# MaskedDenoising ## 论文 [Images Speak in Images: A Generalist Painter for In-Context Visual Learning](https://arxiv.org/abs/2212.02499) ## 模型结构
## 算法原理 将视觉任务的连续输出空间离散化,并使用语言或专门设计的离散标记作为任务提示,将视觉问题转化为 NLP 问题.
## 环境配置 Tips: timm==0.3.2 版本存在 [cannot import name 'container_abcs' from 'torch._six'](https://github.com/huggingface/pytorch-image-models/issues/420#issuecomment-776459842) 问题, 需要将 timm/models/layers/helpers.py 中 from torch._six import container_abcs 修改为 ```bash import torch TORCH_MAJOR = int(torch.__version__.split('.')[0]) TORCH_MINOR = int(torch.__version__.split('.')[1]) if TORCH_MAJOR == 1 and TORCH_MINOR < 8: from torch._six import container_abcs else: import collections.abc as container_abcs ``` ### Docker(方法一) -v 路径、docker_name和imageID根据实际情况修改 ```bash docker pull image.sourcefind.cn:5000/dcu/admin/base/pytorch:1.13.1-centos7.6-dtk-23.04.1-py38-latest docker run -it -v /path/your_code_data/:/path/your_code_data/ --shm-size=32G --privileged=true --device=/dev/kfd --device=/dev/dri/ --group-add video --name docker_name imageID bash cd /your_code_path/painter_pytorch pip install --upgrade setuptools wheel pip install -r requirements.txt # 安装detectron2 git clone https://github.com/facebookresearch/detectron2 python -m pip install -e detectron2 ``` ### Dockerfile(方法二) -v 路径、docker_name和imageID根据实际情况修改 ```bash cd ./docker cp ../requirements.txt requirements.txt docker build --no-cache -t painter:latest . docker run -it -v /path/your_code_data/:/path/your_code_data/ --shm-size=32G --privileged=true --device=/dev/kfd --device=/dev/dri/ --group-add video --name docker_name imageID bash cd /your_code_path/painter_pytorch pip install --upgrade setuptools wheel pip install -r requirements.txt # 安装detectron2 git clone https://github.com/facebookresearch/detectron2 python -m pip install -e detectron2 ``` ### Anaconda(方法三) 1、关于本项目DCU显卡所需的特殊深度学习库可从光合开发者社区下载安装: https://developer.hpccube.com/tool/ ``` DTK软件栈:dtk23.04.1 python:python3.8 torch:1.13.1 torchvision:0.14.1 ``` Tips:以上dtk软件栈、python、torch等DCU相关工具版本需要严格一一对应 2、其他非特殊库直接按照requirements.txt安装 ```bash pip install --upgrade setuptools wheel pip install -r requirements.txt # 安装detectron2 git clone https://github.com/facebookresearch/detectron2 python -m pip install -e detectron2 ``` ## 数据集 本项目所需数据集较多, 所以提供了一个少量数据集 toy_datasets进行项目功能验证,只需要将Painter_pytorch/train_painter_vit_large.sh 脚本中的DATA_PATH参数设置成toy_datasets即可,其他参数请参考训练章节的介绍. 如需完整数据集, 请参考一下步骤: ### 数据集所需环境配置 #### COCO Panoptic Segmentation ```bash pip install openmim #(0.3.9) mim install mmcv-full # 注意版本是不是1.7.1 pip install mmdet==2.26.0 # 对应 mmcv-1.7.1 ``` #### COCO Pose Estimation pip install mmcv==1.3.9 pip install mmpose==0.29.0 或者也可以直接采用源码安装mmpose ```bash # choose commit id `8c58a18b` git clone https://github.com/open-mmlab/mmpose.git cd mmpose pip install -r requirements.txt pip install -v -e . ``` ### 数据集下载 项目数据集需求较多, 可以使用提供的[a toy training dataset](https://huggingface.co/BAAI/Painter/blob/main/toy_datasets.tar)数据集来验证功能, 数据集由每个类别中各10个类别组成. 