf32 = cudnn_old
if matmul is not None:
torch.backends.cuda.matmul.allow_tf32 = matmul_old
import torch
class LatentFormat:
scale_factor = 1.0
latent_channels = 4
latent_dimensions = 2
latent_rgb_factors = None
latent_rgb_factors_bias = None
taesd_decoder_name = None
def process_in(self, latent):
return latent * self.scale_factor
def process_out(self, latent):
return latent / self.scale_factor
class SD15(LatentFormat):
def __init__(self, scale_factor=0.18215):
self.scale_factor = scale_factor
self.latent_rgb_factors = [
# R G B
[ 0.3512, 0.2297, 0.3227],
[ 0.3250, 0.4974, 0.2350],
[-0.2829, 0.1762, 0.2721],
[-0.2120, -0.2616, -0.7177]
]
self.taesd_decoder_name = "taesd_decoder"
class SDXL(LatentFormat):
scale_factor = 0.13025
def __init__(self):
self.latent_rgb_factors = [
# R G B
[ 0.3651, 0.4232, 0.4341],
[-0.2533, -0.0042, 0.1068],
[ 0.1076, 0.1111, -0.0362],
[-0.3165, -0.2492, -0.2188]
]
self.latent_rgb_factors_bias = [ 0.1084, -0.0175, -0.0011]
self.taesd_decoder_name = "taesdxl_decoder"
class SDXL_Playground_2_5(LatentFormat):
def __init__(self):
self.scale_factor = 0.5
self.latents_mean = torch.tensor([-1.6574, 1.886, -1.383, 2.5155]).view(1, 4, 1, 1)
self.latents_std = torch.tensor([8.4927, 5.9022, 6.5498, 5.2299]).view(1, 4, 1, 1)
self.latent_rgb_factors = [
# R G B
[ 0.3920, 0.4054, 0.4549],
[-0.2634, -0.0196, 0.0653],
[ 0.0568, 0.1687, -0.0755],
[-0.3112, -0.2359, -0.2076]
]
self.taesd_decoder_name = "taesdxl_decoder"
def process_in(self, latent):
latents_mean = self.latents_mean.to(latent.device, latent.dtype)
latents_std = self.latents_std.to(latent.device, latent.dtype)
return (latent - latents_mean) * self.scale_factor / latents_std
def process_out(self, latent):
latents_mean = self.latents_mean.to(latent.device, latent.dtype)
latents_std = self.latents_std.to(latent.device, latent.dtype)
return latent * latents_std / self.scale_factor + latents_mean
class SD_X4(LatentFormat):
def __init__(self):
self.scale_factor = 0.08333
self.latent_rgb_factors = [
[-0.2340, -0.3863, -0.3257],
[ 0.0994, 0.0885, -0.0908],
[-0.2833, -0.2349, -0.3741],
[ 0.2523, -0.0055, -0.1651]
]
class SC_Prior(LatentFormat):
latent_channels = 16
def __init__(self):
self.scale_factor = 1.0
self.latent_rgb_factors = [
[-0.0326, -0.0204, -0.0127],
[-0.1592, -0.0427, 0.0216],
[ 0.0873, 0.0638, -0.0020],
[-0.0602, 0.0442, 0.1304],
[ 0.0800, -0.0313, -0.1796],
[-0.0810, -0.0638, -0.1581],
[ 0.1791, 0.1180, 0.0967],
[ 0.0740, 0.1416, 0.0432],
[-0.1745, -0.1888, -0.1373],
[ 0.2412, 0.1577, 0.0928],
[ 0.1908, 0.0998, 0.0682],
[ 0.0209, 0.0365, -0.0092],
[ 0.0448, -0.0650, -0.1728],
[-0.1658, -0.1045, -0.1308],
[ 0.0542, 0.1545, 0.1325],
[-0.0352, -0.1672, -0.2541]
]
class SC_B(LatentFormat):
def __init__(self):
self.scale_factor = 1.0 / 0.43
self.latent_rgb_factors = [
[ 0.1121, 0.2006, 0.1023],
[-0.2093, -0.0222, -0.0195],
[-0.3087, -0.1535, 0.0366],
[ 0.0290, -0.1574, -0.4078]
]
class SD3(LatentFormat):
latent_channels = 16
def __init__(self):
self.scale_factor = 1.5305
self.shift_factor = 0.0609
self.latent_rgb_factors = [
[-0.0922, -0.0175, 0.0749],
[ 0.0311, 0.0633, 0.0954],
[ 0.1994, 0.0927, 0.0458],
[ 0.0856, 0.0339, 0.0902],
[ 0.0587, 0.0272, -0.0496],
[-0.0006, 0.1104, 0.0309],
[ 0.0978, 0.0306, 0.0427],
[-0.0042, 0.1038, 0.1358],
[-0.0194, 0.0020, 0.0669],
[-0.0488, 0.0130, -0.0268],
[ 0.0922, 0.0988, 0.0951],
[-0.0278, 0.0524, -0.0542],
[ 0.0332, 0.0456, 0.0895],
[-0.0069, -0.0030, -0.0810],
[-0.0596, -0.0465, -0.0293],
[-0.1448, -0.1463, -0.1189]
]
self.latent_rgb_factors_bias = [0.2394, 0.2135, 0.1925]
self.taesd_decoder_name = "taesd3_decoder"
def process_in(self, latent):
return (latent - self.shift_factor) * self.scale_factor
def process_out(self, latent):
return (latent / self.scale_factor) + self.shift_factor
class StableAudio1(LatentFormat):
latent_channels = 64
latent_dimensions = 1
class Flux(SD3):
latent_channels = 16
def __init__(self):
self.scale_factor = 0.3611
self.shift_factor = 0.1159
self.latent_rgb_factors =[
[-0.0346, 0.0244, 0.0681],
[ 0.0034, 0.0210, 0.0687],
[ 0.0275, -0.0668, -0.0433],
[-0.0174, 0.0160, 0.0617],
[ 0.0859, 0.0721, 0.0329],
[ 0.0004, 0.0383, 0.0115],
[ 0.0405, 0.0861, 0.0915],
[-0.0236, -0.0185, -0.0259],
[-0.0245, 0.0250, 0.1180],
[ 0.1008, 0.0755, -0.0421],
[-0.0515, 0.0201, 0.0011],
[ 0.0428, -0.0012, -0.0036],
[ 0.0817, 0.0765, 0.0749],
[-0.1264, -0.0522, -0.1103],
[-0.0280, -0.0881, -0.0499],
[-0.1262, -0.0982, -0.0778]
]
self.latent_rgb_factors_bias = [-0.0329, -0.0718, -0.0851]
self.taesd_decoder_name = "taef1_decoder"
def process_in(self, latent):
return (latent - self.shift_factor) * self.scale_factor
def process_out(self, latent):
return (latent / self.scale_factor) + self.shift_factor
class Mochi(LatentFormat):
latent_channels = 12
latent_dimensions = 3
def __init__(self):
self.scale_factor = 1.0
self.latents_mean = torch.tensor([-0.06730895953510081, -0.038011381506090416, -0.07477820912866141,
-0.05565264470995561, 0.012767231469026969, -0.04703542746246419,
0.043896967884726704, -0.09346305707025976, -0.09918314763016893,
-0.008729793427399178, -0.011931556316503654, -0.0321993391887285]).view(1, self.latent_channels, 1, 1, 1)
self.latents_std = torch.tensor([0.9263795028493863, 0.9248894543193766, 0.9393059390890617,
0.959253732819592, 0.8244560132752793, 0.917259975397747,
0.9294154431013696, 1.3720942357788521, 0.881393668867029,
0.9168315692124348, 0.9185249279345552, 0.9274757570805041]).view(1, self.latent_channels, 1, 1, 1)
self.latent_rgb_factors =[
[-0.0069, -0.0045, 0.0018],
[ 0.0154, -0.0692, -0.0274],
[ 0.0333, 0.0019, 0.0206],
[-0.1390, 0.0628, 0.1678],
[-0.0725, 0.0134, -0.1898],
[ 0.0074, -0.0270, -0.0209],
[-0.0176, -0.0277, -0.0221],
[ 0.5294, 0.5204, 0.3852],
[-0.0326, -0.0446, -0.0143],
[-0.0659, 0.0153, -0.0153],
[ 0.0185, -0.0217, 0.0014],
[-0.0396, -0.0495, -0.0281]
]
self.latent_rgb_factors_bias = [-0.0940, -0.1418, -0.1453]
self.taesd_decoder_name = None #TODO
def process_in(self, latent):
latents_mean = self.latents_mean.to(latent.device, latent.dtype)
latents_std = self.latents_std.to(latent.device, latent.dtype)
return (latent - latents_mean) * self.scale_factor / latents_std
def process_out(self, latent):
latents_mean = self.latents_mean.to(latent.device, latent.dtype)
latents_std = self.latents_std.to(latent.device, latent.dtype)
return latent * latents_std / self.scale_factor + latents_mean
class LTXV(LatentFormat):
latent_channels = 128
latent_dimensions = 3
def __init__(self):
self.latent_rgb_factors = [
[ 1.1202e-02, -6.3815e-04, -1.0021e-02],
[ 8.6031e-02, 6.5813e-02, 9.5409e-04],
[-1.2576e-02, -7.5734e-03, -4.0528e-03],
[ 9.4063e-03, -2.1688e-03, 2.6093e-03],
[ 3.7636e-03, 1.2765e-02, 9.1548e-03],
[ 2.1024e-02, -5.2973e-03, 3.4373e-03],
[-8.8896e-03, -1.9703e-02, -1.8761e-02],
[-1.3160e-02, -1.0523e-02, 1.9709e-03],
[-1.5152e-03, -6.9891e-03, -7.5810e-03],
[-1.7247e-03, 4.6560e-04, -3.3839e-03],
[ 1.3617e-02, 4.7077e-03, -2.0045e-03],
[ 1.0256e-02, 7.7318e-03, 1.3948e-02],
[-1.6108e-02, -6.2151e-03, 1.1561e-03],
[ 7.3407e-03, 1.5628e-02, 4.4865e-04],
[ 9.5357e-04, -2.9518e-03, -1.4760e-02],
[ 1.9143e-02, 1.0868e-02, 1.2264e-02],
[ 4.4575e-03, 3.6682e-05, -6.8508e-03],
[-4.5681e-04, 3.2570e-03, 7.7929e-03],
[ 3.3902e-02, 3.3405e-02, 3.7454e-02],
[-2.3001e-02, -2.4877e-03, -3.1033e-03],
[ 5.0265e-02, 3.8841e-02, 3.3539e-02],
[-4.1018e-03, -1.1095e-03, 1.5859e-03],
[-1.2689e-01, -1.3107e-01, -2.1005e-01],
[ 2.6276e-02, 1.4189e-02, -3.5963e-03],
[-4.8679e-03, 8.8486e-03, 7.8029e-03],
[-1.6610e-03, -4.8597e-03, -5.2060e-03],
[-2.1010e-03, 2.3610e-03, 9.3796e-03],
[-2.2482e-02, -2.1305e-02, -1.5087e-02],
[-1.5753e-02, -1.0646e-02, -6.5083e-03],
[-4.6975e-03, 5.0288e-03, -6.7390e-03],
[ 1.1951e-02, 2.0712e-02, 1.6191e-02],
[-6.3704e-03, -8.4827e-03, -9.5483e-03],
[ 7.2610e-03, -9.9326e-03, -2.2978e-02],
[-9.1904e-04, 6.2882e-03, 9.5720e-03],
[-3.7178e-02, -3.7123e-02, -5.6713e-02],
[-1.3373e-01, -1.0720e-01, -5.3801e-02],
[-5.3702e-03, 8.1256e-03, 8.8397e-03],
[-1.5247e-01, -2.1437e-01, -2.1843e-01],
[ 3.1441e-02, 7.0335e-03, -9.7541e-03],
[ 2.1528e-03, -8.9817e-03, -2.1023e-02],
[ 3.8461e-03, -5.8957e-03, -1.5014e-02],
[-4.3470e-03, -1.2940e-02, -1.5972e-02],
[-5.4781e-03, -1.0842e-02, -3.0204e-03],
[-6.5347e-03, 3.0806e-03, -1.0163e-02],
[-5.0414e-03, -7.1503e-03, -8.9686e-04],
[-8.5851e-03, -2.4351e-03, 1.0674e-03],
[-9.0016e-03, -9.6493e-03, 1.5692e-03],
[ 5.0914e-03, 1.2099e-02, 1.9968e-02],
[ 1.3758e-02, 1.1669e-02, 8.1958e-03],
[-1.0518e-02, -1.1575e-02, -4.1307e-03],
[-2.8410e-02, -3.1266e-02, -2.2149e-02],
[ 2.9336e-03, 3.6511e-02, 1.8717e-02],
[-1.6703e-02, -1.6696e-02, -4.4529e-03],
[ 4.8818e-02, 4.0063e-02, 8.7410e-03],
[-1.5066e-02, -5.7328e-04, 2.9785e-03],
[-1.7613e-02, -8.1034e-03, 1.3086e-02],
[-9.2633e-03, 1.0803e-02, -6.3489e-03],
[ 3.0851e-03, 4.7750e-04, 1.2347e-02],
[-2.2785e-02, -2.3043e-02, -2.6005e-02],
[-2.4787e-02, -1.5389e-02, -2.2104e-02],
[-2.3572e-02, 1.0544e-03, 1.2361e-02],
[-7.8915e-03, -1.2271e-03, -6.0968e-03],
[-1.1478e-02, -1.2543e-03, 6.2679e-03],
[-5.4229e-02, 2.6644e-02, 6.3394e-03],
[ 4.4216e-03, -7.3338e-03, -1.0464e-02],
[-4.5013e-03, 1.6082e-03, 1.4420e-02],
[ 1.3673e-02, 8.8877e-03, 4.1253e-03],
[-1.0145e-02, 9.0072e-03, 1.5695e-02],
[-5.6234e-03, 1.1847e-03, 8.1261e-03],
[-3.7171e-03, -5.3538e-03, 1.2590e-03],
[ 2.9476e-02, 2.1424e-02, 3.0424e-02],
[-3.4925e-02, -2.4340e-02, -2.5316e-02],
[-3.4127e-02, -2.2406e-02, -1.0589e-02],
[-1.7342e-02, -1.3249e-02, -1.0719e-02],
[-2.1478e-03, -8.6051e-03, -2.9878e-03],
[ 1.2089e-03, -4.2391e-03, -6.8569e-03],
[ 9.0411e-04, -6.6886e-03, -6.7547e-05],
[ 1.6048e-02, -1.0057e-02, -2.8929e-02],
[ 1.2290e-03, 1.0163e-02, 1.8861e-02],
[ 1.7264e-02, 2.7257e-04, 1.3785e-02],
[-1.3482e-02, -3.6427e-03, 6.7481e-04],
[ 4.6782e-03, -5.2423e-03, 2.4467e-03],
[-5.9113e-03, -6.2244e-03, -1.8162e-03],
