"docs/en_US/CommunitySharings/HpoComparison.rst" did not exist on "abc221589c65d75b494407c60a81ca87c3020463"
SalesBot.ipynb 23.3 KB
Newer Older
Rayyyyy's avatar
Rayyyyy committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "374b67d0-b446-4d6f-8e07-59e97716c55a",
   "metadata": {},
   "source": [
    "# Sales Bot with Llama3 - A Summarization and RAG Use Case"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "add4953d-07c3-4480-ad91-7d0ea9c9fb55",
   "metadata": {},
   "source": [
    "## Overview\n",
    "\n",
    "In this notebook you'll take an Amazon product reviews dataset from Kaggle and use Llama3 to obtain product review summaries, upsert those summaries in a vector database, then use Retrieval Augmented Generation (RAG) to power a sales chatbot that can make targeted product recommendations.\n",
    "\n",
    "Let's take a look at the overall workflow:\n",
    "1. We start with a dataset that contains over 10,000 reviews across 900 Amazon musical instruments and accessories.\n",
    "2. Using Llama2 70B chat (hosted on OctoAI), we generate summaries of product reviews for each product from the 20 most recent reviews. We format the summaries in JSON format.\n",
    "3. We then take the summaries and upsert them into a vector database (Weaviate in this case)\n",
    "4. We then use this vector database and Llama3 70B instruct (hosted on OctoAI) to build a RAG-based sales chatbot that provides targeted recommendations to the user based on the products that are present in the inventory.\n",
    "\n",
    "Note: at the time of writing this tutorial, JSON mode formatting isn't supported for Llama 3 on OctoAI via constrained sampling which is why we are falling back onto Llama 2. This tutorial will be updated when the feature becomes available to rely on Llama 3 exclusively.\n",
    "\n",
    "### OctoAI\n",
    "We'll use [OctoAI](https://octo.ai/) to power all of the GenAI model needs of this notebook: LLMs, image gen, image animation.\n",
    "* To use OctoAI, you'll need to go to https://octoai.cloud/ and sign in using your Google or GitHub account.\n",
    "* Next you'll need to generate an OctoAI API token by following these [instructions](https://octo.ai/docs/getting-started/how-to-create-an-octoai-access-token). Keep the API token in hand, we'll need it further down in this notebook.\n",
    "\n",
    "In this example we will use the Llama 3 70b instruct model. You can find more on Llama models on the [OctoAI text generation solution page](https://octoai.cloud/text).\n",
    "\n",
    "At the time of writing this notebook the following Llama models are available on OctoAI:\n",
    "* meta-llama-3-8b-instruct\n",
    "* meta-llama-3-70b-instruct\n",
    "* codellama-7b-instruct\n",
    "* codellama-13b-instruct\n",
    "* codellama-34b-instruct\n",
    "* llama-2-13b-chat\n",
    "* llama-2-70b-chat\n",
    "* llamaguard-7b\n",
    "\n",
    "### Weaviate\n",
    "We'll use Weaviate Cloud Services (WCS) for our vector database. You can create an account and Weaviate clusters easily at the following link: https://console.weaviate.cloud/.\n",
    "You can then create a cluster, from which you can obtain the REST Endpoint URL and the API key to use the cluster endpoint.\n",
    "\n",
    "### OpenAI\n",
    "We'll be using OpenAI for its embedding model to upsert our vectors into the Weaviate vector database. Create an account and obtain an API key here: https://openai.com/api/\n",
    "\n",
    "### Local Python Notebook\n",
    "We highly recommend launching this notebook from a fresh python environment, for instance you can run the following:\n",
    "```\n",
    "python3 -m venv .venv         \n",
    "source .venv/bin/activate\n",
    "```\n",
    "All you need to run this notebook is to install jupyter notebook with `python3 -m pip install notebook` then run `jupyter notebook` ([link](https://jupyter.org/install)) in the same directory as this `.ipynb` file.\n",
    "You don't need to install additional pip packages ahead of running the notebook, since those will be installed right at the beginning. You will need to ensure your system has `imagemagick` installed by following the [instructions](https://imagemagick.org/script/download.php)."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "133c2ea4-0256-49cf-9f5a-a9e5bb0bb63f",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Let's start by installing the appropriate python packages\n",
    "! pip install octoai===1.0.2 openai weaviate-client pandas gradio pydantic"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "75341227-43f8-4a68-b3cb-31e8216f874e",