将数据集放置于 `$Painter_ROOT/toy_datasets` 路径下, 并设置`$Painter_ROOT/train_painter_vit_large.sh` 中 `DATA_PATH=toy_datasets`. 完整所需数据集如下所示: #### NYU Depth V2 首先, 下载数据集[here](https://drive.google.com/file/d/1AysroWpfISmm-yRFGBgFTrLy6FjQwvwP/view?usp=sharing). 确保将下载的数据集存放到 `$Painter_ROOT/datasets/nyu_depth_v2/sync.zip` 接下来准备NYU_Depth_V2测试集[NYU Depth V2 test](https://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html). ```bash # 下载原始 NYU Depth V2 split file wget -P datasets/nyu_depth_v2/ http://horatio.cs.nyu.edu/mit/silberman/nyu_depth_v2/nyu_depth_v2_labeled.mat # 将 mat 数据转换成 image files python data/depth/extract_official_train_test_set_from_mat.py datasets/nyu_depth_v2/nyu_depth_v2_labeled.mat data/depth/splits.mat datasets/nyu_depth_v2/official_splits/ ``` 最后, 准备训练和验证所需json数据, 生成的json数据将会默认保存到 `$Painter_ROOT/datasets/nyu_depth_v2/` 路径下. ```bash python data/depth/gen_json_nyuv2_depth.py --split sync python data/depth/gen_json_nyuv2_depth.py --split test ``` #### ADE20k Semantic Segmentation 首先, 下载数据集 [official website](https://groups.csail.mit.edu/vision/datasets/ADE20K/), 将下载的数据集存放到 `$Painter_ROOT/datasets/`. 接下来, 解压 zip 文件并重命名为`ade20k`. 完成后的 ade20k 文件结构如下所示: ```bash ade20k/ images/ annotations/ ``` 第二, 执行下面的命令准备训练和验证所需的 annotations, 生成的 annotations 将会默认保存到 `$Painter_ROOT/datasets/ade20k/annotations_with_color/` 路径下. ```bash python data/ade20k/gen_color_ade20k_sem.py --split training python data/ade20k/gen_color_ade20k_sem.py --split validation ``` 第三, 准备训练和验证所需json文件, 生成的json数据将会默认保存到 `$Painter_ROOT/datasets/ade20k/` 路径下. ```bash python data/ade20k/gen_json_ade20k_sem.py --split training python data/ade20k/gen_json_ade20k_sem.py --split validation ``` 最后, 为了确认能通过 detectron2 进行验证, 创建 `$Painter_ROOT/datasets/ade20k` to `$Painter_ROOT/datasets/ADEChallengeData2016` 的软连接, 然后执行下面的操作: ```bash # 创建软连接 # ln -s $Painter_ROOT/datasets/ade20k datasets/ADEChallengeData2016 # 执行 python data/prepare_ade20k_sem_seg.py ``` #### COCO Panoptic Segmentation 下载 COCO2017 数据 和 the corresponding panoptic segmentation annotation. 完成后的 COCO 文件结构如下所示: ``` coco/ train2017/ val2017/ annotations/ instances_train2017.json instances_val2017.json panoptic_train2017.json panoptic_val2017.json panoptic_train2017/ panoptic_val2017/ ``` 1. 准备 COCO Semantic Segmentation 准备训练所需的annotations, 生成的annotations默认保存到 `$Painter_ROOT/datasets/coco/pano_sem_seg/` 路径下. ```bash python data/coco_semseg/gen_color_coco_panoptic_segm.py --split train2017 python data/coco_semseg/gen_color_coco_panoptic_segm.py --split val2017 ``` 准备训练和验证所需的json数据, 生成的json数据默认保存到 `$Painter_ROOT/datasets/coco/pano_sem_seg/` 路径下. ```bash python data/coco_semseg/gen_json_coco_panoptic_segm.py --split train2017 python data/coco_semseg/gen_json_coco_panoptic_segm.py --split val2017 ``` 2. 