[ 1.5496e-02, 1.4582e-02, 1.9514e-03],
[ 7.4958e-03, 1.5886e-03, -8.2305e-03],
[ 1.9086e-02, 1.6360e-03, -3.9674e-03],
[-5.7021e-03, -2.7307e-03, -4.1066e-03],
[ 1.7450e-03, 1.4602e-02, 2.5794e-02],
[-8.2788e-04, 2.2902e-03, 4.5161e-03],
[ 1.1632e-02, 8.9193e-03, -7.2813e-03],
[ 7.5721e-03, 2.6784e-03, 1.1393e-02],
[ 5.1939e-03, 3.6903e-03, 1.4049e-02],
[-1.8383e-02, -2.2529e-02, -2.4477e-02],
[ 5.8842e-04, -5.7874e-03, -1.4770e-02],
[-1.6125e-02, -8.6101e-03, -1.4533e-02],
[ 2.0540e-02, 2.0729e-02, 6.4338e-03],
[ 3.3587e-03, -1.1226e-02, -1.6444e-02],
[-1.4742e-03, -1.0489e-02, 1.7097e-03],
[ 2.8130e-02, 2.3546e-02, 3.2791e-02],
[-1.8532e-02, -1.2842e-02, -8.7756e-03],
[-8.0533e-03, -1.0771e-02, -1.7536e-02],
[-3.9009e-03, 1.6150e-02, 3.3359e-02],
[-7.4554e-03, -1.4154e-02, -6.1910e-03],
[ 3.4734e-03, -1.1370e-02, -1.0581e-02],
[ 1.1476e-02, 3.9281e-03, 2.8231e-03],
[ 7.1639e-03, -1.4741e-03, -3.8066e-03],
[ 2.2250e-03, -8.7552e-03, -9.5719e-03],
[ 2.4146e-02, 2.1696e-02, 2.8056e-02],
[-5.4365e-03, -2.4291e-02, -1.7802e-02],
[ 7.4263e-03, 1.0510e-02, 1.2705e-02],
[ 6.2669e-03, 6.2658e-03, 1.9211e-02],
[ 1.6378e-02, 9.4933e-03, 6.6971e-03],
[ 1.7173e-02, 2.3601e-02, 2.3296e-02],
[-1.4568e-02, -9.8279e-03, -1.1556e-02],
[ 1.4431e-02, 1.4430e-02, 6.6362e-03],
[-6.8230e-03, 1.8863e-02, 1.4555e-02],
[ 6.1156e-03, 3.4700e-03, -2.6662e-03],
[-2.6983e-03, -5.9402e-03, -9.2276e-03],
[ 1.0235e-02, 7.4173e-03, -7.6243e-03],
[-1.3255e-02, 1.9322e-02, -9.2153e-04],
[ 2.4222e-03, -4.8039e-03, -1.5759e-02],
[ 2.6244e-02, 2.5951e-02, 2.0249e-02],
[ 1.5711e-02, 1.8498e-02, 2.7407e-03],
[-2.1714e-03, 4.7214e-03, -2.2443e-02],
[-7.4747e-03, 7.4166e-03, 1.4430e-02],
[-8.3906e-03, -7.9776e-03, 9.7927e-03],
[ 3.8321e-02, 9.6622e-03, -1.9268e-02],
[-1.4605e-02, -6.7032e-03, 3.9675e-03]
]
self.latent_rgb_factors_bias = [-0.0571, -0.1657, -0.2512]
class HunyuanVideo(LatentFormat):
latent_channels = 16
latent_dimensions = 3
scale_factor = 0.476986
latent_rgb_factors = [
[-0.0395, -0.0331, 0.0445],
[ 0.0696, 0.0795, 0.0518],
[ 0.0135, -0.0945, -0.0282],
[ 0.0108, -0.0250, -0.0765],
[-0.0209, 0.0032, 0.0224],
[-0.0804, -0.0254, -0.0639],
[-0.0991, 0.0271, -0.0669],
[-0.0646, -0.0422, -0.0400],
[-0.0696, -0.0595, -0.0894],
[-0.0799, -0.0208, -0.0375],
[ 0.1166, 0.1627, 0.0962],
[ 0.1165, 0.0432, 0.0407],
[-0.2315, -0.1920, -0.1355],
[-0.0270, 0.0401, -0.0821],
[-0.0616, -0.0997, -0.0727],
[ 0.0249, -0.0469, -0.1703]
]
latent_rgb_factors_bias = [ 0.0259, -0.0192, -0.0761]
class Cosmos1CV8x8x8(LatentFormat):
latent_channels = 16
latent_dimensions = 3
latent_rgb_factors = [
[ 0.1817, 0.2284, 0.2423],
[-0.0586, -0.0862, -0.3108],
[-0.4703, -0.4255, -0.3995],
[ 0.0803, 0.1963, 0.1001],
[-0.0820, -0.1050, 0.0400],
[ 0.2511, 0.3098, 0.2787],
[-0.1830, -0.2117, -0.0040],
[-0.0621, -0.2187, -0.0939],
[ 0.3619, 0.1082, 0.1455],
[ 0.3164, 0.3922, 0.2575],
[ 0.1152, 0.0231, -0.0462],
[-0.1434, -0.3609, -0.3665],
[ 0.0635, 0.1471, 0.1680],
[-0.3635, -0.1963, -0.3248],
[-0.1865, 0.0365, 0.2346],
[ 0.0447, 0.0994, 0.0881]
]
latent_rgb_factors_bias = [-0.1223, -0.1889, -0.1976]
class Wan21(LatentFormat):
latent_channels = 16
latent_dimensions = 3
latent_rgb_factors = [
[-0.1299, -0.1692, 0.2932],
[ 0.0671, 0.0406, 0.0442],
[ 0.3568, 0.2548, 0.1747],
[ 0.0372, 0.2344, 0.1420],
[ 0.0313, 0.0189, -0.0328],
[ 0.0296, -0.0956, -0.0665],
[-0.3477, -0.4059, -0.2925],
[ 0.0166, 0.1902, 0.1975],
[-0.0412, 0.0267, -0.1364],
[-0.1293, 0.0740, 0.1636],
[ 0.0680, 0.3019, 0.1128],
[ 0.0032, 0.0581, 0.0639],
[-0.1251, 0.0927, 0.1699],
[ 0.0060, -0.0633, 0.0005],
[ 0.3477, 0.2275, 0.2950],
[ 0.1984, 0.0913, 0.1861]
]
latent_rgb_factors_bias = [-0.1835, -0.0868, -0.3360]
def __init__(self):
self.scale_factor = 1.0
self.latents_mean = torch.tensor([
-0.7571, -0.7089, -0.9113, 0.1075, -0.1745, 0.9653, -0.1517, 1.5508,
0.4134, -0.0715, 0.5517, -0.3632, -0.1922, -0.9497, 0.2503, -0.2921
]).view(1, self.latent_channels, 1, 1, 1)
self.latents_std = torch.tensor([
2.8184, 1.4541, 2.3275, 2.6558, 1.2196, 1.7708, 2.6052, 2.0743,
3.2687, 2.1526, 2.8652, 1.5579, 1.6382, 1.1253, 2.8251, 1.9160
]).view(1, self.latent_channels, 1, 1, 1)
self.taesd_decoder_name = None #TODO
def process_in(self, latent):
latents_mean = self.latents_mean.to(latent.device, latent.dtype)
latents_std = self.latents_std.to(latent.device, latent.dtype)
return (latent - latents_mean) * self.scale_factor / latents_std
def process_out(self, latent):
latents_mean = self.latents_mean.to(latent.device, latent.dtype)
latents_std = self.latents_std.to(latent.device, latent.dtype)
return latent * latents_std / self.scale_factor + latents_mean
class Wan22(Wan21):
latent_channels = 48
latent_dimensions = 3
latent_rgb_factors = [
[ 0.0119, 0.0103, 0.0046],
[-0.1062, -0.0504, 0.0165],
[ 0.0140, 0.0409, 0.0491],
[-0.0813, -0.0677, 0.0607],
[ 0.0656, 0.0851, 0.0808],
[ 0.0264, 0.0463, 0.0912],
[ 0.0295, 0.0326, 0.0590],
[-0.0244, -0.0270, 0.0025],
[ 0.0443, -0.0102, 0.0288],
[-0.0465, -0.0090, -0.0205],
[ 0.0359, 0.0236, 0.0082],
[-0.0776, 0.0854, 0.1048],
[ 0.0564, 0.0264, 0.0561],
[ 0.0006, 0.0594, 0.0418],
[-0.0319, -0.0542, -0.0637],
[-0.0268, 0.0024, 0.0260],
[ 0.0539, 0.0265, 0.0358],
[-0.0359, -0.0312, -0.0287],
[-0.0285, -0.1032, -0.1237],
[ 0.1041, 0.0537, 0.0622],
[-0.0086, -0.0374, -0.0051],
[ 0.0390, 0.0670, 0.2863],
[ 0.0069, 0.0144, 0.0082],
[ 0.0006, -0.0167, 0.0079],
[ 0.0313, -0.0574, -0.0232],
[-0.1454, -0.0902, -0.0481],
[ 0.0714, 0.0827, 0.0447],
[-0.0304, -0.0574, -0.0196],
[ 0.0401, 0.0384, 0.0204],
[-0.0758, -0.0297, -0.0014],
[ 0.0568, 0.1307, 0.1372],
[-0.0055, -0.0310, -0.0380],
[ 0.0239, -0.0305, 0.0325],
[-0.0663, -0.0673, -0.0140],
[-0.0416, -0.0047, -0.0023],
[ 0.0166, 0.0112, -0.0093],
[-0.0211, 0.0011, 0.0331],
[ 0.1833, 0.1466, 0.2250],
[-0.0368, 0.0370, 0.0295],
[-0.3441, -0.3543, -0.2008],
[-0.0479, -0.0489, -0.0420],
[-0.0660, -0.0153, 0.0800],
[-0.0101, 0.0068, 0.0156],
[-0.0690, -0.0452, -0.0927],
[-0.0145, 0.0041, 0.0015],
[ 0.0421, 0.0451, 0.0373],
[ 0.0504, -0.0483, -0.0356],
[-0.0837, 0.0168, 0.0055]
]
latent_rgb_factors_bias = [0.0317, -0.0878, -0.1388]
def __init__(self):
self.scale_factor = 1.0
self.latents_mean = torch.tensor([
-0.2289, -0.0052, -0.1323, -0.2339, -0.2799, 0.0174, 0.1838, 0.1557,
-0.1382, 0.0542, 0.2813, 0.0891, 0.1570, -0.0098, 0.0375, -0.1825,
-0.2246, -0.1207, -0.0698, 0.5109, 0.2665, -0.2108, -0.2158, 0.2502,
-0.2055, -0.0322, 0.1109, 0.1567, -0.0729, 0.0899, -0.2799, -0.1230,
-0.0313, -0.1649, 0.0117, 0.0723, -0.2839, -0.2083, -0.0520, 0.3748,
0.0152, 0.1957, 0.1433, -0.2944, 0.3573, -0.0548, -0.1681, -0.0667,
]).view(1, self.latent_channels, 1, 1, 1)
self.latents_std = torch.tensor([
0.4765, 1.0364, 0.4514, 1.1677, 0.5313, 0.4990, 0.4818, 0.5013,
0.8158, 1.0344, 0.5894, 1.0901, 0.6885, 0.6165, 0.8454, 0.4978,
0.5759, 0.3523, 0.7135, 0.6804, 0.5833, 1.4146, 0.8986, 0.5659,
0.7069, 0.5338, 0.4889, 0.4917, 0.4069, 0.4999, 0.6866, 0.4093,
0.5709, 0.6065, 0.6415, 0.4944, 0.5726, 1.2042, 0.5458, 1.6887,
0.3971, 1.0600, 0.3943, 0.5537, 0.5444, 0.4089, 0.7468, 0.7744
]).view(1, self.latent_channels, 1, 1, 1)
class Hunyuan3Dv2(LatentFormat):
latent_channels = 64
latent_dimensions = 1
scale_factor = 0.9990943042622529
class Hunyuan3Dv2mini(LatentFormat):
latent_channels = 64
latent_dimensions = 1
scale_factor = 1.0188137142395404
class ACEAudio(LatentFormat):
latent_channels = 8
latent_dimensions = 2
# Original from: https://github.com/ace-step/ACE-Step/blob/main/models/attention.py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Tuple, Union, Optional
import torch
import torch.nn.functional as F
from torch import nn
import comfy.model_management
from comfy.ldm.modules.attention import optimized_attention
class Attention(nn.Module):
def __init__(
self,
query_dim: int,
cross_attention_dim: Optional[int] = None,
heads: int = 8,
kv_heads: Optional[int] = None,
dim_head: int = 64,
dropout: float = 0.0,
bias: bool = False,
qk_norm: Optional[str] = None,
added_kv_proj_dim: Optional[int] = None,
added_proj_bias: Optional[bool] = True,
out_bias: bool = True,
scale_qk: bool = True,
only_cross_attention: bool = False,
eps: float = 1e-5,
rescale_output_factor: float = 1.0,
residual_connection: bool = False,
processor=None,
out_dim: int = None,
out_context_dim: int = None,
context_pre_only=None,
pre_only=False,
elementwise_affine: bool = True,
is_causal: bool = False,
dtype=None, device=None, operations=None
):
super().__init__()
self.inner_dim = out_dim if out_dim is not None else dim_head * heads
self.inner_kv_dim = self.inner_dim if kv_heads is None else dim_head * kv_heads
self.query_dim = query_dim
self.use_bias = bias
self.is_cross_attention = cross_attention_dim is not None
self.cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim
self.rescale_output_factor = rescale_output_factor
self.residual_connection = residual_connection
self.dropout = dropout
self.fused_projections = False
self.out_dim = out_dim if out_dim is not None else query_dim
self.out_context_dim = out_context_dim if out_context_dim is not None else query_dim
self.context_pre_only = context_pre_only
self.pre_only = pre_only
self.is_causal = is_causal
self.scale_qk = scale_qk
self.scale = dim_head**-0.5 if self.scale_qk else 1.0
self.heads = out_dim // dim_head if out_dim is not None else heads
# for slice_size > 0 the attention score computation
# is split across the batch axis to save memory
# You can set slice_size with `set_attention_slice`
self.sliceable_head_dim = heads
self.added_kv_proj_dim = added_kv_proj_dim
self.only_cross_attention = only_cross_attention
if self.added_kv_proj_dim is None and self.only_cross_attention:
raise ValueError(
"`only_cross_attention` can only be set to True if `added_kv_proj_dim` is not None. Make sure to set either `only_cross_attention=False` or define `added_kv_proj_dim`."