   "metadata": {},
   "source": [
    "## Part 1: Review Summarization"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "793c06d7-fa67-4c67-a380-081ed3a7a7bf",
   "metadata": {},
   "source": [
    "Let's start by importing all of the packages we need for this example"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "edd366c8-4f0b-4211-83d3-c16e88cbd5c8",
   "metadata": {},
   "outputs": [],
   "source": [
    "import gradio\n",
    "import json\n",
    "import langchain\n",
    "import os\n",
    "import openai\n",
    "import weaviate\n",
    "from getpass import getpass\n",
    "from json import loads\n",
    "from pandas import DataFrame, concat, read_csv\n",
    "from pydantic import BaseModel, Field\n",
    "from typing import List\n",
    "import weaviate.classes as wvc"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "cd171a7c-c5e7-46d5-8a04-a0f7863609be",
   "metadata": {},
   "source": [
    "Enter your OctoAI, Weaviate, and OpenAI tokens below"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "3af09686-a654-45b0-98c5-dee6f30440c7",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Get OctoAI API token for Llama 2 & 3\n",
    "OCTOAI_API_TOKEN = getpass()\n",
    "os.environ[\"OCTOAI_API_TOKEN\"] = OCTOAI_API_TOKEN"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "31c3e684-6e5e-41ad-81d4-970b06522553",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Get WCS API key\n",
    "WCS_API_KEY = getpass()\n",
    "os.environ[\"WCS_API_KEY\"] = WCS_API_KEY"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a44f7b71-c4f9-4fd6-9a3b-1322c2fd0c35",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Get WCS URL\n",
    "WCS_URL = getpass()\n",
    "os.environ[\"WCS_URL\"] = WCS_URL"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e4502dfa-c369-4085-a697-fdcda00f970b",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Get OpenAI API key for the embedding model\n",
    "OPENAI_API_KEY = getpass()\n",
    "os.environ[\"OPENAI_API_KEY\"] = OPENAI_API_KEY"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "883986ad-9f60-44d8-ab64-3f566261e055",
   "metadata": {},
   "outputs": [],
   "source": [
    "# First let's load the dataset from Kaggle: https://www.kaggle.com/datasets/eswarchandt/amazon-music-reviews\n",
    "df = read_csv('Musical_instruments_reviews.csv')"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "c05865a7-307a-425e-a6ee-f057d63db77b",
   "metadata": {},
   "source": [
    "Set `product_record_limit` to a lower number if you just want to do a test run"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "22f024e7-3976-425f-b684-8b2c2c1ed191",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Set a product record limit\n",
    "product_record_limit = 900"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "06554f51-5983-42fc-8a8e-684ae82099db",
   "metadata": {
    "scrolled": true
   },
   "source": [
    "# List all of the unique ASIN:\n",
    "asin_list = df.asin.unique()\n",
    "print(\"There are {} unique products in the music product inventory\".format(len(asin_list)))"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "4941baa1-107b-4f39-8d04-1daa5acd465b",
   "metadata": {},
   "source": [
    "For each one of the unique products, let's group the reviews together and sort them by how recent they are"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "38147b91-2425-46a7-b6c0-221173d81024",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Get the reviews for the product ASIN, sorted by recency and store in dict\n",
    "review_dict = {}\n",
    "for asin in asin_list[0:product_record_limit]:\n",
    "    reviews = df.loc[df['asin'] == asin]\\\n",
    "                .sort_values([\"unixReviewTime\"], axis=0, ascending=False)\\\n",
    "                .reviewText.tolist()\n",
    "    review_dict[asin] = reviews"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "7d5fb78d-808a-4753-abba-4a3066d76ba7",
   "metadata": {},
   "source": [
    "To be able to store our summaries into our vector DB, we need to have the fields formatted into a JSON object. We use Pydantic base class model here to define our formatting."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b786cde1-116a-47eb-8478-3fa2285dcf9d",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Define the Pydantic model that specifies how our output should be formatted\n",
    "class ProductRecord(BaseModel):\n",
    "    \"\"\"The record of a given product\"\"\"\n",
    "    description: str = Field(description=\"Description of the product\")\n",
    "    name: str = Field(description=\"Name of the product\")\n",