准备 COCO Class-Agnostic Instance Segmentation 第一步, 通过下面的命令对数据进行预处理, 生成的 painted ground truth 将会默认保存到 `$Painter_ROOT/datasets/coco/pano_ca_inst` 路径下. ```bash cd $Painter_ROOT/data/mmdet_custom # 为实例分割生成使用通用数据增强的训练数据, 注意我们通过在configs/coco_panoptic_ca_inst_gen_augg.py中交替生成30个副本train_aug{idx} ./tools/dist_train.sh configs/coco_panoptic_ca_inst_gen_aug.py 1 # 仅使用水平翻转增强生成训练数据 ./tools/dist_train.sh configs/coco_panoptic_ca_inst_gen_orgflip.py 1 # 生成无数据增强的训练数据 ./tools/dist_train.sh configs/coco_panoptic_ca_inst_gen_org.py 1 # 生成验证数据(无数据增强) ./tools/dist_test.sh configs/coco_panoptic_ca_inst_gen_org.py none 1 --eval segm ``` 然后, 准备训练和验证所需json文件. 生成的json文件将会默认保存到 `$Painter_ROOT/datasets/coco/pano_ca_inst` 路径下. ```bash cd $Painter_ROOT python data/mmdet_custom/gen_json_coco_panoptic_inst.py --split train python data/mmdet_custom/gen_json_coco_panoptic_inst.py --split val ``` 最后, 为了确保使用detectron2进行验证, 创建`$Painter_ROOT/datasets/coco/annotations/panoptic_val2017` to `$Painter_ROOT/datasets/coco/panoptic_val2017` 的软连接并运行: ```bash # 创建软连接 # ln -s $Painter_ROOT/datasets/coco/annotations/panoptic_val2017 datasets/coco/panoptic_val2017 # 执行 python data/prepare_coco_semantic_annos_from_panoptic_annos.py ``` #### COCO Human Pose Estimation 首先, 下载COCO val2017的行人检测结果 [google drive](https://drive.google.com/drive/folders/1fRUDNUDxe9fjqcRZ2bnF_TKMlO0nB_dk), 将下载的数据放入 `$Painter_ROOT/datasets/coco_pose/` 路径下 然后, 通过下面的命令对数据进行预处理, 得到的 painted ground truth 默认保存到 `$Painter_ROOT/datasets/coco_pose/` 路径下. ```bash cd $Painter_ROOT/data/mmpose_custom # 生成用于姿态估计的通用数据增强的训练数据, 本项目生成20个副本用于训练, 需要对coco_256x192_gendata.py中52行的aug_idx参数进行对应数量修改,当前默认为0 ./tools/dist_train.sh configs/coco_256x192_gendata.py 1 # 生成训练期间验证的数据 ./tools/dist_test.sh configs/coco_256x192_gendata.py none 1 # 生成用于测试的数据(使用离线盒子) ./tools/dist_test.sh configs/coco_256x192_gendata_test.py none 1 # 生成用于测试的数据(使用离线盒子+翻转) ./tools/dist_test.sh configs/coco_256x192_gendata_testflip.py none 1 ``` 接着, 准备训练和验证所需json文件. 生成的json文件将会默认保存到 `datasets/pano_ca_inst/` 路径下. ```bash cd $Painter_ROOT python data/mmpose_custom/gen_json_coco_pose.py --split train python data/mmpose_custom/gen_json_coco_pose.py --split val ``` #### Low-level Vision Tasks ##### Deraining 参考[MPRNet](https://github.com/swz30/MPRNet) 进行deraining的数据准备. 跟随[MPRNet](https://github.com/swz30/MPRNet/blob/main/Deraining/Datasets/README.md)的指令步骤下载数据集, 将下载的数据集保存到 `$Painter_ROOT/datasets/derain/`. 完成后的 Derain 文件结构如下所示: ``` derain/ train/ input/ target/ test/ Rain100H/ Rain100L/ Test100/ Test1200/ Test2800/ ``` 接着, 通过下面的命令, 准备训练和验证所需json文件. 生成的json文件将保存到 `datasets/derain/` 路径下. ```bash python data/derain/gen_json_rain.py --split train python data/derain/gen_json_rain.py --split val ``` ### Denoising 参考[Uformer](https://github.com/ZhendongWang6/Uformer)准备SIDD denoising数据集. 