)
self.group_norm = None
self.spatial_norm = None
self.norm_q = None
self.norm_k = None
self.norm_cross = None
self.to_q = operations.Linear(query_dim, self.inner_dim, bias=bias, dtype=dtype, device=device)
if not self.only_cross_attention:
# only relevant for the `AddedKVProcessor` classes
self.to_k = operations.Linear(self.cross_attention_dim, self.inner_kv_dim, bias=bias, dtype=dtype, device=device)
self.to_v = operations.Linear(self.cross_attention_dim, self.inner_kv_dim, bias=bias, dtype=dtype, device=device)
else:
self.to_k = None
self.to_v = None
self.added_proj_bias = added_proj_bias
if self.added_kv_proj_dim is not None:
self.add_k_proj = operations.Linear(added_kv_proj_dim, self.inner_kv_dim, bias=added_proj_bias, dtype=dtype, device=device)
self.add_v_proj = operations.Linear(added_kv_proj_dim, self.inner_kv_dim, bias=added_proj_bias, dtype=dtype, device=device)
if self.context_pre_only is not None:
self.add_q_proj = operations.Linear(added_kv_proj_dim, self.inner_dim, bias=added_proj_bias, dtype=dtype, device=device)
else:
self.add_q_proj = None
self.add_k_proj = None
self.add_v_proj = None
if not self.pre_only:
self.to_out = nn.ModuleList([])
self.to_out.append(operations.Linear(self.inner_dim, self.out_dim, bias=out_bias, dtype=dtype, device=device))
self.to_out.append(nn.Dropout(dropout))
else:
self.to_out = None
if self.context_pre_only is not None and not self.context_pre_only:
self.to_add_out = operations.Linear(self.inner_dim, self.out_context_dim, bias=out_bias, dtype=dtype, device=device)
else:
self.to_add_out = None
self.norm_added_q = None
self.norm_added_k = None
self.processor = processor
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
**cross_attention_kwargs,
) -> torch.Tensor:
return self.processor(
self,
hidden_states,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
**cross_attention_kwargs,
)
class CustomLiteLAProcessor2_0:
"""Attention processor used typically in processing the SD3-like self-attention projections. add rms norm for query and key and apply RoPE"""
def __init__(self):
self.kernel_func = nn.ReLU(inplace=False)
self.eps = 1e-15
self.pad_val = 1.0
def apply_rotary_emb(
self,
x: torch.Tensor,
freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]],
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Apply rotary embeddings to input tensors using the given frequency tensor. This function applies rotary embeddings
to the given query or key 'x' tensors using the provided frequency tensor 'freqs_cis'. The input tensors are
reshaped as complex numbers, and the frequency tensor is reshaped for broadcasting compatibility. The resulting
tensors contain rotary embeddings and are returned as real tensors.
Args:
x (`torch.Tensor`):
Query or key tensor to apply rotary embeddings. [B, H, S, D] xk (torch.Tensor): Key tensor to apply
freqs_cis (`Tuple[torch.Tensor]`): Precomputed frequency tensor for complex exponentials. ([S, D], [S, D],)
Returns:
Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings.
"""
cos, sin = freqs_cis # [S, D]
cos = cos[None, None]
sin = sin[None, None]
cos, sin = cos.to(x.device), sin.to(x.device)
x_real, x_imag = x.reshape(*x.shape[:-1], -1, 2).unbind(-1) # [B, S, H, D//2]
x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3)
out = (x.float() * cos + x_rotated.float() * sin).to(x.dtype)
return out
def __call__(
self,
attn: Attention,
hidden_states: torch.FloatTensor,
encoder_hidden_states: torch.FloatTensor = None,
attention_mask: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
rotary_freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]] = None,
rotary_freqs_cis_cross: Union[torch.Tensor, Tuple[torch.Tensor]] = None,
*args,
**kwargs,
) -> torch.FloatTensor:
hidden_states_len = hidden_states.shape[1]
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
if encoder_hidden_states is not None:
context_input_ndim = encoder_hidden_states.ndim
if context_input_ndim == 4:
batch_size, channel, height, width = encoder_hidden_states.shape
encoder_hidden_states = encoder_hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size = hidden_states.shape[0]
# `sample` projections.
dtype = hidden_states.dtype
query = attn.to_q(hidden_states)
key = attn.to_k(hidden_states)
value = attn.to_v(hidden_states)
# `context` projections.
has_encoder_hidden_state_proj = hasattr(attn, "add_q_proj") and hasattr(attn, "add_k_proj") and hasattr(attn, "add_v_proj")
if encoder_hidden_states is not None and has_encoder_hidden_state_proj:
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
# attention
if not attn.is_cross_attention:
query = torch.cat([query, encoder_hidden_states_query_proj], dim=1)
key = torch.cat([key, encoder_hidden_states_key_proj], dim=1)
value = torch.cat([value, encoder_hidden_states_value_proj], dim=1)
else:
query = hidden_states
key = encoder_hidden_states
value = encoder_hidden_states
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.transpose(-1, -2).reshape(batch_size, attn.heads, head_dim, -1)
key = key.transpose(-1, -2).reshape(batch_size, attn.heads, head_dim, -1).transpose(-1, -2)
value = value.transpose(-1, -2).reshape(batch_size, attn.heads, head_dim, -1)
# RoPE需要 [B, H, S, D] 输入
# 此时 query是 [B, H, D, S], 需要转成 [B, H, S, D] 才能应用RoPE
query = query.permute(0, 1, 3, 2) # [B, H, S, D] (从 [B, H, D, S])
# Apply query and key normalization if needed
if attn.norm_q is not None:
query = attn.norm_q(query)
if attn.norm_k is not None:
key = attn.norm_k(key)
# Apply RoPE if needed
if rotary_freqs_cis is not None:
query = self.apply_rotary_emb(query, rotary_freqs_cis)
if not attn.is_cross_attention:
key = self.apply_rotary_emb(key, rotary_freqs_cis)
elif rotary_freqs_cis_cross is not None and has_encoder_hidden_state_proj:
key = self.apply_rotary_emb(key, rotary_freqs_cis_cross)
# 此时 query是 [B, H, S, D],需要还原成 [B, H, D, S]
query = query.permute(0, 1, 3, 2) # [B, H, D, S]
if attention_mask is not None:
# attention_mask: [B, S] -> [B, 1, S, 1]
attention_mask = attention_mask[:, None, :, None].to(key.dtype) # [B, 1, S, 1]
query = query * attention_mask.permute(0, 1, 3, 2) # [B, H, S, D] * [B, 1, S, 1]
if not attn.is_cross_attention:
key = key * attention_mask # key: [B, h, S, D] 与 mask [B, 1, S, 1] 相乘
value = value * attention_mask.permute(0, 1, 3, 2) # 如果 value 是 [B, h, D, S],那么需调整mask以匹配S维度
if attn.is_cross_attention and encoder_attention_mask is not None and has_encoder_hidden_state_proj:
encoder_attention_mask = encoder_attention_mask[:, None, :, None].to(key.dtype) # [B, 1, S_enc, 1]
# 此时 key: [B, h, S_enc, D], value: [B, h, D, S_enc]
key = key * encoder_attention_mask # [B, h, S_enc, D] * [B, 1, S_enc, 1]
value = value * encoder_attention_mask.permute(0, 1, 3, 2) # [B, h, D, S_enc] * [B, 1, 1, S_enc]
query = self.kernel_func(query)
key = self.kernel_func(key)
query, key, value = query.float(), key.float(), value.float()
value = F.pad(value, (0, 0, 0, 1), mode="constant", value=self.pad_val)
vk = torch.matmul(value, key)
hidden_states = torch.matmul(vk, query)
if hidden_states.dtype in [torch.float16, torch.bfloat16]:
hidden_states = hidden_states.float()
hidden_states = hidden_states[:, :, :-1] / (hidden_states[:, :, -1:] + self.eps)
hidden_states = hidden_states.view(batch_size, attn.heads * head_dim, -1).permute(0, 2, 1)
hidden_states = hidden_states.to(dtype)
if encoder_hidden_states is not None:
encoder_hidden_states = encoder_hidden_states.to(dtype)
# Split the attention outputs.
if encoder_hidden_states is not None and not attn.is_cross_attention and has_encoder_hidden_state_proj:
hidden_states, encoder_hidden_states = (
hidden_states[:, : hidden_states_len],
hidden_states[:, hidden_states_len:],
)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if encoder_hidden_states is not None and not attn.context_pre_only and not attn.is_cross_attention and hasattr(attn, "to_add_out"):
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if encoder_hidden_states is not None and context_input_ndim == 4:
encoder_hidden_states = encoder_hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if torch.get_autocast_gpu_dtype() == torch.float16:
hidden_states = hidden_states.clip(-65504, 65504)
if encoder_hidden_states is not None:
encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504)
return hidden_states, encoder_hidden_states
class CustomerAttnProcessor2_0:
r"""
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
"""
def apply_rotary_emb(
self,
x: torch.Tensor,
freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]],
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Apply rotary embeddings to input tensors using the given frequency tensor. This function applies rotary embeddings
to the given query or key 'x' tensors using the provided frequency tensor 'freqs_cis'. The input tensors are
reshaped as complex numbers, and the frequency tensor is reshaped for broadcasting compatibility. The resulting
tensors contain rotary embeddings and are returned as real tensors.
Args:
x (`torch.Tensor`):
Query or key tensor to apply rotary embeddings. [B, H, S, D] xk (torch.Tensor): Key tensor to apply
freqs_cis (`Tuple[torch.Tensor]`): Precomputed frequency tensor for complex exponentials. ([S, D], [S, D],)
Returns:
Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings.
"""
cos, sin = freqs_cis # [S, D]
cos = cos[None, None]
sin = sin[None, None]
cos, sin = cos.to(x.device), sin.to(x.device)
x_real, x_imag = x.reshape(*x.shape[:-1], -1, 2).unbind(-1) # [B, S, H, D//2]
x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3)
out = (x.float() * cos + x_rotated.float() * sin).to(x.dtype)
return out
def __call__(
self,
attn: Attention,
hidden_states: torch.FloatTensor,
encoder_hidden_states: torch.FloatTensor = None,
attention_mask: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
rotary_freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]] = None,
rotary_freqs_cis_cross: Union[torch.Tensor, Tuple[torch.Tensor]] = None,
*args,
**kwargs,
) -> torch.Tensor:
residual = hidden_states
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
has_encoder_hidden_state_proj = hasattr(attn, "add_q_proj") and hasattr(attn, "add_k_proj") and hasattr(attn, "add_v_proj")
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
if attn.norm_q is not None:
query = attn.norm_q(query)
if attn.norm_k is not None:
key = attn.norm_k(key)
# Apply RoPE if needed
if rotary_freqs_cis is not None:
query = self.apply_rotary_emb(query, rotary_freqs_cis)
if not attn.is_cross_attention:
key = self.apply_rotary_emb(key, rotary_freqs_cis)
elif rotary_freqs_cis_cross is not None and has_encoder_hidden_state_proj:
key = self.apply_rotary_emb(key, rotary_freqs_cis_cross)
if attn.is_cross_attention and encoder_attention_mask is not None and has_encoder_hidden_state_proj:
# attention_mask: N x S1
# encoder_attention_mask: N x S2
# cross attention 整合attention_mask和encoder_attention_mask
combined_mask = attention_mask[:, :, None] * encoder_attention_mask[:, None, :]
attention_mask = torch.where(combined_mask == 1, 0.0, -torch.inf)
attention_mask = attention_mask[:, None, :, :].expand(-1, attn.heads, -1, -1).to(query.dtype)
elif not attn.is_cross_attention and attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
# the output of sdp = (batch, num_heads, seq_len, head_dim)
hidden_states = optimized_attention(
query, key, value, heads=query.shape[1], mask=attention_mask, skip_reshape=True,
).to(query.dtype)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
def val2list(x: list or tuple or any, repeat_time=1) -> list: # type: ignore
"""Repeat `val` for `repeat_time` times and return the list or val if list/tuple."""
if isinstance(x, (list, tuple)):
return list(x)
return [x for _ in range(repeat_time)]
def val2tuple(x: list or tuple or any, min_len: int = 1, idx_repeat: int = -1) -> tuple: # type: ignore
"""Return tuple with min_len by repeating element at idx_repeat."""
# convert to list first
x = val2list(x)
# repeat elements if necessary
if len(x) > 0:
x[idx_repeat:idx_repeat] = [x[idx_repeat] for _ in range(min_len - len(x))]
return tuple(x)
def t2i_modulate(x, shift, scale):
return x * (1 + scale) + shift
def get_same_padding(kernel_size: Union[int, Tuple[int, ...]]) -> Union[int, Tuple[int, ...]]:
if isinstance(kernel_size, tuple):
return tuple([get_same_padding(ks) for ks in kernel_size])
else:
assert kernel_size % 2 > 0, f"kernel size {kernel_size} should be odd number"
return kernel_size // 2
class ConvLayer(nn.Module):
def __init__(
self,
in_dim: int,
out_dim: int,
kernel_size=3,
stride=1,
dilation=1,
groups=1,
padding: Union[int, None] = None,
use_bias=False,
norm=None,
act=None,
dtype=None, device=None, operations=None
):
super().__init__()
if padding is None:
padding = get_same_padding(kernel_size)
padding *= dilation
self.in_dim = in_dim
self.out_dim = out_dim
self.kernel_size = kernel_size
self.stride = stride
self.dilation = dilation
self.groups = groups
self.padding = padding
self.use_bias = use_bias
self.conv = operations.Conv1d(
in_dim,
out_dim,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
bias=use_bias,
device=device,
dtype=dtype
)
if norm is not None:
self.norm = operations.RMSNorm(out_dim, elementwise_affine=False, dtype=dtype, device=device)
else:
self.norm = None
if act is not None:
self.act = nn.SiLU(inplace=True)
else:
self.act = None
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.conv(x)
if self.norm:
x = self.norm(x)
if self.act:
x = self.act(x)
return x
class GLUMBConv(nn.Module):
def __init__(
self,
in_features: int,
hidden_features: int,
out_feature=None,
kernel_size=3,
stride=1,
padding: Union[int, None] = None,
use_bias=False,
norm=(None, None, None),
act=("silu", "silu", None),
dilation=1,
dtype=None, device=None, operations=None
):
out_feature = out_feature or in_features
super().__init__()
use_bias = val2tuple(use_bias, 3)
norm = val2tuple(norm, 3)
act = val2tuple(act, 3)
self.glu_act = nn.SiLU(inplace=False)
self.inverted_conv = ConvLayer(
in_features,
hidden_features * 2,
1,
use_bias=use_bias[0],
norm=norm[0],
act=act[0],
dtype=dtype,
device=device,
operations=operations,
)
self.depth_conv = ConvLayer(
hidden_features * 2,
hidden_features * 2,
kernel_size,
stride=stride,
groups=hidden_features * 2,
padding=padding,
use_bias=use_bias[1],
norm=norm[1],
act=None,
dilation=dilation,
dtype=dtype,
device=device,
operations=operations,
)
self.point_conv = ConvLayer(
hidden_features,
out_feature,
1,
use_bias=use_bias[2],
norm=norm[2],
act=act[2],
dtype=dtype,
device=device,
operations=operations,
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = x.transpose(1, 2)
x = self.inverted_conv(x)
x = self.depth_conv(x)
x, gate = torch.chunk(x, 2, dim=1)
gate = self.glu_act(gate)
x = x * gate
x = self.point_conv(x)
x = x.transpose(1, 2)
return x
class LinearTransformerBlock(nn.Module):
"""
A Sana block with global shared adaptive layer norm (adaLN-single) conditioning.