    "    review_summary: str = Field(description=\"Summary of all of the reviews\")\n",
    "    ASIN: str = Field(description=\"ASIN of the product\")\n",
    "    features: str = Field(description=\"Features of the product based on the reviews\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "08226a6e-f994-454b-9a1d-6246b34bfca2",
   "metadata": {},
   "source": [
    "We define our prompt template below."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "1cc3fe69-bf0c-4a50-8d9c-1ae6cb99a9ca",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Prepare a prompt template\n",
    "template = '''\n",
    "Here are product reviews for a music product with an ID of {asin}.\n",
    " - Respond back only as only JSON!\n",
    " - Provide:\n",
    "     - the product \"description\",\n",
    "     - the product \"name\",\n",
    "     - a summary of all the reviews as \"review_summary\",\n",
    "     - the \"ASIN\" and\n",
    "     - and the product \"features\" based on the content of these reviews. \n",
    " - The \"features\" should be a string describing the features and NOT JSON. \n",
    " - Do not include the ASIN in the description field.\n",
    " \n",
    "The reviews for the product are: {reviews}\n",
    "'''"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "9b8dc3fa-4ad9-4329-96a0-353b05a1c43e",
   "metadata": {},
   "source": [
    "We initialize the OctoAI client using OpenAI's API. All we have to do is override the `base_url` and `api_key`."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "57c2ff0a-8029-41a6-a06f-41e560b92230",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Init OctoAI client\n",
    "client = openai.OpenAI(\n",
    "    base_url=\"https://text.octoai.run/v1\",\n",
    "    api_key=os.environ[\"OCTOAI_API_TOKEN\"]\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "bd0eb425-ceea-4258-a52d-814b7335febb",
   "metadata": {},
   "source": [
    "Iterate over all product ASINs and summarize the top 20 most recent reviews. Note: this takes a while to run unless we parallelize it."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "1a55839e-a824-4919-b755-730eaac48d83",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Produce the 900 product summaries\n",
    "review_summaries = []\n",
    "counter = 0\n",
    "\n",
    "# This can take a while to process serially (30min+)\n",
    "# TODO: Optimize to run in a few parallel threads to run faster while meeting the 240RPM limit\n",
    "for asin, review_list in review_dict.items():\n",
    "    print(f'Getting review summary {counter} of {len(review_dict)}, ASIN: {asin}')\n",
    "    try:\n",
    "        response = client.chat.completions.create(\n",
    "            model=\"llama-2-70b-chat\",\n",
    "            messages=[\n",
    "                {\"role\": \"system\", \"content\": \"You are a helpful assistant.\"},\n",
    "                {\"role\": \"user\", \"content\": template.format(\n",
    "                    asin = asin,\n",
    "                    reviews = review_list[0:20]\n",
    "                )},\n",
    "            ],\n",
    "            temperature=0,\n",
    "            response_format={\"type\": \"json_object\", \"schema\": ProductRecord.model_json_schema()},\n",
    "            max_tokens=1024\n",
    "        )\n",
    "        print(\"\\n{}\\n\".format(response.choices[0].message.content))\n",
    "        summary = loads(response.choices[0].message.content)\n",
    "        summary[\"ASIN\"] = asin\n",
    "        review_summaries.append(summary)\n",
    "    except:\n",
    "        print(f'Issue with ASIN {asin}, skipping')\n",
    "        pass\n",
    "    counter += 1\n",
    "\n",
    "review_summaries = DataFrame(review_summaries)\n",
    "\n",
    "print(review_summaries)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "4772d1c1-c9c4-466e-9c80-259804a4286b",
   "metadata": {},
   "source": [
    "# Part 2: Retrieval Augmented Generation"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "ccd97408-d47f-46f3-b601-f66f8a3b20ff",
   "metadata": {},
   "source": [
    "For our RAG use case we're going to rely on Weaviate vector database and on an OpenAI embedding model. \n",
    "\n",
    "When you define your collection, you'll need to provide properties, i.e. object attributes that you want to store in the collection. These properties map 1:1 to the JSON dictionary keys defined earlier for the `ProductRecord` Pydantic base model."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "5dad98ec-531d-4fc2-aed9-9f337b957feb",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Connect to WCS\n",
