# -------------------------------------------------------- # Images Speak in Images: A Generalist Painter for In-Context Visual Learning (https://arxiv.org/abs/2212.02499) # Github source: https://github.com/baaivision/Painter # Copyright (c) 2022 Beijing Academy of Artificial Intelligence (BAAI) # Licensed under The MIT License [see LICENSE for details] # By Xinlong Wang, Wen Wang # Based on MAE, BEiT, detectron2, Mask2Former, bts, mmcv, mmdetetection, mmpose, MIRNet, MPRNet, and Uformer codebases # --------------------------------------------------------' import os import glob import json import tqdm import argparse def get_args_parser(): parser = argparse.ArgumentParser('SIDD denoising preparation', add_help=False) parser.add_argument('--split', type=str, help='dataset split', choices=['train', 'val'], required=True) parser.add_argument('--output_dir', type=str, help='path to output dir', default='datasets/denoise') return parser.parse_args() if __name__ == "__main__": args = get_args_parser() image_dir = "datasets/denoise/{}/input".format(args.split) save_path = os.path.join(args.output_dir, "denoise_ssid_{}.json".format(args.split)) print(save_path) output_dict = [] image_path_list = glob.glob(os.path.join(image_dir, '*.png')) for image_path in tqdm.tqdm(image_path_list): # image_name = os.path.basename(image_path) target_path = image_path.replace('input', 'groundtruth') assert os.path.isfile(image_path) assert os.path.isfile(target_path) pair_dict = {} pair_dict["image_path"] = image_path.replace('datasets/', '') pair_dict["target_path"] = target_path.replace('datasets/', '') pair_dict["type"] = "ssid_image2denoise" output_dict.append(pair_dict) json.dump(output_dict, open(save_path, 'w'))