"""
def __init__(
self,
dim,
num_attention_heads,
attention_head_dim,
use_adaln_single=True,
cross_attention_dim=None,
added_kv_proj_dim=None,
context_pre_only=False,
mlp_ratio=4.0,
add_cross_attention=False,
add_cross_attention_dim=None,
qk_norm=None,
dtype=None, device=None, operations=None
):
super().__init__()
self.norm1 = operations.RMSNorm(dim, elementwise_affine=False, eps=1e-6)
self.attn = Attention(
query_dim=dim,
cross_attention_dim=cross_attention_dim,
added_kv_proj_dim=added_kv_proj_dim,
dim_head=attention_head_dim,
heads=num_attention_heads,
out_dim=dim,
bias=True,
qk_norm=qk_norm,
processor=CustomLiteLAProcessor2_0(),
dtype=dtype,
device=device,
operations=operations,
)
self.add_cross_attention = add_cross_attention
self.context_pre_only = context_pre_only
if add_cross_attention and add_cross_attention_dim is not None:
self.cross_attn = Attention(
query_dim=dim,
cross_attention_dim=add_cross_attention_dim,
added_kv_proj_dim=add_cross_attention_dim,
dim_head=attention_head_dim,
heads=num_attention_heads,
out_dim=dim,
context_pre_only=context_pre_only,
bias=True,
qk_norm=qk_norm,
processor=CustomerAttnProcessor2_0(),
dtype=dtype,
device=device,
operations=operations,
)
self.norm2 = operations.RMSNorm(dim, 1e-06, elementwise_affine=False)
self.ff = GLUMBConv(
in_features=dim,
hidden_features=int(dim * mlp_ratio),
use_bias=(True, True, False),
norm=(None, None, None),
act=("silu", "silu", None),
dtype=dtype,
device=device,
operations=operations,
)
self.use_adaln_single = use_adaln_single
if use_adaln_single:
self.scale_shift_table = nn.Parameter(torch.empty(6, dim, dtype=dtype, device=device))
def forward(
self,
hidden_states: torch.FloatTensor,
encoder_hidden_states: torch.FloatTensor = None,
attention_mask: torch.FloatTensor = None,
encoder_attention_mask: torch.FloatTensor = None,
rotary_freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]] = None,
rotary_freqs_cis_cross: Union[torch.Tensor, Tuple[torch.Tensor]] = None,
temb: torch.FloatTensor = None,
):
N = hidden_states.shape[0]
# step 1: AdaLN single
if self.use_adaln_single:
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
comfy.model_management.cast_to(self.scale_shift_table[None], dtype=temb.dtype, device=temb.device) + temb.reshape(N, 6, -1)
).chunk(6, dim=1)
norm_hidden_states = self.norm1(hidden_states)
if self.use_adaln_single:
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
# step 2: attention
if not self.add_cross_attention:
attn_output, encoder_hidden_states = self.attn(
hidden_states=norm_hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
rotary_freqs_cis=rotary_freqs_cis,
rotary_freqs_cis_cross=rotary_freqs_cis_cross,
)
else:
attn_output, _ = self.attn(
hidden_states=norm_hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=None,
encoder_attention_mask=None,
rotary_freqs_cis=rotary_freqs_cis,
rotary_freqs_cis_cross=None,
)
if self.use_adaln_single:
attn_output = gate_msa * attn_output
hidden_states = attn_output + hidden_states
if self.add_cross_attention:
attn_output = self.cross_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
rotary_freqs_cis=rotary_freqs_cis,
rotary_freqs_cis_cross=rotary_freqs_cis_cross,
)
hidden_states = attn_output + hidden_states
# step 3: add norm
norm_hidden_states = self.norm2(hidden_states)
if self.use_adaln_single:
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
# step 4: feed forward
ff_output = self.ff(norm_hidden_states)
if self.use_adaln_single:
ff_output = gate_mlp * ff_output
hidden_states = hidden_states + ff_output
return hidden_states
# Original from: https://github.com/ace-step/ACE-Step/blob/main/models/lyrics_utils/lyric_encoder.py
from typing import Optional, Tuple, Union
import math
import torch
from torch import nn
import comfy.model_management
class ConvolutionModule(nn.Module):
"""ConvolutionModule in Conformer model."""
def __init__(self,
channels: int,
kernel_size: int = 15,
activation: nn.Module = nn.ReLU(),
norm: str = "batch_norm",
causal: bool = False,
bias: bool = True,
dtype=None, device=None, operations=None):
"""Construct an ConvolutionModule object.
Args:
channels (int): The number of channels of conv layers.
kernel_size (int): Kernel size of conv layers.
causal (int): Whether use causal convolution or not
"""
super().__init__()
self.pointwise_conv1 = operations.Conv1d(
channels,
2 * channels,
kernel_size=1,
stride=1,
padding=0,
bias=bias,
dtype=dtype, device=device
)
# self.lorder is used to distinguish if it's a causal convolution,
# if self.lorder > 0: it's a causal convolution, the input will be
# padded with self.lorder frames on the left in forward.
# else: it's a symmetrical convolution
if causal:
padding = 0
self.lorder = kernel_size - 1
else:
# kernel_size should be an odd number for none causal convolution
assert (kernel_size - 1) % 2 == 0
padding = (kernel_size - 1) // 2
self.lorder = 0
self.depthwise_conv = operations.Conv1d(
channels,
channels,
kernel_size,
stride=1,
padding=padding,
groups=channels,
bias=bias,
dtype=dtype, device=device
)
assert norm in ['batch_norm', 'layer_norm']
if norm == "batch_norm":
self.use_layer_norm = False
self.norm = nn.BatchNorm1d(channels)
else:
self.use_layer_norm = True
self.norm = operations.LayerNorm(channels, dtype=dtype, device=device)
self.pointwise_conv2 = operations.Conv1d(
channels,
channels,
kernel_size=1,
stride=1,
padding=0,
bias=bias,
dtype=dtype, device=device
)
self.activation = activation
def forward(
self,
x: torch.Tensor,
mask_pad: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
cache: torch.Tensor = torch.zeros((0, 0, 0)),
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Compute convolution module.
Args:
x (torch.Tensor): Input tensor (#batch, time, channels).
mask_pad (torch.Tensor): used for batch padding (#batch, 1, time),
(0, 0, 0) means fake mask.
cache (torch.Tensor): left context cache, it is only
used in causal convolution (#batch, channels, cache_t),
(0, 0, 0) meas fake cache.
Returns:
torch.Tensor: Output tensor (#batch, time, channels).
"""
# exchange the temporal dimension and the feature dimension
x = x.transpose(1, 2) # (#batch, channels, time)
# mask batch padding
if mask_pad.size(2) > 0: # time > 0
x.masked_fill_(~mask_pad, 0.0)
if self.lorder > 0:
if cache.size(2) == 0: # cache_t == 0
x = nn.functional.pad(x, (self.lorder, 0), 'constant', 0.0)
else:
assert cache.size(0) == x.size(0) # equal batch
assert cache.size(1) == x.size(1) # equal channel
x = torch.cat((cache, x), dim=2)
assert (x.size(2) > self.lorder)
new_cache = x[:, :, -self.lorder:]
else:
# It's better we just return None if no cache is required,
# However, for JIT export, here we just fake one tensor instead of
# None.
new_cache = torch.zeros((0, 0, 0), dtype=x.dtype, device=x.device)
# GLU mechanism
x = self.pointwise_conv1(x) # (batch, 2*channel, dim)
x = nn.functional.glu(x, dim=1) # (batch, channel, dim)
# 1D Depthwise Conv
x = self.depthwise_conv(x)
if self.use_layer_norm:
x = x.transpose(1, 2)
x = self.activation(self.norm(x))
if self.use_layer_norm:
x = x.transpose(1, 2)
x = self.pointwise_conv2(x)
# mask batch padding
if mask_pad.size(2) > 0: # time > 0
x.masked_fill_(~mask_pad, 0.0)
return x.transpose(1, 2), new_cache
class PositionwiseFeedForward(torch.nn.Module):
"""Positionwise feed forward layer.
FeedForward are appied on each position of the sequence.
The output dim is same with the input dim.
Args:
idim (int): Input dimenstion.
hidden_units (int): The number of hidden units.
dropout_rate (float): Dropout rate.
activation (torch.nn.Module): Activation function
"""
def __init__(
self,
idim: int,
hidden_units: int,
dropout_rate: float,
activation: torch.nn.Module = torch.nn.ReLU(),
dtype=None, device=None, operations=None
):
"""Construct a PositionwiseFeedForward object."""
super(PositionwiseFeedForward, self).__init__()
self.w_1 = operations.Linear(idim, hidden_units, dtype=dtype, device=device)
self.activation = activation
self.dropout = torch.nn.Dropout(dropout_rate)
self.w_2 = operations.Linear(hidden_units, idim, dtype=dtype, device=device)
def forward(self, xs: torch.Tensor) -> torch.Tensor:
"""Forward function.
Args:
xs: input tensor (B, L, D)
Returns:
output tensor, (B, L, D)
"""
return self.w_2(self.dropout(self.activation(self.w_1(xs))))
class Swish(torch.nn.Module):
"""Construct an Swish object."""
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Return Swish activation function."""
return x * torch.sigmoid(x)
class MultiHeadedAttention(nn.Module):
"""Multi-Head Attention layer.
Args:
n_head (int): The number of heads.
n_feat (int): The number of features.
dropout_rate (float): Dropout rate.
"""
def __init__(self,
n_head: int,
n_feat: int,
dropout_rate: float,
key_bias: bool = True,
dtype=None, device=None, operations=None):
"""Construct an MultiHeadedAttention object."""
super().__init__()
assert n_feat % n_head == 0
# We assume d_v always equals d_k
self.d_k = n_feat // n_head
self.h = n_head
self.linear_q = operations.Linear(n_feat, n_feat, dtype=dtype, device=device)
self.linear_k = operations.Linear(n_feat, n_feat, bias=key_bias, dtype=dtype, device=device)
self.linear_v = operations.Linear(n_feat, n_feat, dtype=dtype, device=device)
self.linear_out = operations.Linear(n_feat, n_feat, dtype=dtype, device=device)
self.dropout = nn.Dropout(p=dropout_rate)
def forward_qkv(
self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""Transform query, key and value.
Args:
query (torch.Tensor): Query tensor (#batch, time1, size).
key (torch.Tensor): Key tensor (#batch, time2, size).
value (torch.Tensor): Value tensor (#batch, time2, size).
Returns:
torch.Tensor: Transformed query tensor, size
(#batch, n_head, time1, d_k).
torch.Tensor: Transformed key tensor, size
(#batch, n_head, time2, d_k).
torch.Tensor: Transformed value tensor, size
(#batch, n_head, time2, d_k).
"""
n_batch = query.size(0)
q = self.linear_q(query).view(n_batch, -1, self.h, self.d_k)
k = self.linear_k(key).view(n_batch, -1, self.h, self.d_k)
v = self.linear_v(value).view(n_batch, -1, self.h, self.d_k)
q = q.transpose(1, 2) # (batch, head, time1, d_k)
k = k.transpose(1, 2) # (batch, head, time2, d_k)
v = v.transpose(1, 2) # (batch, head, time2, d_k)
return q, k, v
def forward_attention(
self,
value: torch.Tensor,
scores: torch.Tensor,
mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool)
) -> torch.Tensor:
"""Compute attention context vector.
Args:
value (torch.Tensor): Transformed value, size
(#batch, n_head, time2, d_k).
scores (torch.Tensor): Attention score, size
(#batch, n_head, time1, time2).
mask (torch.Tensor): Mask, size (#batch, 1, time2) or
(#batch, time1, time2), (0, 0, 0) means fake mask.
Returns:
torch.Tensor: Transformed value (#batch, time1, d_model)
weighted by the attention score (#batch, time1, time2).
"""
n_batch = value.size(0)
if mask is not None and mask.size(2) > 0: # time2 > 0
mask = mask.unsqueeze(1).eq(0) # (batch, 1, *, time2)
# For last chunk, time2 might be larger than scores.size(-1)
mask = mask[:, :, :, :scores.size(-1)] # (batch, 1, *, time2)
scores = scores.masked_fill(mask, -float('inf'))
attn = torch.softmax(scores, dim=-1).masked_fill(
mask, 0.0) # (batch, head, time1, time2)
else:
attn = torch.softmax(scores, dim=-1) # (batch, head, time1, time2)
p_attn = self.dropout(attn)
x = torch.matmul(p_attn, value) # (batch, head, time1, d_k)
x = (x.transpose(1, 2).contiguous().view(n_batch, -1,
self.h * self.d_k)
) # (batch, time1, d_model)
return self.linear_out(x) # (batch, time1, d_model)
def forward(
self,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
pos_emb: torch.Tensor = torch.empty(0),
cache: torch.Tensor = torch.zeros((0, 0, 0, 0))
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Compute scaled dot product attention.
Args:
query (torch.Tensor): Query tensor (#batch, time1, size).
key (torch.Tensor): Key tensor (#batch, time2, size).
value (torch.Tensor): Value tensor (#batch, time2, size).
mask (torch.Tensor): Mask tensor (#batch, 1, time2) or
(#batch, time1, time2).
1.When applying cross attention between decoder and encoder,
the batch padding mask for input is in (#batch, 1, T) shape.
2.When applying self attention of encoder,
the mask is in (#batch, T, T) shape.
3.When applying self attention of decoder,
the mask is in (#batch, L, L) shape.
4.If the different position in decoder see different block
of the encoder, such as Mocha, the passed in mask could be
in (#batch, L, T) shape. But there is no such case in current
CosyVoice.
cache (torch.Tensor): Cache tensor (1, head, cache_t, d_k * 2),
where `cache_t == chunk_size * num_decoding_left_chunks`
and `head * d_k == size`
Returns:
torch.Tensor: Output tensor (#batch, time1, d_model).
torch.Tensor: Cache tensor (1, head, cache_t + time1, d_k * 2)
where `cache_t == chunk_size * num_decoding_left_chunks`
and `head * d_k == size`
"""
q, k, v = self.forward_qkv(query, key, value)
if cache.size(0) > 0:
key_cache, value_cache = torch.split(cache,
cache.size(-1) // 2,
dim=-1)
k = torch.cat([key_cache, k], dim=2)
v = torch.cat([value_cache, v], dim=2)
new_cache = torch.cat((k, v), dim=-1)
scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.d_k)
return self.forward_attention(v, scores, mask), new_cache
class RelPositionMultiHeadedAttention(MultiHeadedAttention):
"""Multi-Head Attention layer with relative position encoding.
Paper: https://arxiv.org/abs/1901.02860
Args:
n_head (int): The number of heads.
n_feat (int): The number of features.
dropout_rate (float): Dropout rate.
