# MaskedDenoising
## 论文
[Images Speak in Images: A Generalist Painter for In-Context Visual Learning](https://arxiv.org/abs/2212.02499)
## 模型结构
## 算法原理
将视觉任务的连续输出空间离散化,并使用语言或专门设计的离散标记作为任务提示,将视觉问题转化为 NLP 问题.
## 环境配置
Tips: timm==0.3.2 版本存在 [cannot import name 'container_abcs' from 'torch._six'](https://github.com/huggingface/pytorch-image-models/issues/420#issuecomment-776459842) 问题, 需要将 timm/models/layers/helpers.py 中 from torch._six import container_abcs 修改为
```bash
import torch
TORCH_MAJOR = int(torch.__version__.split('.')[0])
TORCH_MINOR = int(torch.__version__.split('.')[1])
if TORCH_MAJOR == 1 and TORCH_MINOR < 8:
from torch._six import container_abcs
else:
import collections.abc as container_abcs
```
### Docker(方法一)
-v 路径、docker_name和imageID根据实际情况修改
```bash
docker pull image.sourcefind.cn:5000/dcu/admin/base/pytorch:1.13.1-centos7.6-dtk-23.04.1-py38-latest
docker run -it -v /path/your_code_data/:/path/your_code_data/ --shm-size=32G --privileged=true --device=/dev/kfd --device=/dev/dri/ --group-add video --name docker_name imageID bash
cd /your_code_path/painter_pytorch
pip install --upgrade setuptools wheel
pip install -r requirements.txt
# 安装detectron2
git clone https://github.com/facebookresearch/detectron2
python -m pip install -e detectron2
```
### Dockerfile(方法二)
-v 路径、docker_name和imageID根据实际情况修改
```bash
cd ./docker
cp ../requirements.txt requirements.txt
docker build --no-cache -t painter:latest .
docker run -it -v /path/your_code_data/:/path/your_code_data/ --shm-size=32G --privileged=true --device=/dev/kfd --device=/dev/dri/ --group-add video --name docker_name imageID bash
cd /your_code_path/painter_pytorch
pip install --upgrade setuptools wheel
pip install -r requirements.txt
# 安装detectron2
git clone https://github.com/facebookresearch/detectron2
python -m pip install -e detectron2
```
### Anaconda(方法三)
1、关于本项目DCU显卡所需的特殊深度学习库可从光合开发者社区下载安装: https://developer.hpccube.com/tool/
```
DTK软件栈:dtk23.04.1
python:python3.8
torch:1.13.1
torchvision:0.14.1
```
Tips:以上dtk软件栈、python、torch等DCU相关工具版本需要严格一一对应
2、其他非特殊库直接按照requirements.txt安装
```bash
pip install --upgrade setuptools wheel
pip install -r requirements.txt
# 安装detectron2
git clone https://github.com/facebookresearch/detectron2
python -m pip install -e detectron2
```
## 数据集
本项目所需数据集较多, 所以提供了一个少量数据集 toy_datasets进行项目功能验证,只需要将Painter_pytorch/train_painter_vit_large.sh 脚本中的DATA_PATH参数设置成toy_datasets即可,其他参数请参考训练章节的介绍.
如需完整数据集, 请参考一下步骤:
### 数据集所需环境配置
#### COCO Panoptic Segmentation
```bash
pip install openmim #(0.3.9)
mim install mmcv-full # 注意版本是不是1.7.1
pip install mmdet==2.26.0 # 对应 mmcv-1.7.1
```
#### COCO Pose Estimation
pip install mmcv==1.3.9
pip install mmpose==0.29.0
或者也可以直接采用源码安装mmpose
```bash
# choose commit id `8c58a18b`
git clone https://github.com/open-mmlab/mmpose.git
cd mmpose
pip install -r requirements.txt
pip install -v -e .
```
### 数据集下载
项目数据集需求较多, 可以使用提供的[a toy training dataset](https://huggingface.co/BAAI/Painter/blob/main/toy_datasets.tar)数据集来验证功能, 数据集由每个类别中各10个类别组成. 将数据集放置于 `$Painter_ROOT/toy_datasets` 路径下, 并设置`$Painter_ROOT/train_painter_vit_large.sh` 中 `DATA_PATH=toy_datasets`.