    "wcs_client = weaviate.connect_to_wcs(\n",
    "    cluster_url=os.getenv(\"WCS_URL\"),\n",
    "    auth_credentials=weaviate.auth.AuthApiKey(os.getenv(\"WCS_API_KEY\")),\n",
    "    headers={\n",
    "        \"X-OpenAI-Api-Key\": os.environ[\"OPENAI_API_KEY\"]\n",
    "    }\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "02953f7b-0149-4c13-a7cc-c4dd1da45d43",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Create the collection if it doesn't already exist\n",
    "try:\n",
    "    collection = wcs_client.collections.get(\"Products\")\n",
    "except:\n",
    "    # Create the collection for products\n",
    "    collection = wcs_client.collections.create(\n",
    "        name=\"Products\",\n",
    "        vectorizer_config=wvc.config.Configure.Vectorizer.text2vec_openai(),\n",
    "        properties=[\n",
    "            wvc.config.Property(\n",
    "                name=\"ASIN\",\n",
    "                data_type=wvc.config.DataType.TEXT\n",
    "            ),\n",
    "             wvc.config.Property(\n",
    "                name=\"name\",\n",
    "                data_type=wvc.config.DataType.TEXT\n",
    "            ),\n",
    "             wvc.config.Property(\n",
    "                name=\"review_summary\",\n",
    "                data_type=wvc.config.DataType.TEXT\n",
    "            ),\n",
    "             wvc.config.Property(\n",
    "                name=\"features\",\n",
    "                data_type=wvc.config.DataType.TEXT\n",
    "            ),\n",
    "             wvc.config.Property(\n",
    "                name=\"description\",\n",
    "                data_type=wvc.config.DataType.TEXT\n",
    "            ),\n",
    "        ]\n",
    "    )\n",
    "    print(\"Collection Created!\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "1551fd74-b143-4c02-9b56-364d33683fd3",
   "metadata": {},
   "source": [
    "Now we upsert all of the vectors into the databse using OpenAI's embedding model."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "53f779e7-b875-4a19-9f9c-74b45992608e",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Convert df to JSON string and then to a list of dictionaries\n",
    "data = review_summaries.to_json(orient='records')\n",
    "data_list = json.loads(data)\n",
    "\n",
    "items_to_insert = []\n",
    "\n",
    "for d in data_list:\n",
    "    new_item = {\n",
    "        \"ASIN\": d[\"ASIN\"],\n",
    "        \"name\": d[\"name\"],\n",
    "        \"description\": d[\"description\"],  \\\n",
    "        \"features\": d[\"features\"],\n",
    "        \"review_summary\": d[\"review_summary\"]\n",
    "    }\n",
    "    items_to_insert.append(new_item)\n",
    "\n",
    "    # Insert every 100 items\n",
    "    if len(items_to_insert) == 100:\n",
    "        collection.data.insert_many(items_to_insert)\n",
    "        items_to_insert.clear()\n",
    "\n",
    "# Insert remaining items\n",
    "if len(items_to_insert) > 0:\n",
    "    collection.data.insert_many(items_to_insert)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "35079318-41a5-46fc-8475-5d728550fb88",
   "metadata": {},
   "source": [
    "Let's now try to run a hybrid search on the following query below.\n",
    "Hybrid search combines the results of a vector search and a keyword (BM25F) search by fusing the two result sets.\n",
    "It will return the 3 closest entries in the database according to the search criteria."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "5f707954-c36b-4a83-874b-f817bd33c39a",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Hybrid search\n",
    "response = collection.query.hybrid(\n",
    "    query=\"easy to learn instrument\",\n",
    "    limit=3\n",
    ")\n",
    "for o in response.objects:\n",
    "    print(o.properties)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "04d39507-5e8e-4374-a33c-53e57db6ef99",
   "metadata": {},
   "source": [
    "Let's now define a helper function that gives us the relevant context given a string query. Let's see what it returns based on the question: \"What is a good beginner harmonica\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a1ca51c7-83e5-4896-acc9-753060592ba0",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Helper function to run hybrid search on a user query and return the closest\n",
    "# product review summaries relevant to the user query\n",
    "def get_context(question, limit=3):\n",
    "    response = collection.query.hybrid(\n",
    "        query=question,\n",
    "        limit=limit\n",
    "    )\n",