"""
def __init__(self,
n_head: int,
n_feat: int,
dropout_rate: float,
key_bias: bool = True,
dtype=None, device=None, operations=None):
"""Construct an RelPositionMultiHeadedAttention object."""
super().__init__(n_head, n_feat, dropout_rate, key_bias, dtype=dtype, device=device, operations=operations)
# linear transformation for positional encoding
self.linear_pos = operations.Linear(n_feat, n_feat, bias=False, dtype=dtype, device=device)
# these two learnable bias are used in matrix c and matrix d
# as described in https://arxiv.org/abs/1901.02860 Section 3.3
self.pos_bias_u = nn.Parameter(torch.empty(self.h, self.d_k, dtype=dtype, device=device))
self.pos_bias_v = nn.Parameter(torch.empty(self.h, self.d_k, dtype=dtype, device=device))
# torch.nn.init.xavier_uniform_(self.pos_bias_u)
# torch.nn.init.xavier_uniform_(self.pos_bias_v)
def rel_shift(self, x: torch.Tensor) -> torch.Tensor:
"""Compute relative positional encoding.
Args:
x (torch.Tensor): Input tensor (batch, head, time1, 2*time1-1).
time1 means the length of query vector.
Returns:
torch.Tensor: Output tensor.
"""
zero_pad = torch.zeros((x.size()[0], x.size()[1], x.size()[2], 1),
device=x.device,
dtype=x.dtype)
x_padded = torch.cat([zero_pad, x], dim=-1)
x_padded = x_padded.view(x.size()[0],
x.size()[1],
x.size(3) + 1, x.size(2))
x = x_padded[:, :, 1:].view_as(x)[
:, :, :, : x.size(-1) // 2 + 1
] # only keep the positions from 0 to time2
return x
def forward(
self,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
pos_emb: torch.Tensor = torch.empty(0),
cache: torch.Tensor = torch.zeros((0, 0, 0, 0))
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Compute 'Scaled Dot Product Attention' with rel. positional encoding.
Args:
query (torch.Tensor): Query tensor (#batch, time1, size).
key (torch.Tensor): Key tensor (#batch, time2, size).
value (torch.Tensor): Value tensor (#batch, time2, size).
mask (torch.Tensor): Mask tensor (#batch, 1, time2) or
(#batch, time1, time2), (0, 0, 0) means fake mask.
pos_emb (torch.Tensor): Positional embedding tensor
(#batch, time2, size).
cache (torch.Tensor): Cache tensor (1, head, cache_t, d_k * 2),
where `cache_t == chunk_size * num_decoding_left_chunks`
and `head * d_k == size`
Returns:
torch.Tensor: Output tensor (#batch, time1, d_model).
torch.Tensor: Cache tensor (1, head, cache_t + time1, d_k * 2)
where `cache_t == chunk_size * num_decoding_left_chunks`
and `head * d_k == size`
"""
q, k, v = self.forward_qkv(query, key, value)
q = q.transpose(1, 2) # (batch, time1, head, d_k)
if cache.size(0) > 0:
key_cache, value_cache = torch.split(cache,
cache.size(-1) // 2,
dim=-1)
k = torch.cat([key_cache, k], dim=2)
v = torch.cat([value_cache, v], dim=2)
# NOTE(xcsong): We do cache slicing in encoder.forward_chunk, since it's
# non-trivial to calculate `next_cache_start` here.
new_cache = torch.cat((k, v), dim=-1)
n_batch_pos = pos_emb.size(0)
p = self.linear_pos(pos_emb).view(n_batch_pos, -1, self.h, self.d_k)
p = p.transpose(1, 2) # (batch, head, time1, d_k)
# (batch, head, time1, d_k)
q_with_bias_u = (q + comfy.model_management.cast_to(self.pos_bias_u, dtype=q.dtype, device=q.device)).transpose(1, 2)
# (batch, head, time1, d_k)
q_with_bias_v = (q + comfy.model_management.cast_to(self.pos_bias_v, dtype=q.dtype, device=q.device)).transpose(1, 2)
# compute attention score
# first compute matrix a and matrix c
# as described in https://arxiv.org/abs/1901.02860 Section 3.3
# (batch, head, time1, time2)
matrix_ac = torch.matmul(q_with_bias_u, k.transpose(-2, -1))
# compute matrix b and matrix d
# (batch, head, time1, time2)
matrix_bd = torch.matmul(q_with_bias_v, p.transpose(-2, -1))
# NOTE(Xiang Lyu): Keep rel_shift since espnet rel_pos_emb is used
if matrix_ac.shape != matrix_bd.shape:
matrix_bd = self.rel_shift(matrix_bd)
scores = (matrix_ac + matrix_bd) / math.sqrt(
self.d_k) # (batch, head, time1, time2)
return self.forward_attention(v, scores, mask), new_cache
def subsequent_mask(
size: int,
device: torch.device = torch.device("cpu"),
) -> torch.Tensor:
"""Create mask for subsequent steps (size, size).
This mask is used only in decoder which works in an auto-regressive mode.
This means the current step could only do attention with its left steps.
In encoder, fully attention is used when streaming is not necessary and
the sequence is not long. In this case, no attention mask is needed.
When streaming is need, chunk-based attention is used in encoder. See
subsequent_chunk_mask for the chunk-based attention mask.
Args:
size (int): size of mask
str device (str): "cpu" or "cuda" or torch.Tensor.device
dtype (torch.device): result dtype
Returns:
torch.Tensor: mask
Examples:
>>> subsequent_mask(3)
[[1, 0, 0],
[1, 1, 0],
[1, 1, 1]]
"""
arange = torch.arange(size, device=device)
mask = arange.expand(size, size)
arange = arange.unsqueeze(-1)
mask = mask <= arange
return mask
def subsequent_chunk_mask(
size: int,
chunk_size: int,
num_left_chunks: int = -1,
device: torch.device = torch.device("cpu"),
) -> torch.Tensor:
"""Create mask for subsequent steps (size, size) with chunk size,
this is for streaming encoder
Args:
size (int): size of mask
chunk_size (int): size of chunk
num_left_chunks (int): number of left chunks
<0: use full chunk
>=0: use num_left_chunks
device (torch.device): "cpu" or "cuda" or torch.Tensor.device
Returns:
torch.Tensor: mask
Examples:
>>> subsequent_chunk_mask(4, 2)
[[1, 1, 0, 0],
[1, 1, 0, 0],
[1, 1, 1, 1],
[1, 1, 1, 1]]
"""
ret = torch.zeros(size, size, device=device, dtype=torch.bool)
for i in range(size):
if num_left_chunks < 0:
start = 0
else:
start = max((i // chunk_size - num_left_chunks) * chunk_size, 0)
ending = min((i // chunk_size + 1) * chunk_size, size)
ret[i, start:ending] = True
return ret
def add_optional_chunk_mask(xs: torch.Tensor,
masks: torch.Tensor,
use_dynamic_chunk: bool,
use_dynamic_left_chunk: bool,
decoding_chunk_size: int,
static_chunk_size: int,
num_decoding_left_chunks: int,
enable_full_context: bool = True):
""" Apply optional mask for encoder.
Args:
xs (torch.Tensor): padded input, (B, L, D), L for max length
mask (torch.Tensor): mask for xs, (B, 1, L)
use_dynamic_chunk (bool): whether to use dynamic chunk or not
use_dynamic_left_chunk (bool): whether to use dynamic left chunk for
training.
decoding_chunk_size (int): decoding chunk size for dynamic chunk, it's
0: default for training, use random dynamic chunk.
<0: for decoding, use full chunk.
>0: for decoding, use fixed chunk size as set.
static_chunk_size (int): chunk size for static chunk training/decoding
if it's greater than 0, if use_dynamic_chunk is true,
this parameter will be ignored
num_decoding_left_chunks: number of left chunks, this is for decoding,
the chunk size is decoding_chunk_size.
>=0: use num_decoding_left_chunks
<0: use all left chunks
enable_full_context (bool):
True: chunk size is either [1, 25] or full context(max_len)
False: chunk size ~ U[1, 25]
Returns:
torch.Tensor: chunk mask of the input xs.
"""
# Whether to use chunk mask or not
if use_dynamic_chunk:
max_len = xs.size(1)
if decoding_chunk_size < 0:
chunk_size = max_len
num_left_chunks = -1
elif decoding_chunk_size > 0:
chunk_size = decoding_chunk_size
num_left_chunks = num_decoding_left_chunks
else:
# chunk size is either [1, 25] or full context(max_len).
# Since we use 4 times subsampling and allow up to 1s(100 frames)
# delay, the maximum frame is 100 / 4 = 25.
chunk_size = torch.randint(1, max_len, (1, )).item()
num_left_chunks = -1
if chunk_size > max_len // 2 and enable_full_context:
chunk_size = max_len
else:
chunk_size = chunk_size % 25 + 1
if use_dynamic_left_chunk:
max_left_chunks = (max_len - 1) // chunk_size
num_left_chunks = torch.randint(0, max_left_chunks,
(1, )).item()
chunk_masks = subsequent_chunk_mask(xs.size(1), chunk_size,
num_left_chunks,
xs.device) # (L, L)
chunk_masks = chunk_masks.unsqueeze(0) # (1, L, L)
chunk_masks = masks & chunk_masks # (B, L, L)
elif static_chunk_size > 0:
num_left_chunks = num_decoding_left_chunks
chunk_masks = subsequent_chunk_mask(xs.size(1), static_chunk_size,
num_left_chunks,
xs.device) # (L, L)
chunk_masks = chunk_masks.unsqueeze(0) # (1, L, L)
chunk_masks = masks & chunk_masks # (B, L, L)
else:
chunk_masks = masks
return chunk_masks
class ConformerEncoderLayer(nn.Module):
"""Encoder layer module.
Args:
size (int): Input dimension.
self_attn (torch.nn.Module): Self-attention module instance.
`MultiHeadedAttention` or `RelPositionMultiHeadedAttention`
instance can be used as the argument.
feed_forward (torch.nn.Module): Feed-forward module instance.
`PositionwiseFeedForward` instance can be used as the argument.
feed_forward_macaron (torch.nn.Module): Additional feed-forward module
instance.
`PositionwiseFeedForward` instance can be used as the argument.
conv_module (torch.nn.Module): Convolution module instance.
`ConvlutionModule` instance can be used as the argument.
dropout_rate (float): Dropout rate.
normalize_before (bool):
True: use layer_norm before each sub-block.
False: use layer_norm after each sub-block.
"""
def __init__(
self,
size: int,
self_attn: torch.nn.Module,
feed_forward: Optional[nn.Module] = None,
feed_forward_macaron: Optional[nn.Module] = None,
conv_module: Optional[nn.Module] = None,
dropout_rate: float = 0.1,
normalize_before: bool = True,
dtype=None, device=None, operations=None
):
"""Construct an EncoderLayer object."""
super().__init__()
self.self_attn = self_attn
self.feed_forward = feed_forward
self.feed_forward_macaron = feed_forward_macaron
self.conv_module = conv_module
self.norm_ff = operations.LayerNorm(size, eps=1e-5, dtype=dtype, device=device) # for the FNN module
self.norm_mha = operations.LayerNorm(size, eps=1e-5, dtype=dtype, device=device) # for the MHA module
if feed_forward_macaron is not None:
self.norm_ff_macaron = operations.LayerNorm(size, eps=1e-5, dtype=dtype, device=device)
self.ff_scale = 0.5
else:
self.ff_scale = 1.0
if self.conv_module is not None:
self.norm_conv = operations.LayerNorm(size, eps=1e-5, dtype=dtype, device=device) # for the CNN module
self.norm_final = operations.LayerNorm(
size, eps=1e-5, dtype=dtype, device=device) # for the final output of the block
self.dropout = nn.Dropout(dropout_rate)
self.size = size
self.normalize_before = normalize_before
def forward(
self,
x: torch.Tensor,
mask: torch.Tensor,
pos_emb: torch.Tensor,
mask_pad: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
att_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)),
cnn_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)),
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
"""Compute encoded features.
Args:
x (torch.Tensor): (#batch, time, size)
mask (torch.Tensor): Mask tensor for the input (#batch, time,time),
(0, 0, 0) means fake mask.
pos_emb (torch.Tensor): positional encoding, must not be None
for ConformerEncoderLayer.
mask_pad (torch.Tensor): batch padding mask used for conv module.
(#batch, 1,time), (0, 0, 0) means fake mask.
att_cache (torch.Tensor): Cache tensor of the KEY & VALUE
(#batch=1, head, cache_t1, d_k * 2), head * d_k == size.
cnn_cache (torch.Tensor): Convolution cache in conformer layer
(#batch=1, size, cache_t2)
Returns:
torch.Tensor: Output tensor (#batch, time, size).
torch.Tensor: Mask tensor (#batch, time, time).
torch.Tensor: att_cache tensor,
(#batch=1, head, cache_t1 + time, d_k * 2).
torch.Tensor: cnn_cahce tensor (#batch, size, cache_t2).
"""
# whether to use macaron style
if self.feed_forward_macaron is not None:
residual = x
if self.normalize_before:
x = self.norm_ff_macaron(x)
x = residual + self.ff_scale * self.dropout(
self.feed_forward_macaron(x))
if not self.normalize_before:
x = self.norm_ff_macaron(x)
# multi-headed self-attention module
residual = x
if self.normalize_before:
x = self.norm_mha(x)
x_att, new_att_cache = self.self_attn(x, x, x, mask, pos_emb,
att_cache)
x = residual + self.dropout(x_att)
if not self.normalize_before:
x = self.norm_mha(x)
# convolution module
# Fake new cnn cache here, and then change it in conv_module
new_cnn_cache = torch.zeros((0, 0, 0), dtype=x.dtype, device=x.device)
if self.conv_module is not None:
residual = x
if self.normalize_before:
x = self.norm_conv(x)
x, new_cnn_cache = self.conv_module(x, mask_pad, cnn_cache)
x = residual + self.dropout(x)
if not self.normalize_before:
x = self.norm_conv(x)
# feed forward module
residual = x
if self.normalize_before:
x = self.norm_ff(x)
x = residual + self.ff_scale * self.dropout(self.feed_forward(x))
if not self.normalize_before:
x = self.norm_ff(x)
if self.conv_module is not None:
x = self.norm_final(x)
return x, mask, new_att_cache, new_cnn_cache
class EspnetRelPositionalEncoding(torch.nn.Module):
"""Relative positional encoding module (new implementation).
Details can be found in https://github.com/espnet/espnet/pull/2816.
See : Appendix B in https://arxiv.org/abs/1901.02860
Args:
d_model (int): Embedding dimension.
dropout_rate (float): Dropout rate.
max_len (int): Maximum input length.