完整所需数据集如下所示:
#### NYU Depth V2
首先, 下载数据集[here](https://drive.google.com/file/d/1AysroWpfISmm-yRFGBgFTrLy6FjQwvwP/view?usp=sharing). 确保将下载的数据集存放到 `$Painter_ROOT/datasets/nyu_depth_v2/sync.zip`
接下来准备NYU_Depth_V2测试集[NYU Depth V2 test](https://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html).
```bash
# 下载原始 NYU Depth V2 split file
wget -P datasets/nyu_depth_v2/ http://horatio.cs.nyu.edu/mit/silberman/nyu_depth_v2/nyu_depth_v2_labeled.mat
# 将 mat 数据转换成 image files
python data/depth/extract_official_train_test_set_from_mat.py datasets/nyu_depth_v2/nyu_depth_v2_labeled.mat data/depth/splits.mat datasets/nyu_depth_v2/official_splits/
```
最后, 准备训练和验证所需json数据, 生成的json数据将会默认保存到 `$Painter_ROOT/datasets/nyu_depth_v2/` 路径下.
```bash
python data/depth/gen_json_nyuv2_depth.py --split sync
python data/depth/gen_json_nyuv2_depth.py --split test
```
#### ADE20k Semantic Segmentation
首先, 下载数据集 [official website](https://groups.csail.mit.edu/vision/datasets/ADE20K/), 将下载的数据集存放到 `$Painter_ROOT/datasets/`.
接下来, 解压 zip 文件并重命名为`ade20k`. 完成后的 ade20k 文件结构如下所示:
```bash
ade20k/
images/
annotations/
```
第二, 执行下面的命令准备训练和验证所需的 annotations, 生成的 annotations 将会默认保存到 `$Painter_ROOT/datasets/ade20k/annotations_with_color/` 路径下.
```bash
python data/ade20k/gen_color_ade20k_sem.py --split training
python data/ade20k/gen_color_ade20k_sem.py --split validation
```
第三, 准备训练和验证所需json文件, 生成的json数据将会默认保存到 `$Painter_ROOT/datasets/ade20k/` 路径下.
```bash
python data/ade20k/gen_json_ade20k_sem.py --split training
python data/ade20k/gen_json_ade20k_sem.py --split validation
```
最后, 为了确认能通过 detectron2 进行验证, 创建 `$Painter_ROOT/datasets/ade20k` to `$Painter_ROOT/datasets/ADEChallengeData2016` 的软连接, 然后执行下面的操作:
```bash
# 创建软连接
# ln -s $Painter_ROOT/datasets/ade20k datasets/ADEChallengeData2016
# 执行
python data/prepare_ade20k_sem_seg.py
```
#### COCO Panoptic Segmentation
下载 COCO2017 数据 和 the corresponding panoptic segmentation annotation. 完成后的 COCO 文件结构如下所示:
```
coco/
train2017/
val2017/
annotations/
instances_train2017.json
instances_val2017.json
panoptic_train2017.json
panoptic_val2017.json
panoptic_train2017/
panoptic_val2017/
```
1. 准备 COCO Semantic Segmentation
准备训练所需的annotations, 生成的annotations默认保存到 `$Painter_ROOT/datasets/coco/pano_sem_seg/` 路径下.
```bash
python data/coco_semseg/gen_color_coco_panoptic_segm.py --split train2017
python data/coco_semseg/gen_color_coco_panoptic_segm.py --split val2017
```
准备训练和验证所需的json数据, 生成的json数据默认保存到 `$Painter_ROOT/datasets/coco/pano_sem_seg/` 路径下.
```bash
python data/coco_semseg/gen_json_coco_panoptic_segm.py --split train2017
python data/coco_semseg/gen_json_coco_panoptic_segm.py --split val2017
```
2. 准备 COCO Class-Agnostic Instance Segmentation
第一步, 通过下面的命令对数据进行预处理, 生成的 painted ground truth 将会默认保存到 `$Painter_ROOT/datasets/coco/pano_ca_inst` 路径下.