针对训练用的SIDD数据集, 可从[official url](https://www.eecs.yorku.ca/~kamel/sidd/dataset.php)中下载SIDD-Medium dataset数据; 针对验证用的SIDD数据集. 可以从[here](https://mailustceducn-my.sharepoint.com/:f:/g/personal/zhendongwang_mail_ustc_edu_cn/Ev832uKaw2JJhwROKqiXGfMBttyFko_zrDVzfSbFFDoi4Q?e=S3p5hQ)下载. 接下来, 使用以下命令生成用于训练的图像补丁: ```bash python data/sidd/generate_patches_SIDD.py --src_dir datasets/denoise/SIDD_Medium_Srgb/Data --tar_dir datasets/denoise/train ``` 最后, 准备训练和验证所需json文件, 生成的json文件将保存在 `datasets/denoise/` 路径下. ```bash python data/sidd/gen_json_sidd.py --split train python data/sidd/gen_json_sidd.py --split val ``` ### Low-Light Image Enhancement 首先, 下载 LOL 数据集 [google drive](https://drive.google.com/file/d/157bjO1_cFuSd0HWDUuAmcHRJDVyWpOxB/view), 将下载的数据集存放到 `$Painter_ROOT/datasets/light_enhance/` 路径下. 完成后的 LOL 文件结构如下所示: ``` light_enhance/ our485/ low/ high/ eval15/ low/ high/ ``` 准备训练和验证所需json文件, 生成的json文件将保存在 `$Painter_ROOTdatasets/light_enhance/` 路径下. ``` python data/lol/gen_json_lol.py --split train python data/lol/gen_json_lol.py --split val ``` 数据集的目录结构如下: ``` ├── nyu_depth_v2/ │ ├── sync/ │ ├── official_splits/ │ ├── nyu_depth_v2_labeled.mat │ ├── nyuv2_sync_image_depth.json # 生成 │ ├── nyuv2_test_image_depth.json # 生成 ├── ade20k/ │ ├── images/ │ ├── annotations/ │ ├── annotations_detectron2/ # 生成 │ ├── annotations_with_color/ # 生成 │ ├── ade20k_training_image_semantic.json # 生成 │ ├── ade20k_validation_image_semantic.json # 生成 ├── ADEChallengeData2016/ # sim-link to $Painter_ROOT/datasets/ade20k ├── coco/ │ ├── train2017/ │ ├── val2017/ │ ├── annotations/ │ ├── instances_train2017.json │ ├── instances_val2017.json │ ├── person_keypoints_val2017.json │ ├── panoptic_train2017.json │ ├── panoptic_val2017.json │ ├── panoptic_train2017/ │ ├── panoptic_val2017/ │ ├── panoptic_semseg_val2017/ # 生成 │ ├── panoptic_val2017/ # sim-link to $Painter_ROOT/datasets/coco/annotations/panoptic_val2017 │ ├── pano_sem_seg/ # 生成 │ ├── panoptic_segm_train2017_with_color │ ├── panoptic_segm_val2017_with_color │ ├── coco_train2017_image_panoptic_sem_seg.json │ ├── coco_val2017_image_panoptic_sem_seg.json │ ├── pano_ca_inst/ # 生成 │ ├── train_aug0/ │ ├── train_aug1/ │ ├── ... │ ├── train_aug29/ │ ├── train_org/ │ ├── train_flip/ │ ├── val_org/ │ ├── coco_train_image_panoptic_inst.json │ ├── coco_val_image_panoptic_inst.json ├── coco_pose/ │ ├── person_detection_results/ │ ├── COCO_val2017_detections_AP_H_56_person.json │ ├── data_pair/ # 生成 │ ├── train_256x192_aug0/ │ ├── train_256x192_aug1/ │ ├── ... │ ├── train_256x192_aug19/ │ ├── val_256x192/ │ ├── test_256x192/ │ ├── test_256x192_flip/ │ ├── coco_pose_256x192_train.json # 生成 │ ├── coco_pose_256x192_val.json # 生成 ├── derain/ │ ├── train/ │ ├── input/ │ ├── target/ │ ├── test/ │ ├── Rain100H/ │ ├── Rain100L/ │ ├── Test100/ │ ├── Test1200/ │ ├── Test2800/ │ ├── derain_train.json │ ├── derain_test_rain100h.json ├── denoise/ │ ├── SIDD_Medium_Srgb/ │ ├── train/ │ ├── val/ │ ├── denoise_ssid_train.json # 生成 │ ├── denoise_ssid_val.json # 生成 ├── light_enhance/ │ ├── our485/ │ ├── low/ │ ├── high/ │ ├── eval15/ │ ├── low/ │ ├── high/ │ ├── enhance_lol_train.json # 生成 │ ├── enhance_lol_val.json # 生成 ``` ## 训练 下载预训练模型 [MAE ViT-Large model ](https://dl.fbaipublicfiles.com/mae/pretrain/mae_pretrain_vit_large.pth), 修改 `$Painter_ROOT/train_painter_vit_large.sh` 中finetune参数地址. ### 单机多卡 本项目默认参数是单机4卡 (total_bsz = 1x4x32 = 128), 如需使用其他的卡数, 请修改 train_painter_vit_large.sh 中对应参数. ```bash bash train.sh ``` ### 多机多卡 Tips: 作者使用8个节点,每个节点8张卡 (total_bsz = 8x8x32 = 2048) 进行的训练 ```bash bash train_painter_vit_large.sh ``` ## 推理 下载推理模型[🤗 Hugging Face Models](https://huggingface.co/BAAI/Painter/blob/main/painter_vit_large.pth), 或者准备好自己的待测试模型, 各个任务的推理方法如下: ### NYU Depth V2 首先设置 `$Painter_ROOT/eval/nyuv2_depth/eval.sh` 文件里的 `JOB_NAME` 和 `DATA_DIR` 参数, 然后执行下面的命令: ```bash bash eval/nyuv2_depth/eval.sh ``` ### ADE20k Semantic Segmentation 首先设置 `$Painter_ROOT/eval/ade20k_semantic/eval.sh` 文件里的 `JOB_NAME` 参数, 然后执行下面的命令: ```bash bash eval/ade20k_semantic/eval.sh ``` ### COCO Panoptic Segmentation 首先设置 `$Painter_ROOT/eval/coco_panoptic/eval.sh` 文件里的 `JOB_NAME` 参数, 然后执行下面的命令: ```bash bash eval/coco_panoptic/eval.sh ``` ### COCO Human Pose Estimation 为了评估Painter对COCO姿态的估计, 首先生成验证所需的图像: ```bash python -m torch.distributed.launch --nproc_per_node=8 --master_port=29500 --use_env eval/mmpose_custom/painter_inference_pose.py --ckpt_path models/painter_vit_large/painter_vit_large.pth python -m torch.distributed.launch --nproc_per_node=8 --master_port=29500 --use_env eval/mmpose_custom/painter_inference_pose.py --ckpt_path models/painter_vit_large/painter_vit_large.pth --flip_test ``` 接下来, 修改 `$Painter_ROOT/eval/mmpose_custom/configs/coco_256x192_test_offline.py` 文件中的 `job_name`、`data_root`、`bbox_file` 和 `ckpt_file` 参数, 执行: ```bash cd $Painter_ROOT/eval/mmpose_custom ./tools/dist_test.sh configs/coco_256x192_test_offline.py none 1 --eval mAP ``` ### Low-Light Image Enhancement To evaluate Painter on LoL image enhancement: ```bash python eval/lol/painter_inference_lol.py --ckpt_path models/path/of/painter_vit_large.pth --data_dir path/of/datasets Example: python eval/lol/painter_inference_lol.py --ckpt_path models/painter_vit_large.pth --data_dir toy_datasets ``` ## result 本地测试集测试结果单张展示:
### 精度 基于项目提供的测试数据, 得到单卡测试结果如下: | | xxx | xxx | xxx | | :------: | :------: | :------: | :------: | | ours | xxxx | xxxx | xxxx | | paper | xxxx | xxxx | xxxx | ## 应用场景 ### 算法类别 语义分割、深度估计、实例分割、关键点检测、图像去噪、图像去雨、图像增强 ### 热点应用行业 ## 源码仓库及问题反馈 http://developer.hpccube.com/codes/modelzoo/painter_pytorch.git ## 参考资料 https://github.com/baaivision/Painter/tree/main/Painter