"""
def __init__(self, d_model: int, dropout_rate: float, max_len: int = 5000):
"""Construct an PositionalEncoding object."""
super(EspnetRelPositionalEncoding, self).__init__()
self.d_model = d_model
self.xscale = math.sqrt(self.d_model)
self.dropout = torch.nn.Dropout(p=dropout_rate)
self.pe = None
self.extend_pe(torch.tensor(0.0).expand(1, max_len))
def extend_pe(self, x: torch.Tensor):
"""Reset the positional encodings."""
if self.pe is not None:
# self.pe contains both positive and negative parts
# the length of self.pe is 2 * input_len - 1
if self.pe.size(1) >= x.size(1) * 2 - 1:
if self.pe.dtype != x.dtype or self.pe.device != x.device:
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
return
# Suppose `i` means to the position of query vecotr and `j` means the
# position of key vector. We use position relative positions when keys
# are to the left (i>j) and negative relative positions otherwise (i<j).
pe_positive = torch.zeros(x.size(1), self.d_model)
pe_negative = torch.zeros(x.size(1), self.d_model)
position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1)
div_term = torch.exp(
torch.arange(0, self.d_model, 2, dtype=torch.float32)
* -(math.log(10000.0) / self.d_model)
)
pe_positive[:, 0::2] = torch.sin(position * div_term)
pe_positive[:, 1::2] = torch.cos(position * div_term)
pe_negative[:, 0::2] = torch.sin(-1 * position * div_term)
pe_negative[:, 1::2] = torch.cos(-1 * position * div_term)
# Reserve the order of positive indices and concat both positive and
# negative indices. This is used to support the shifting trick
# as in https://arxiv.org/abs/1901.02860
pe_positive = torch.flip(pe_positive, [0]).unsqueeze(0)
pe_negative = pe_negative[1:].unsqueeze(0)
pe = torch.cat([pe_positive, pe_negative], dim=1)
self.pe = pe.to(device=x.device, dtype=x.dtype)
def forward(self, x: torch.Tensor, offset: Union[int, torch.Tensor] = 0) \
-> Tuple[torch.Tensor, torch.Tensor]:
"""Add positional encoding.
Args:
x (torch.Tensor): Input tensor (batch, time, `*`).
Returns:
torch.Tensor: Encoded tensor (batch, time, `*`).
"""
self.extend_pe(x)
x = x * self.xscale
pos_emb = self.position_encoding(size=x.size(1), offset=offset)
return self.dropout(x), self.dropout(pos_emb)
def position_encoding(self,
offset: Union[int, torch.Tensor],
size: int) -> torch.Tensor:
""" For getting encoding in a streaming fashion
Attention!!!!!
we apply dropout only once at the whole utterance level in a none
streaming way, but will call this function several times with
increasing input size in a streaming scenario, so the dropout will
be applied several times.
Args:
offset (int or torch.tensor): start offset
size (int): required size of position encoding
Returns:
torch.Tensor: Corresponding encoding
"""
pos_emb = self.pe[
:,
self.pe.size(1) // 2 - size + 1: self.pe.size(1) // 2 + size,
]
return pos_emb
class LinearEmbed(torch.nn.Module):
"""Linear transform the input without subsampling
Args:
idim (int): Input dimension.
odim (int): Output dimension.
dropout_rate (float): Dropout rate.
"""
def __init__(self, idim: int, odim: int, dropout_rate: float,
pos_enc_class: torch.nn.Module, dtype=None, device=None, operations=None):
"""Construct an linear object."""
super().__init__()
self.out = torch.nn.Sequential(
operations.Linear(idim, odim, dtype=dtype, device=device),
operations.LayerNorm(odim, eps=1e-5, dtype=dtype, device=device),
torch.nn.Dropout(dropout_rate),
)
self.pos_enc = pos_enc_class #rel_pos_espnet
def position_encoding(self, offset: Union[int, torch.Tensor],
size: int) -> torch.Tensor:
return self.pos_enc.position_encoding(offset, size)
def forward(
self,
x: torch.Tensor,
offset: Union[int, torch.Tensor] = 0
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""Input x.
Args:
x (torch.Tensor): Input tensor (#batch, time, idim).
x_mask (torch.Tensor): Input mask (#batch, 1, time).
Returns:
torch.Tensor: linear input tensor (#batch, time', odim),
where time' = time .
torch.Tensor: linear input mask (#batch, 1, time'),
where time' = time .
"""
x = self.out(x)
x, pos_emb = self.pos_enc(x, offset)
return x, pos_emb
ATTENTION_CLASSES = {
"selfattn": MultiHeadedAttention,
"rel_selfattn": RelPositionMultiHeadedAttention,
}
ACTIVATION_CLASSES = {
"hardtanh": torch.nn.Hardtanh,
"tanh": torch.nn.Tanh,
"relu": torch.nn.ReLU,
"selu": torch.nn.SELU,
"swish": getattr(torch.nn, "SiLU", Swish),
"gelu": torch.nn.GELU,
}
def make_pad_mask(lengths: torch.Tensor, max_len: int = 0) -> torch.Tensor:
"""Make mask tensor containing indices of padded part.
See description of make_non_pad_mask.
Args:
lengths (torch.Tensor): Batch of lengths (B,).
Returns:
torch.Tensor: Mask tensor containing indices of padded part.
Examples:
>>> lengths = [5, 3, 2]
>>> make_pad_mask(lengths)
masks = [[0, 0, 0, 0 ,0],
[0, 0, 0, 1, 1],
[0, 0, 1, 1, 1]]
"""
batch_size = lengths.size(0)
max_len = max_len if max_len > 0 else lengths.max().item()
seq_range = torch.arange(0,
max_len,
dtype=torch.int64,
device=lengths.device)
seq_range_expand = seq_range.unsqueeze(0).expand(batch_size, max_len)
seq_length_expand = lengths.unsqueeze(-1)
mask = seq_range_expand >= seq_length_expand
return mask
#https://github.com/FunAudioLLM/CosyVoice/blob/main/examples/magicdata-read/cosyvoice/conf/cosyvoice.yaml
class ConformerEncoder(torch.nn.Module):
"""Conformer encoder module."""
def __init__(
self,
input_size: int,
output_size: int = 1024,
attention_heads: int = 16,
linear_units: int = 4096,
num_blocks: int = 6,
dropout_rate: float = 0.1,
positional_dropout_rate: float = 0.1,
attention_dropout_rate: float = 0.0,
input_layer: str = 'linear',
pos_enc_layer_type: str = 'rel_pos_espnet',
normalize_before: bool = True,
static_chunk_size: int = 1, # 1: causal_mask; 0: full_mask
use_dynamic_chunk: bool = False,
use_dynamic_left_chunk: bool = False,
positionwise_conv_kernel_size: int = 1,
macaron_style: bool =False,
selfattention_layer_type: str = "rel_selfattn",
activation_type: str = "swish",
use_cnn_module: bool = False,
cnn_module_kernel: int = 15,
causal: bool = False,
cnn_module_norm: str = "batch_norm",
key_bias: bool = True,
dtype=None, device=None, operations=None
):
"""Construct ConformerEncoder
Args:
input_size to use_dynamic_chunk, see in BaseEncoder
positionwise_conv_kernel_size (int): Kernel size of positionwise
conv1d layer.
macaron_style (bool): Whether to use macaron style for
positionwise layer.
selfattention_layer_type (str): Encoder attention layer type,
the parameter has no effect now, it's just for configure
compatibility. #'rel_selfattn'
activation_type (str): Encoder activation function type.
use_cnn_module (bool): Whether to use convolution module.
cnn_module_kernel (int): Kernel size of convolution module.
causal (bool): whether to use causal convolution or not.
key_bias: whether use bias in attention.linear_k, False for whisper models.
"""
super().__init__()
self.output_size = output_size
self.embed = LinearEmbed(input_size, output_size, dropout_rate,
EspnetRelPositionalEncoding(output_size, positional_dropout_rate), dtype=dtype, device=device, operations=operations)
self.normalize_before = normalize_before
self.after_norm = operations.LayerNorm(output_size, eps=1e-5, dtype=dtype, device=device)
self.use_dynamic_chunk = use_dynamic_chunk
self.static_chunk_size = static_chunk_size
self.use_dynamic_chunk = use_dynamic_chunk
self.use_dynamic_left_chunk = use_dynamic_left_chunk
activation = ACTIVATION_CLASSES[activation_type]()
# self-attention module definition
encoder_selfattn_layer_args = (
attention_heads,
output_size,
attention_dropout_rate,
key_bias,
)
# feed-forward module definition
positionwise_layer_args = (
output_size,
linear_units,
dropout_rate,
activation,
)
# convolution module definition
convolution_layer_args = (output_size, cnn_module_kernel, activation,
cnn_module_norm, causal)
self.encoders = torch.nn.ModuleList([
ConformerEncoderLayer(
output_size,
RelPositionMultiHeadedAttention(
*encoder_selfattn_layer_args, dtype=dtype, device=device, operations=operations),
PositionwiseFeedForward(*positionwise_layer_args, dtype=dtype, device=device, operations=operations),
PositionwiseFeedForward(
*positionwise_layer_args, dtype=dtype, device=device, operations=operations) if macaron_style else None,
ConvolutionModule(
*convolution_layer_args, dtype=dtype, device=device, operations=operations) if use_cnn_module else None,
dropout_rate,
normalize_before, dtype=dtype, device=device, operations=operations
) for _ in range(num_blocks)
])
def forward_layers(self, xs: torch.Tensor, chunk_masks: torch.Tensor,
pos_emb: torch.Tensor,
mask_pad: torch.Tensor) -> torch.Tensor:
for layer in self.encoders:
xs, chunk_masks, _, _ = layer(xs, chunk_masks, pos_emb, mask_pad)
return xs
def forward(
self,
xs: torch.Tensor,
pad_mask: torch.Tensor,
decoding_chunk_size: int = 0,
num_decoding_left_chunks: int = -1,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Embed positions in tensor.
Args:
xs: padded input tensor (B, T, D)
xs_lens: input length (B)
decoding_chunk_size: decoding chunk size for dynamic chunk
0: default for training, use random dynamic chunk.
<0: for decoding, use full chunk.
>0: for decoding, use fixed chunk size as set.
num_decoding_left_chunks: number of left chunks, this is for decoding,
the chunk size is decoding_chunk_size.
>=0: use num_decoding_left_chunks
<0: use all left chunks
Returns:
encoder output tensor xs, and subsampled masks
xs: padded output tensor (B, T' ~= T/subsample_rate, D)
masks: torch.Tensor batch padding mask after subsample
(B, 1, T' ~= T/subsample_rate)
NOTE(xcsong):
We pass the `__call__` method of the modules instead of `forward` to the
checkpointing API because `__call__` attaches all the hooks of the module.
https://discuss.pytorch.org/t/any-different-between-model-input-and-model-forward-input/3690/2
"""
masks = None
if pad_mask is not None:
masks = pad_mask.to(torch.bool).unsqueeze(1) # (B, 1, T)
xs, pos_emb = self.embed(xs)
mask_pad = masks # (B, 1, T/subsample_rate)
chunk_masks = add_optional_chunk_mask(xs, masks,
self.use_dynamic_chunk,
self.use_dynamic_left_chunk,
decoding_chunk_size,
self.static_chunk_size,
num_decoding_left_chunks)
xs = self.forward_layers(xs, chunk_masks, pos_emb, mask_pad)
if self.normalize_before:
xs = self.after_norm(xs)
# Here we assume the mask is not changed in encoder layers, so just
# return the masks before encoder layers, and the masks will be used
# for cross attention with decoder later
return xs, masks
# Original from: https://github.com/ace-step/ACE-Step/blob/main/models/ace_step_transformer.py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional, List, Union
import torch
from torch import nn
import comfy.model_management
import comfy.patcher_extension
from comfy.ldm.lightricks.model import TimestepEmbedding, Timesteps
from .attention import LinearTransformerBlock, t2i_modulate
from .lyric_encoder import ConformerEncoder as LyricEncoder
def cross_norm(hidden_states, controlnet_input):
# input N x T x c
mean_hidden_states, std_hidden_states = hidden_states.mean(dim=(1,2), keepdim=True), hidden_states.std(dim=(1,2), keepdim=True)
mean_controlnet_input, std_controlnet_input = controlnet_input.mean(dim=(1,2), keepdim=True), controlnet_input.std(dim=(1,2), keepdim=True)
controlnet_input = (controlnet_input - mean_controlnet_input) * (std_hidden_states / (std_controlnet_input + 1e-12)) + mean_hidden_states
return controlnet_input
# Copied from transformers.models.mixtral.modeling_mixtral.MixtralRotaryEmbedding with Mixtral->Qwen2
class Qwen2RotaryEmbedding(nn.Module):
def __init__(self, dim, max_position_embeddings=2048, base=10000, dtype=None, device=None):
super().__init__()
self.dim = dim
self.max_position_embeddings = max_position_embeddings
self.base = base
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64, device=device).float() / self.dim))
self.register_buffer("inv_freq", inv_freq, persistent=False)
# Build here to make `torch.jit.trace` work.
self._set_cos_sin_cache(
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.float32
)
def _set_cos_sin_cache(self, seq_len, device, dtype):
self.max_seq_len_cached = seq_len
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
freqs = torch.outer(t, self.inv_freq)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
def forward(self, x, seq_len=None):
# x: [bs, num_attention_heads, seq_len, head_size]
if seq_len > self.max_seq_len_cached:
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
return (
self.cos_cached[:seq_len].to(dtype=x.dtype),
self.sin_cached[:seq_len].to(dtype=x.dtype),
)
class T2IFinalLayer(nn.Module):
"""
The final layer of Sana.