```bash
cd $Painter_ROOT/data/mmdet_custom
# 为实例分割生成使用通用数据增强的训练数据, 注意我们通过在configs/coco_panoptic_ca_inst_gen_augg.py中交替生成30个副本train_aug{idx}
./tools/dist_train.sh configs/coco_panoptic_ca_inst_gen_aug.py 1
# 仅使用水平翻转增强生成训练数据
./tools/dist_train.sh configs/coco_panoptic_ca_inst_gen_orgflip.py 1
# 生成无数据增强的训练数据
./tools/dist_train.sh configs/coco_panoptic_ca_inst_gen_org.py 1
# 生成验证数据(无数据增强)
./tools/dist_test.sh configs/coco_panoptic_ca_inst_gen_org.py none 1 --eval segm
```
然后, 准备训练和验证所需json文件. 生成的json文件将会默认保存到 `$Painter_ROOT/datasets/coco/pano_ca_inst` 路径下.
```bash
cd $Painter_ROOT
python data/mmdet_custom/gen_json_coco_panoptic_inst.py --split train
python data/mmdet_custom/gen_json_coco_panoptic_inst.py --split val
```
最后, 为了确保使用detectron2进行验证, 创建`$Painter_ROOT/datasets/coco/annotations/panoptic_val2017` to `$Painter_ROOT/datasets/coco/panoptic_val2017` 的软连接并运行:
```bash
# 创建软连接
# ln -s $Painter_ROOT/datasets/coco/annotations/panoptic_val2017 datasets/coco/panoptic_val2017
# 执行
python data/prepare_coco_semantic_annos_from_panoptic_annos.py
```
#### COCO Human Pose Estimation
首先, 下载COCO val2017的行人检测结果 [google drive](https://drive.google.com/drive/folders/1fRUDNUDxe9fjqcRZ2bnF_TKMlO0nB_dk), 将下载的数据放入 `$Painter_ROOT/datasets/coco_pose/` 路径下
然后, 通过下面的命令对数据进行预处理, 得到的 painted ground truth 默认保存到 `$Painter_ROOT/datasets/coco_pose/` 路径下.
```bash
cd $Painter_ROOT/data/mmpose_custom
# 生成用于姿态估计的通用数据增强的训练数据, 本项目生成20个副本用于训练, 需要对coco_256x192_gendata.py中52行的aug_idx参数进行对应数量修改,当前默认为0
./tools/dist_train.sh configs/coco_256x192_gendata.py 1
# 生成训练期间验证的数据
./tools/dist_test.sh configs/coco_256x192_gendata.py none 1
# 生成用于测试的数据(使用离线盒子)
./tools/dist_test.sh configs/coco_256x192_gendata_test.py none 1
# 生成用于测试的数据(使用离线盒子+翻转)
./tools/dist_test.sh configs/coco_256x192_gendata_testflip.py none 1
```
接着, 准备训练和验证所需json文件. 生成的json文件将会默认保存到 `datasets/pano_ca_inst/` 路径下.
```bash
cd $Painter_ROOT
python data/mmpose_custom/gen_json_coco_pose.py --split train
python data/mmpose_custom/gen_json_coco_pose.py --split val
```
#### Low-level Vision Tasks
##### Deraining
参考[MPRNet](https://github.com/swz30/MPRNet) 进行deraining的数据准备.
跟随[MPRNet](https://github.com/swz30/MPRNet/blob/main/Deraining/Datasets/README.md)的指令步骤下载数据集, 将下载的数据集保存到 `$Painter_ROOT/datasets/derain/`. 完成后的 Derain 文件结构如下所示:
```
derain/
train/
input/
target/
test/
Rain100H/
Rain100L/
Test100/
Test1200/
Test2800/
```
接着, 通过下面的命令, 准备训练和验证所需json文件. 生成的json文件将保存到 `datasets/derain/` 路径下.
```bash
python data/derain/gen_json_rain.py --split train
python data/derain/gen_json_rain.py --split val
```
### Denoising
参考[Uformer](https://github.com/ZhendongWang6/Uformer)准备SIDD denoising数据集.
针对训练用的SIDD数据集, 可从[official url](https://www.eecs.yorku.ca/~kamel/sidd/dataset.php)中下载SIDD-Medium dataset数据;
针对验证用的SIDD数据集. 可以从[here](https://mailustceducn-my.sharepoint.com/:f:/g/personal/zhendongwang_mail_ustc_edu_cn/Ev832uKaw2JJhwROKqiXGfMBttyFko_zrDVzfSbFFDoi4Q?e=S3p5hQ)下载.
接下来, 使用以下命令生成用于训练的图像补丁:
```bash
python data/sidd/generate_patches_SIDD.py --src_dir datasets/denoise/SIDD_Medium_Srgb/Data --tar_dir datasets/denoise/train
```
最后, 准备训练和验证所需json文件, 生成的json文件将保存在 `datasets/denoise/` 路径下.
```bash
python data/sidd/gen_json_sidd.py --split train
python data/sidd/gen_json_sidd.py --split val
```
### Low-Light Image Enhancement
首先, 下载 LOL 数据集 [google drive](https://drive.google.com/file/d/157bjO1_cFuSd0HWDUuAmcHRJDVyWpOxB/view), 将下载的数据集存放到 `$Painter_ROOT/datasets/light_enhance/` 路径下. 完成后的 LOL 文件结构如下所示:
```
light_enhance/
our485/
low/
high/
eval15/
low/
high/
```
准备训练和验证所需json文件, 生成的json文件将保存在 `$Painter_ROOTdatasets/light_enhance/` 路径下.
```
python data/lol/gen_json_lol.py --split train
python data/lol/gen_json_lol.py --split val
```
数据集的目录结构如下:
```
├── nyu_depth_v2/
│ ├── sync/
│ ├── official_splits/
│ ├── nyu_depth_v2_labeled.mat
│ ├── nyuv2_sync_image_depth.json # 生成
│ ├── nyuv2_test_image_depth.json # 生成
├── ade20k/
│ ├── images/
│ ├── annotations/
│ ├── annotations_detectron2/ # 生成
│ ├── annotations_with_color/ # 生成
│ ├── ade20k_training_image_semantic.json # 生成
│ ├── ade20k_validation_image_semantic.json # 生成
├── ADEChallengeData2016/ # sim-link to $Painter_ROOT/datasets/ade20k
├── coco/
│ ├── train2017/
│ ├── val2017/
│ ├── annotations/
│ ├── instances_train2017.json
│ ├── instances_val2017.json
│ ├── person_keypoints_val2017.json
│ ├── panoptic_train2017.json
│ ├── panoptic_val2017.json
│ ├── panoptic_train2017/
│ ├── panoptic_val2017/
│ ├── panoptic_semseg_val2017/ # 生成
│ ├── panoptic_val2017/ # sim-link to $Painter_ROOT/datasets/coco/annotations/panoptic_val2017
│ ├── pano_sem_seg/ # 生成
│ ├── panoptic_segm_train2017_with_color
│ ├── panoptic_segm_val2017_with_color
│ ├── coco_train2017_image_panoptic_sem_seg.json
│ ├── coco_val2017_image_panoptic_sem_seg.json
│ ├── pano_ca_inst/ # 生成
│ ├── train_aug0/
│ ├── train_aug1/
│ ├── ...
│ ├── train_aug29/
│ ├── train_org/
│ ├── train_flip/
│ ├── val_org/
│ ├── coco_train_image_panoptic_inst.json
│ ├── coco_val_image_panoptic_inst.json
├── coco_pose/
│ ├── person_detection_results/
│ ├── COCO_val2017_detections_AP_H_56_person.json
│ ├── data_pair/ # 生成
│ ├── train_256x192_aug0/
│ ├── train_256x192_aug1/
│ ├── ...
