# Copyright (c) OpenMMLab. All rights reserved. import os.path as osp import pickle import shutil import tempfile import mmcv import torch import torch.distributed as dist from mmcv.runner import get_dist_info def single_gpu_test(model, data_loader, pseudo_test=False): """Test model with a single gpu. This method tests model with a single gpu and displays test progress bar. Args: model (nn.Module): Model to be tested. data_loader (nn.Dataloader): Pytorch data loader. pseudo_test: custom arg Returns: list: The prediction results. """ model.eval() results = [] dataset = data_loader.dataset prog_bar = mmcv.ProgressBar(len(dataset)) for data in data_loader: with torch.no_grad(): result = model(return_loss=False, pseudo_test=pseudo_test, **data) results.append(result) # use the first key as main key to calculate the batch size batch_size = len(next(iter(data.values()))) for _ in range(batch_size): prog_bar.update() return results