"""
def __init__(self, hidden_size, patch_size=[16, 1], out_channels=256, dtype=None, device=None, operations=None):
super().__init__()
self.norm_final = operations.RMSNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.linear = operations.Linear(hidden_size, patch_size[0] * patch_size[1] * out_channels, bias=True, dtype=dtype, device=device)
self.scale_shift_table = nn.Parameter(torch.empty(2, hidden_size, dtype=dtype, device=device))
self.out_channels = out_channels
self.patch_size = patch_size
def unpatchfy(
self,
hidden_states: torch.Tensor,
width: int,
):
# 4 unpatchify
new_height, new_width = 1, hidden_states.size(1)
hidden_states = hidden_states.reshape(
shape=(hidden_states.shape[0], new_height, new_width, self.patch_size[0], self.patch_size[1], self.out_channels)
).contiguous()
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
output = hidden_states.reshape(
shape=(hidden_states.shape[0], self.out_channels, new_height * self.patch_size[0], new_width * self.patch_size[1])
).contiguous()
if width > new_width:
output = torch.nn.functional.pad(output, (0, width - new_width, 0, 0), 'constant', 0)
elif width < new_width:
output = output[:, :, :, :width]
return output
def forward(self, x, t, output_length):
shift, scale = (comfy.model_management.cast_to(self.scale_shift_table[None], device=t.device, dtype=t.dtype) + t[:, None]).chunk(2, dim=1)
x = t2i_modulate(self.norm_final(x), shift, scale)
x = self.linear(x)
# unpatchify
output = self.unpatchfy(x, output_length)
return output
class PatchEmbed(nn.Module):
"""2D Image to Patch Embedding"""
def __init__(
self,
height=16,
width=4096,
patch_size=(16, 1),
in_channels=8,
embed_dim=1152,
bias=True,
dtype=None, device=None, operations=None
):
super().__init__()
patch_size_h, patch_size_w = patch_size
self.early_conv_layers = nn.Sequential(
operations.Conv2d(in_channels, in_channels*256, kernel_size=patch_size, stride=patch_size, padding=0, bias=bias, dtype=dtype, device=device),
operations.GroupNorm(num_groups=32, num_channels=in_channels*256, eps=1e-6, affine=True, dtype=dtype, device=device),
operations.Conv2d(in_channels*256, embed_dim, kernel_size=1, stride=1, padding=0, bias=bias, dtype=dtype, device=device)
)
self.patch_size = patch_size
self.height, self.width = height // patch_size_h, width // patch_size_w
self.base_size = self.width
def forward(self, latent):
# early convolutions, N x C x H x W -> N x 256 * sqrt(patch_size) x H/patch_size x W/patch_size
latent = self.early_conv_layers(latent)
latent = latent.flatten(2).transpose(1, 2) # BCHW -> BNC
return latent
class ACEStepTransformer2DModel(nn.Module):
# _supports_gradient_checkpointing = True
def __init__(
self,
in_channels: Optional[int] = 8,
num_layers: int = 28,
inner_dim: int = 1536,
attention_head_dim: int = 64,
num_attention_heads: int = 24,
mlp_ratio: float = 4.0,
out_channels: int = 8,
max_position: int = 32768,
rope_theta: float = 1000000.0,
speaker_embedding_dim: int = 512,
text_embedding_dim: int = 768,
ssl_encoder_depths: List[int] = [9, 9],
ssl_names: List[str] = ["mert", "m-hubert"],
ssl_latent_dims: List[int] = [1024, 768],
lyric_encoder_vocab_size: int = 6681,
lyric_hidden_size: int = 1024,
patch_size: List[int] = [16, 1],
max_height: int = 16,
max_width: int = 4096,
audio_model=None,
dtype=None, device=None, operations=None
):
super().__init__()
self.dtype = dtype
self.num_attention_heads = num_attention_heads
self.attention_head_dim = attention_head_dim
inner_dim = num_attention_heads * attention_head_dim
self.inner_dim = inner_dim
self.out_channels = out_channels
self.max_position = max_position
self.patch_size = patch_size
self.rope_theta = rope_theta
self.rotary_emb = Qwen2RotaryEmbedding(
dim=self.attention_head_dim,
max_position_embeddings=self.max_position,
base=self.rope_theta,
dtype=dtype,
device=device,
)
# 2. Define input layers
self.in_channels = in_channels
self.num_layers = num_layers
# 3. Define transformers blocks
self.transformer_blocks = nn.ModuleList(
[
LinearTransformerBlock(
dim=self.inner_dim,
num_attention_heads=self.num_attention_heads,
attention_head_dim=attention_head_dim,
mlp_ratio=mlp_ratio,
add_cross_attention=True,
add_cross_attention_dim=self.inner_dim,
dtype=dtype,
device=device,
operations=operations,
)
for i in range(self.num_layers)
]
)
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=self.inner_dim, dtype=dtype, device=device, operations=operations)
self.t_block = nn.Sequential(nn.SiLU(), operations.Linear(self.inner_dim, 6 * self.inner_dim, bias=True, dtype=dtype, device=device))
# speaker
self.speaker_embedder = operations.Linear(speaker_embedding_dim, self.inner_dim, dtype=dtype, device=device)
# genre
self.genre_embedder = operations.Linear(text_embedding_dim, self.inner_dim, dtype=dtype, device=device)
# lyric
self.lyric_embs = operations.Embedding(lyric_encoder_vocab_size, lyric_hidden_size, dtype=dtype, device=device)
self.lyric_encoder = LyricEncoder(input_size=lyric_hidden_size, static_chunk_size=0, dtype=dtype, device=device, operations=operations)
self.lyric_proj = operations.Linear(lyric_hidden_size, self.inner_dim, dtype=dtype, device=device)
projector_dim = 2 * self.inner_dim
self.projectors = nn.ModuleList([
nn.Sequential(
operations.Linear(self.inner_dim, projector_dim, dtype=dtype, device=device),
nn.SiLU(),
operations.Linear(projector_dim, projector_dim, dtype=dtype, device=device),
nn.SiLU(),
operations.Linear(projector_dim, ssl_dim, dtype=dtype, device=device),
) for ssl_dim in ssl_latent_dims
])
self.proj_in = PatchEmbed(
height=max_height,
width=max_width,
patch_size=patch_size,
embed_dim=self.inner_dim,
bias=True,
dtype=dtype,
device=device,
operations=operations,
)
self.final_layer = T2IFinalLayer(self.inner_dim, patch_size=patch_size, out_channels=out_channels, dtype=dtype, device=device, operations=operations)
def forward_lyric_encoder(
self,
lyric_token_idx: Optional[torch.LongTensor] = None,
lyric_mask: Optional[torch.LongTensor] = None,
out_dtype=None,
):
# N x T x D
lyric_embs = self.lyric_embs(lyric_token_idx, out_dtype=out_dtype)
prompt_prenet_out, _mask = self.lyric_encoder(lyric_embs, lyric_mask, decoding_chunk_size=1, num_decoding_left_chunks=-1)
prompt_prenet_out = self.lyric_proj(prompt_prenet_out)
return prompt_prenet_out
def encode(
self,
encoder_text_hidden_states: Optional[torch.Tensor] = None,
text_attention_mask: Optional[torch.LongTensor] = None,
speaker_embeds: Optional[torch.FloatTensor] = None,
lyric_token_idx: Optional[torch.LongTensor] = None,
lyric_mask: Optional[torch.LongTensor] = None,
lyrics_strength=1.0,
):
bs = encoder_text_hidden_states.shape[0]
device = encoder_text_hidden_states.device
# speaker embedding
encoder_spk_hidden_states = self.speaker_embedder(speaker_embeds).unsqueeze(1)
# genre embedding
encoder_text_hidden_states = self.genre_embedder(encoder_text_hidden_states)
# lyric
encoder_lyric_hidden_states = self.forward_lyric_encoder(
lyric_token_idx=lyric_token_idx,
lyric_mask=lyric_mask,
out_dtype=encoder_text_hidden_states.dtype,
)
encoder_lyric_hidden_states *= lyrics_strength
encoder_hidden_states = torch.cat([encoder_spk_hidden_states, encoder_text_hidden_states, encoder_lyric_hidden_states], dim=1)
encoder_hidden_mask = None
if text_attention_mask is not None:
speaker_mask = torch.ones(bs, 1, device=device)
encoder_hidden_mask = torch.cat([speaker_mask, text_attention_mask, lyric_mask], dim=1)
return encoder_hidden_states, encoder_hidden_mask
def decode(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
encoder_hidden_states: torch.Tensor,
encoder_hidden_mask: torch.Tensor,
timestep: Optional[torch.Tensor],
output_length: int = 0,
block_controlnet_hidden_states: Optional[Union[List[torch.Tensor], torch.Tensor]] = None,
controlnet_scale: Union[float, torch.Tensor] = 1.0,
):
embedded_timestep = self.timestep_embedder(self.time_proj(timestep).to(dtype=hidden_states.dtype))
temb = self.t_block(embedded_timestep)
hidden_states = self.proj_in(hidden_states)
# controlnet logic
if block_controlnet_hidden_states is not None:
control_condi = cross_norm(hidden_states, block_controlnet_hidden_states)
hidden_states = hidden_states + control_condi * controlnet_scale
# inner_hidden_states = []
rotary_freqs_cis = self.rotary_emb(hidden_states, seq_len=hidden_states.shape[1])
encoder_rotary_freqs_cis = self.rotary_emb(encoder_hidden_states, seq_len=encoder_hidden_states.shape[1])
for index_block, block in enumerate(self.transformer_blocks):
hidden_states = block(
hidden_states=hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_hidden_mask,
rotary_freqs_cis=rotary_freqs_cis,
rotary_freqs_cis_cross=encoder_rotary_freqs_cis,
temb=temb,
)
output = self.final_layer(hidden_states, embedded_timestep, output_length)
return output
def forward(self,
x,
timestep,
attention_mask=None,
context: Optional[torch.Tensor] = None,
text_attention_mask: Optional[torch.LongTensor] = None,
speaker_embeds: Optional[torch.FloatTensor] = None,
lyric_token_idx: Optional[torch.LongTensor] = None,
lyric_mask: Optional[torch.LongTensor] = None,
block_controlnet_hidden_states: Optional[Union[List[torch.Tensor], torch.Tensor]] = None,
controlnet_scale: Union[float, torch.Tensor] = 1.0,
lyrics_strength=1.0,
**kwargs
):
return comfy.patcher_extension.WrapperExecutor.new_class_executor(
self._forward,
self,
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.DIFFUSION_MODEL, kwargs.get("transformer_options", {}))
).execute(x, timestep, attention_mask, context, text_attention_mask, speaker_embeds, lyric_token_idx, lyric_mask, block_controlnet_hidden_states,
controlnet_scale, lyrics_strength, **kwargs)
def _forward(
self,
x,
timestep,
attention_mask=None,
context: Optional[torch.Tensor] = None,
text_attention_mask: Optional[torch.LongTensor] = None,
speaker_embeds: Optional[torch.FloatTensor] = None,
lyric_token_idx: Optional[torch.LongTensor] = None,
lyric_mask: Optional[torch.LongTensor] = None,
block_controlnet_hidden_states: Optional[Union[List[torch.Tensor], torch.Tensor]] = None,
controlnet_scale: Union[float, torch.Tensor] = 1.0,
lyrics_strength=1.0,
**kwargs
):
hidden_states = x
encoder_text_hidden_states = context
encoder_hidden_states, encoder_hidden_mask = self.encode(
encoder_text_hidden_states=encoder_text_hidden_states,
text_attention_mask=text_attention_mask,
speaker_embeds=speaker_embeds,
lyric_token_idx=lyric_token_idx,
lyric_mask=lyric_mask,
lyrics_strength=lyrics_strength,
)
output_length = hidden_states.shape[-1]
output = self.decode(
hidden_states=hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_hidden_mask=encoder_hidden_mask,
timestep=timestep,
output_length=output_length,
block_controlnet_hidden_states=block_controlnet_hidden_states,
controlnet_scale=controlnet_scale,
)
return output
# Rewritten from diffusers
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Tuple, Union
import comfy.model_management
import comfy.ops
ops = comfy.ops.disable_weight_init
class RMSNorm(ops.RMSNorm):
def __init__(self, dim, eps=1e-5, elementwise_affine=True, bias=False):
super().__init__(dim, eps=eps, elementwise_affine=elementwise_affine)
if elementwise_affine:
self.bias = nn.Parameter(torch.empty(dim)) if bias else None
def forward(self, x):
x = super().forward(x)
if self.elementwise_affine:
if self.bias is not None:
x = x + comfy.model_management.cast_to(self.bias, dtype=x.dtype, device=x.device)
return x
def get_normalization(norm_type, num_features, num_groups=32, eps=1e-5):
if norm_type == "batch_norm":
return nn.BatchNorm2d(num_features)
elif norm_type == "group_norm":
return ops.GroupNorm(num_groups, num_features)
elif norm_type == "layer_norm":
return ops.LayerNorm(num_features)
elif norm_type == "rms_norm":
return RMSNorm(num_features, eps=eps, elementwise_affine=True, bias=True)
else:
raise ValueError(f"Unknown normalization type: {norm_type}")
def get_activation(activation_type):
if activation_type == "relu":
return nn.ReLU()
elif activation_type == "relu6":
return nn.ReLU6()
elif activation_type == "silu":
return nn.SiLU()
elif activation_type == "leaky_relu":
return nn.LeakyReLU(0.2)
else:
raise ValueError(f"Unknown activation type: {activation_type}")
class ResBlock(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
norm_type: str = "batch_norm",
act_fn: str = "relu6",
) -> None:
super().__init__()
self.norm_type = norm_type
self.nonlinearity = get_activation(act_fn) if act_fn is not None else nn.Identity()
self.conv1 = ops.Conv2d(in_channels, in_channels, 3, 1, 1)
self.conv2 = ops.Conv2d(in_channels, out_channels, 3, 1, 1, bias=False)
self.norm = get_normalization(norm_type, out_channels)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
residual = hidden_states
hidden_states = self.conv1(hidden_states)
hidden_states = self.nonlinearity(hidden_states)
hidden_states = self.conv2(hidden_states)
if self.norm_type == "rms_norm":
# move channel to the last dimension so we apply RMSnorm across channel dimension
hidden_states = self.norm(hidden_states.movedim(1, -1)).movedim(-1, 1)
else:
hidden_states = self.norm(hidden_states)
return hidden_states + residual
class SanaMultiscaleAttentionProjection(nn.Module):
def __init__(
self,
in_channels: int,
num_attention_heads: int,
kernel_size: int,
) -> None:
super().__init__()
channels = 3 * in_channels
self.proj_in = ops.Conv2d(
channels,
channels,
kernel_size,
padding=kernel_size // 2,
groups=channels,
bias=False,
)
self.proj_out = ops.Conv2d(channels, channels, 1, 1, 0, groups=3 * num_attention_heads, bias=False)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.proj_in(hidden_states)
hidden_states = self.proj_out(hidden_states)
return hidden_states
class SanaMultiscaleLinearAttention(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
num_attention_heads: int = None,
attention_head_dim: int = 8,
mult: float = 1.0,
norm_type: str = "batch_norm",
kernel_sizes: tuple = (5,),
eps: float = 1e-15,
residual_connection: bool = False,
):
super().__init__()
self.eps = eps
self.attention_head_dim = attention_head_dim
self.norm_type = norm_type
self.residual_connection = residual_connection
num_attention_heads = (
int(in_channels // attention_head_dim * mult)
if num_attention_heads is None
else num_attention_heads
)
inner_dim = num_attention_heads * attention_head_dim
self.to_q = ops.Linear(in_channels, inner_dim, bias=False)
self.to_k = ops.Linear(in_channels, inner_dim, bias=False)