│ ├── train_256x192_aug19/
│ ├── val_256x192/
│ ├── test_256x192/
│ ├── test_256x192_flip/
│ ├── coco_pose_256x192_train.json # 生成
│ ├── coco_pose_256x192_val.json # 生成
├── derain/
│ ├── train/
│ ├── input/
│ ├── target/
│ ├── test/
│ ├── Rain100H/
│ ├── Rain100L/
│ ├── Test100/
│ ├── Test1200/
│ ├── Test2800/
│ ├── derain_train.json
│ ├── derain_test_rain100h.json
├── denoise/
│ ├── SIDD_Medium_Srgb/
│ ├── train/
│ ├── val/
│ ├── denoise_ssid_train.json # 生成
│ ├── denoise_ssid_val.json # 生成
├── light_enhance/
│ ├── our485/
│ ├── low/
│ ├── high/
│ ├── eval15/
│ ├── low/
│ ├── high/
│ ├── enhance_lol_train.json # 生成
│ ├── enhance_lol_val.json # 生成
```
## 训练
下载预训练模型 [MAE ViT-Large model ](https://dl.fbaipublicfiles.com/mae/pretrain/mae_pretrain_vit_large.pth), 修改 `$Painter_ROOT/train_painter_vit_large.sh` 中finetune参数地址.
### 单机多卡
本项目默认参数是单机4卡 (total_bsz = 1x4x32 = 128), 如需使用其他的卡数, 请修改 train_painter_vit_large.sh 中对应参数.
```bash
bash train.sh
```
### 多机多卡
Tips: 作者使用8个节点,每个节点8张卡 (total_bsz = 8x8x32 = 2048) 进行的训练
```bash
bash train_painter_vit_large.sh
```
## 推理
下载推理模型[🤗 Hugging Face Models](https://huggingface.co/BAAI/Painter/blob/main/painter_vit_large.pth), 或者准备好自己的待测试模型, 各个任务的推理方法如下:
### NYU Depth V2
首先设置 `$Painter_ROOT/eval/nyuv2_depth/eval.sh` 文件里的 `JOB_NAME` 和 `DATA_DIR` 参数, 然后执行下面的命令:
```bash
bash eval/nyuv2_depth/eval.sh
```
### ADE20k Semantic Segmentation
首先设置 `$Painter_ROOT/eval/ade20k_semantic/eval.sh` 文件里的 `JOB_NAME` 参数, 然后执行下面的命令:
```bash
bash eval/ade20k_semantic/eval.sh
```
### COCO Panoptic Segmentation
首先设置 `$Painter_ROOT/eval/coco_panoptic/eval.sh` 文件里的 `JOB_NAME` 参数, 然后执行下面的命令:
```bash
bash eval/coco_panoptic/eval.sh
```
### COCO Human Pose Estimation
为了评估Painter对COCO姿态的估计, 首先生成验证所需的图像:
```bash
python -m torch.distributed.launch --nproc_per_node=8 --master_port=29500 --use_env eval/mmpose_custom/painter_inference_pose.py --ckpt_path models/painter_vit_large/painter_vit_large.pth
python -m torch.distributed.launch --nproc_per_node=8 --master_port=29500 --use_env eval/mmpose_custom/painter_inference_pose.py --ckpt_path models/painter_vit_large/painter_vit_large.pth --flip_test
```
接下来, 修改 `$Painter_ROOT/eval/mmpose_custom/configs/coco_256x192_test_offline.py` 文件中的 `job_name`、`data_root`、`bbox_file` 和 `ckpt_file` 参数, 执行:
```bash
cd $Painter_ROOT/eval/mmpose_custom
./tools/dist_test.sh configs/coco_256x192_test_offline.py none 1 --eval mAP
```
### Low-Light Image Enhancement
To evaluate Painter on LoL image enhancement:
```bash
python eval/lol/painter_inference_lol.py --ckpt_path models/path/of/painter_vit_large.pth --data_dir path/of/datasets
Example:
python eval/lol/painter_inference_lol.py --ckpt_path models/painter_vit_large.pth --data_dir toy_datasets
```
## result
本地测试集测试结果单张展示:
### 精度
基于项目提供的测试数据, 得到单卡测试结果如下:
| | xxx | xxx | xxx |
| :------: | :------: | :------: | :------: |
| ours | xxxx | xxxx | xxxx |
| paper | xxxx | xxxx | xxxx |
## 应用场景
### 算法类别
语义分割、深度估计、实例分割、关键点检测、图像去噪、图像去雨、图像增强
### 热点应用行业
## 源码仓库及问题反馈
http://developer.hpccube.com/codes/modelzoo/painter_pytorch.git
## 参考资料
https://github.com/baaivision/Painter/tree/main/Painter