    "    return \"\\n\".join([str(o.properties) for o in response.objects])\n",
    "\n",
    "print(get_context(\"What is a good beginner harmonica\"))"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "677f534c-8be4-4b6b-82d9-2df8e2ad12d4",
   "metadata": {},
   "source": [
    "Great, we're now ready to build a sales assistant helper function.\n",
    "\n",
    "We first define a prompt template for Llama 3 - based on the context provided by the vector hybrid search (i.e. collection of product summaries of relevance to the question), provide a helpful recommendation to the customer. \n",
    "\n",
    "Also provide links to the product that the user can click on to view the product on Amazon's website. For that we use the fact that any product referenced by its aSIN can be accessed at the following url: `https://www.amazon.com/exec/obidos/ASIN/<insert aSIN here>`"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "856d021a-add5-48f4-a09c-258d2a617095",
   "metadata": {},
   "outputs": [],
   "source": [
    "sales_template = \"\"\"\n",
    "You are a sales assistant. Answer the user questions as helpfully as possible.\n",
    "Only recommend the products that are provided in the context provided below.\n",
    "\n",
    "Provide a reference to each product you mention with hyperlinks:\n",
    "* Provide the name of the product\n",
    "* Embed the hyperlink in the name of the product as follows\n",
    "    * If the product name is \"Solid Electric Guitar Case with Accessories Compartment\"\n",
    "    * And the aSIN is \"B001EL6I8W\"\n",
    "    * Format the reference as follows: \n",
    "         [Solid Electric Guitar Case with Accessories Compartment](https://www.amazon.com/exec/obidos/ASIN/B001EL6I8W)\n",
    "\n",
    "Finish with a references section.\n",
    "\n",
    "Customer question: {}\n",
    "\n",
    "Product context: {}\n",
    "\n",
    "AI:\n",
    "\"\"\"\n",
    "\n",
    "def sales_assistant(question):  \n",
    "    response = client.chat.completions.create(\n",
    "                model=\"meta-llama-3-70b-instruct\",\n",
    "                messages=[\n",
    "                    {\"role\": \"system\", \"content\": \"You are a helpful assistant.\"},\n",
    "                    {\"role\": \"user\", \"content\": sales_template.format(question, get_context(question, limit=10))},\n",
    "                ],\n",
    "                temperature=0,\n",
    "                max_tokens=1024\n",
    "            )\n",
    "    \n",
    "    return response.choices[0].message.content\n",
    "\n",
    "print(sales_assistant(\"what is must have accessory for my new electric guitar\"))"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "faccba14-9216-4420-b6c5-ddf4029d7904",
   "metadata": {},
   "source": [
    "# Part 3: Gradio-based sales assistant demo"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "3e2b73b5-6bdf-4c87-b044-2690fd52605f",
   "metadata": {},
   "source": [
    "In this section we build a simple an interactive sales bot assistant using Gradio."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "53805acb-3e8d-40fa-8045-c589cb14eadd",
   "metadata": {},
   "outputs": [],
   "source": [
    "import gradio as gr\n",
    "\n",
    "def predict(message, history):\n",
    "    history_openai_format = []\n",
    "    for human, assistant in history:\n",
    "        history_openai_format.append({\"role\": \"user\", \"content\": human})\n",
    "        history_openai_format.append({\"role\": \"assistant\", \"content\": assistant})\n",
    "    history_openai_format.append({\"role\": \"user\", \"content\": sales_template.format(message, get_context(message, limit=5))})\n",
    "\n",
    "    response = client.chat.completions.create(\n",
    "        model = 'meta-llama-3-70b-instruct',\n",
    "        messages = history_openai_format,\n",
    "        temperature = 0.0,\n",
    "        stream = True\n",
    "     )\n",
    "\n",
    "    partial_message = \"\"\n",
    "    for chunk in response:\n",
    "        if chunk.choices[0].delta.content is not None:\n",
    "              partial_message = partial_message + chunk.choices[0].delta.content\n",
    "              yield partial_message\n",
    "\n",
    "gr.ChatInterface(predict).launch()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "6d4e65fe-0246-40b7-adb6-9091cccbc486",
   "metadata": {},
   "source": [
    "**Authors**\n",
    "- Thierry Moreau, OctoAI - tmoreau@octo.ai\n",
    "- Jonathan Tuite, Weaviate - jon@weaviate.io"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.6"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}