self.to_v = ops.Linear(in_channels, inner_dim, bias=False)
self.to_qkv_multiscale = nn.ModuleList()
for kernel_size in kernel_sizes:
self.to_qkv_multiscale.append(
SanaMultiscaleAttentionProjection(inner_dim, num_attention_heads, kernel_size)
)
self.nonlinearity = nn.ReLU()
self.to_out = ops.Linear(inner_dim * (1 + len(kernel_sizes)), out_channels, bias=False)
self.norm_out = get_normalization(norm_type, out_channels)
def apply_linear_attention(self, query, key, value):
value = F.pad(value, (0, 0, 0, 1), mode="constant", value=1)
scores = torch.matmul(value, key.transpose(-1, -2))
hidden_states = torch.matmul(scores, query)
hidden_states = hidden_states.to(dtype=torch.float32)
hidden_states = hidden_states[:, :, :-1] / (hidden_states[:, :, -1:] + self.eps)
return hidden_states
def apply_quadratic_attention(self, query, key, value):
scores = torch.matmul(key.transpose(-1, -2), query)
scores = scores.to(dtype=torch.float32)
scores = scores / (torch.sum(scores, dim=2, keepdim=True) + self.eps)
hidden_states = torch.matmul(value, scores.to(value.dtype))
return hidden_states
def forward(self, hidden_states):
height, width = hidden_states.shape[-2:]
if height * width > self.attention_head_dim:
use_linear_attention = True
else:
use_linear_attention = False
residual = hidden_states
batch_size, _, height, width = list(hidden_states.size())
original_dtype = hidden_states.dtype
hidden_states = hidden_states.movedim(1, -1)
query = self.to_q(hidden_states)
key = self.to_k(hidden_states)
value = self.to_v(hidden_states)
hidden_states = torch.cat([query, key, value], dim=3)
hidden_states = hidden_states.movedim(-1, 1)
multi_scale_qkv = [hidden_states]
for block in self.to_qkv_multiscale:
multi_scale_qkv.append(block(hidden_states))
hidden_states = torch.cat(multi_scale_qkv, dim=1)
if use_linear_attention:
# for linear attention upcast hidden_states to float32
hidden_states = hidden_states.to(dtype=torch.float32)
hidden_states = hidden_states.reshape(batch_size, -1, 3 * self.attention_head_dim, height * width)
query, key, value = hidden_states.chunk(3, dim=2)
query = self.nonlinearity(query)
key = self.nonlinearity(key)
if use_linear_attention:
hidden_states = self.apply_linear_attention(query, key, value)
hidden_states = hidden_states.to(dtype=original_dtype)
else:
hidden_states = self.apply_quadratic_attention(query, key, value)
hidden_states = torch.reshape(hidden_states, (batch_size, -1, height, width))
hidden_states = self.to_out(hidden_states.movedim(1, -1)).movedim(-1, 1)
if self.norm_type == "rms_norm":
hidden_states = self.norm_out(hidden_states.movedim(1, -1)).movedim(-1, 1)
else:
hidden_states = self.norm_out(hidden_states)
if self.residual_connection:
hidden_states = hidden_states + residual
return hidden_states
class EfficientViTBlock(nn.Module):
def __init__(
self,
in_channels: int,
mult: float = 1.0,
attention_head_dim: int = 32,
qkv_multiscales: tuple = (5,),
norm_type: str = "batch_norm",
) -> None:
super().__init__()
self.attn = SanaMultiscaleLinearAttention(
in_channels=in_channels,
out_channels=in_channels,
mult=mult,
attention_head_dim=attention_head_dim,
norm_type=norm_type,
kernel_sizes=qkv_multiscales,
residual_connection=True,
)
self.conv_out = GLUMBConv(
in_channels=in_channels,
out_channels=in_channels,
norm_type="rms_norm",
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.attn(x)
x = self.conv_out(x)
return x
class GLUMBConv(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
expand_ratio: float = 4,
norm_type: str = None,
residual_connection: bool = True,
) -> None:
super().__init__()
hidden_channels = int(expand_ratio * in_channels)
self.norm_type = norm_type
self.residual_connection = residual_connection
self.nonlinearity = nn.SiLU()
self.conv_inverted = ops.Conv2d(in_channels, hidden_channels * 2, 1, 1, 0)
self.conv_depth = ops.Conv2d(hidden_channels * 2, hidden_channels * 2, 3, 1, 1, groups=hidden_channels * 2)
self.conv_point = ops.Conv2d(hidden_channels, out_channels, 1, 1, 0, bias=False)
self.norm = None
if norm_type == "rms_norm":
self.norm = RMSNorm(out_channels, eps=1e-5, elementwise_affine=True, bias=True)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
if self.residual_connection:
residual = hidden_states
hidden_states = self.conv_inverted(hidden_states)
hidden_states = self.nonlinearity(hidden_states)
hidden_states = self.conv_depth(hidden_states)
hidden_states, gate = torch.chunk(hidden_states, 2, dim=1)
hidden_states = hidden_states * self.nonlinearity(gate)
hidden_states = self.conv_point(hidden_states)
if self.norm_type == "rms_norm":
# move channel to the last dimension so we apply RMSnorm across channel dimension
hidden_states = self.norm(hidden_states.movedim(1, -1)).movedim(-1, 1)
if self.residual_connection:
hidden_states = hidden_states + residual
return hidden_states
def get_block(
block_type: str,
in_channels: int,
out_channels: int,
attention_head_dim: int,
norm_type: str,
act_fn: str,
qkv_mutliscales: tuple = (),
):
if block_type == "ResBlock":
block = ResBlock(in_channels, out_channels, norm_type, act_fn)
elif block_type == "EfficientViTBlock":
block = EfficientViTBlock(
in_channels,
attention_head_dim=attention_head_dim,
norm_type=norm_type,
qkv_multiscales=qkv_mutliscales
)
else:
raise ValueError(f"Block with {block_type=} is not supported.")
return block
class DCDownBlock2d(nn.Module):
def __init__(self, in_channels: int, out_channels: int, downsample: bool = False, shortcut: bool = True) -> None:
super().__init__()
self.downsample = downsample
self.factor = 2
self.stride = 1 if downsample else 2
self.group_size = in_channels * self.factor**2 // out_channels
self.shortcut = shortcut
out_ratio = self.factor**2
if downsample:
assert out_channels % out_ratio == 0
out_channels = out_channels // out_ratio
self.conv = ops.Conv2d(
in_channels,
out_channels,
kernel_size=3,
stride=self.stride,
padding=1,
)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
x = self.conv(hidden_states)
if self.downsample:
x = F.pixel_unshuffle(x, self.factor)
if self.shortcut:
y = F.pixel_unshuffle(hidden_states, self.factor)
y = y.unflatten(1, (-1, self.group_size))
y = y.mean(dim=2)
hidden_states = x + y
else:
hidden_states = x
return hidden_states
class DCUpBlock2d(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
interpolate: bool = False,
shortcut: bool = True,
interpolation_mode: str = "nearest",
) -> None:
super().__init__()
self.interpolate = interpolate
self.interpolation_mode = interpolation_mode
self.shortcut = shortcut
self.factor = 2
self.repeats = out_channels * self.factor**2 // in_channels
out_ratio = self.factor**2
if not interpolate:
out_channels = out_channels * out_ratio
self.conv = ops.Conv2d(in_channels, out_channels, 3, 1, 1)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
if self.interpolate:
x = F.interpolate(hidden_states, scale_factor=self.factor, mode=self.interpolation_mode)
x = self.conv(x)
else:
x = self.conv(hidden_states)
x = F.pixel_shuffle(x, self.factor)
if self.shortcut:
y = hidden_states.repeat_interleave(self.repeats, dim=1, output_size=hidden_states.shape[1] * self.repeats)
y = F.pixel_shuffle(y, self.factor)
hidden_states = x + y
else:
hidden_states = x
return hidden_states
class Encoder(nn.Module):
def __init__(
self,
in_channels: int,
latent_channels: int,
attention_head_dim: int = 32,
block_type: str or tuple = "ResBlock",
block_out_channels: tuple = (128, 256, 512, 512, 1024, 1024),
layers_per_block: tuple = (2, 2, 2, 2, 2, 2),
qkv_multiscales: tuple = ((), (), (), (5,), (5,), (5,)),
downsample_block_type: str = "pixel_unshuffle",
out_shortcut: bool = True,
):
super().__init__()
num_blocks = len(block_out_channels)
if isinstance(block_type, str):
block_type = (block_type,) * num_blocks
if layers_per_block[0] > 0:
self.conv_in = ops.Conv2d(
in_channels,
block_out_channels[0] if layers_per_block[0] > 0 else block_out_channels[1],
kernel_size=3,
stride=1,
padding=1,
)
else:
self.conv_in = DCDownBlock2d(
in_channels=in_channels,
out_channels=block_out_channels[0] if layers_per_block[0] > 0 else block_out_channels[1],
downsample=downsample_block_type == "pixel_unshuffle",
shortcut=False,
)
down_blocks = []
for i, (out_channel, num_layers) in enumerate(zip(block_out_channels, layers_per_block)):
down_block_list = []
for _ in range(num_layers):
block = get_block(
block_type[i],
out_channel,
out_channel,
attention_head_dim=attention_head_dim,
norm_type="rms_norm",
act_fn="silu",
qkv_mutliscales=qkv_multiscales[i],
)
down_block_list.append(block)
if i < num_blocks - 1 and num_layers > 0:
downsample_block = DCDownBlock2d(
in_channels=out_channel,
out_channels=block_out_channels[i + 1],
downsample=downsample_block_type == "pixel_unshuffle",
shortcut=True,
)
down_block_list.append(downsample_block)
down_blocks.append(nn.Sequential(*down_block_list))
self.down_blocks = nn.ModuleList(down_blocks)
self.conv_out = ops.Conv2d(block_out_channels[-1], latent_channels, 3, 1, 1)
self.out_shortcut = out_shortcut
if out_shortcut:
self.out_shortcut_average_group_size = block_out_channels[-1] // latent_channels
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.conv_in(hidden_states)
for down_block in self.down_blocks:
hidden_states = down_block(hidden_states)
if self.out_shortcut:
x = hidden_states.unflatten(1, (-1, self.out_shortcut_average_group_size))
x = x.mean(dim=2)
hidden_states = self.conv_out(hidden_states) + x
else:
hidden_states = self.conv_out(hidden_states)
return hidden_states
class Decoder(nn.Module):
def __init__(
self,
in_channels: int,
latent_channels: int,
attention_head_dim: int = 32,
block_type: str or tuple = "ResBlock",
block_out_channels: tuple = (128, 256, 512, 512, 1024, 1024),
layers_per_block: tuple = (2, 2, 2, 2, 2, 2),
qkv_multiscales: tuple = ((), (), (), (5,), (5,), (5,)),
norm_type: str or tuple = "rms_norm",
act_fn: str or tuple = "silu",
upsample_block_type: str = "pixel_shuffle",
in_shortcut: bool = True,
):
super().__init__()
num_blocks = len(block_out_channels)
if isinstance(block_type, str):
block_type = (block_type,) * num_blocks
if isinstance(norm_type, str):
norm_type = (norm_type,) * num_blocks
if isinstance(act_fn, str):
act_fn = (act_fn,) * num_blocks
self.conv_in = ops.Conv2d(latent_channels, block_out_channels[-1], 3, 1, 1)
self.in_shortcut = in_shortcut
if in_shortcut:
self.in_shortcut_repeats = block_out_channels[-1] // latent_channels
up_blocks = []
for i, (out_channel, num_layers) in reversed(list(enumerate(zip(block_out_channels, layers_per_block)))):
up_block_list = []
if i < num_blocks - 1 and num_layers > 0:
upsample_block = DCUpBlock2d(
block_out_channels[i + 1],
out_channel,
interpolate=upsample_block_type == "interpolate",
shortcut=True,
)
up_block_list.append(upsample_block)
for _ in range(num_layers):
block = get_block(
block_type[i],
out_channel,
out_channel,
attention_head_dim=attention_head_dim,
norm_type=norm_type[i],
act_fn=act_fn[i],
qkv_mutliscales=qkv_multiscales[i],
)
up_block_list.append(block)
up_blocks.insert(0, nn.Sequential(*up_block_list))
self.up_blocks = nn.ModuleList(up_blocks)
channels = block_out_channels[0] if layers_per_block[0] > 0 else block_out_channels[1]
self.norm_out = RMSNorm(channels, 1e-5, elementwise_affine=True, bias=True)
self.conv_act = nn.ReLU()
self.conv_out = None
if layers_per_block[0] > 0:
self.conv_out = ops.Conv2d(channels, in_channels, 3, 1, 1)
else:
self.conv_out = DCUpBlock2d(
channels, in_channels, interpolate=upsample_block_type == "interpolate", shortcut=False
)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
if self.in_shortcut:
x = hidden_states.repeat_interleave(
self.in_shortcut_repeats, dim=1, output_size=hidden_states.shape[1] * self.in_shortcut_repeats
)
hidden_states = self.conv_in(hidden_states) + x
else:
hidden_states = self.conv_in(hidden_states)
for up_block in reversed(self.up_blocks):
hidden_states = up_block(hidden_states)
hidden_states = self.norm_out(hidden_states.movedim(1, -1)).movedim(-1, 1)
hidden_states = self.conv_act(hidden_states)
hidden_states = self.conv_out(hidden_states)
return hidden_states
class AutoencoderDC(nn.Module):
def __init__(
self,
in_channels: int = 2,
latent_channels: int = 8,
attention_head_dim: int = 32,
encoder_block_types: Union[str, Tuple[str]] = ["ResBlock", "ResBlock", "ResBlock", "EfficientViTBlock"],
decoder_block_types: Union[str, Tuple[str]] = ["ResBlock", "ResBlock", "ResBlock", "EfficientViTBlock"],
encoder_block_out_channels: Tuple[int, ...] = (128, 256, 512, 1024),
decoder_block_out_channels: Tuple[int, ...] = (128, 256, 512, 1024),
encoder_layers_per_block: Tuple[int] = (2, 2, 3, 3),
decoder_layers_per_block: Tuple[int] = (3, 3, 3, 3),
encoder_qkv_multiscales: Tuple[Tuple[int, ...], ...] = ((), (), (5,), (5,)),
decoder_qkv_multiscales: Tuple[Tuple[int, ...], ...] = ((), (), (5,), (5,)),
upsample_block_type: str = "interpolate",
downsample_block_type: str = "Conv",
decoder_norm_types: Union[str, Tuple[str]] = "rms_norm",
decoder_act_fns: Union[str, Tuple[str]] = "silu",
scaling_factor: float = 0.41407,
) -> None:
super().__init__()
self.encoder = Encoder(
in_channels=in_channels,
latent_channels=latent_channels,
attention_head_dim=attention_head_dim,
block_type=encoder_block_types,
block_out_channels=encoder_block_out_channels,
layers_per_block=encoder_layers_per_block,
qkv_multiscales=encoder_qkv_multiscales,
downsample_block_type=downsample_block_type,
)
self.decoder = Decoder(
in_channels=in_channels,
latent_channels=latent_channels,
attention_head_dim=attention_head_dim,
block_type=decoder_block_types,
block_out_channels=decoder_block_out_channels,
layers_per_block=decoder_layers_per_block,
qkv_multiscales=decoder_qkv_multiscales,
norm_type=decoder_norm_types,
act_fn=decoder_act_fns,
upsample_block_type=upsample_block_type,
)
self.scaling_factor = scaling_factor
self.spatial_compression_ratio = 2 ** (len(encoder_block_out_channels) - 1)
def encode(self, x: torch.Tensor) -> torch.Tensor:
"""Internal encoding function."""
encoded = self.encoder(x)
return encoded * self.scaling_factor
def decode(self, z: torch.Tensor) -> torch.Tensor:
# Scale the latents back
z = z / self.scaling_factor
decoded = self.decoder(z)
return decoded
def forward(self, x: torch.Tensor) -> torch.Tensor:
z = self.encode(x)
return self.decode(z)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment