Commit c7c477c7 authored by chenych's avatar chenych
Browse files

add grpo

parents
Pipeline #2942 failed with stages
in 0 seconds
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
template: llama3
infer_backend: huggingface # choices: [huggingface, vllm, sglang]
trust_remote_code: true
model_name_or_path: saves/llama3-8b/full/sft
template: llama3
infer_backend: huggingface # choices: [huggingface, vllm, sglang]
trust_remote_code: true
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
adapter_name_or_path: saves/llama3-8b/lora/sft
template: llama3
infer_backend: huggingface # choices: [huggingface, vllm, sglang]
trust_remote_code: true
model_name_or_path: Qwen/Qwen2.5-VL-7B-Instruct
template: qwen2_vl
infer_backend: huggingface # choices: [huggingface, vllm, sglang]
trust_remote_code: true
### model
model_name_or_path: saves/llama3-8b/full/sft
template: llama3
trust_remote_code: true
### export
export_dir: output/llama3_full_sft
export_size: 5
export_device: cpu # choices: [cpu, auto]
export_legacy_format: false
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
template: llama3
trust_remote_code: true
### export
export_dir: output/llama3_gptq
export_quantization_bit: 4
export_quantization_dataset: data/c4_demo.jsonl
export_size: 5
export_device: cpu # choices: [cpu, auto]
export_legacy_format: false
### Note: DO NOT use quantized model or quantization_bit when merging lora adapters
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
adapter_name_or_path: saves/llama3-8b/lora/sft
template: llama3
trust_remote_code: true
### export
export_dir: output/llama3_lora_sft
export_size: 5
export_device: cpu # choices: [cpu, auto]
export_legacy_format: false
### Note: DO NOT use quantized model or quantization_bit when merging lora adapters
### model
model_name_or_path: Qwen/Qwen2.5-VL-7B-Instruct
adapter_name_or_path: saves/qwen2_5vl-7b/lora/sft
template: qwen2_vl
trust_remote_code: true
### export
export_dir: output/qwen2_5vl_lora_sft
export_size: 5
export_device: cpu # choices: [cpu, auto]
export_legacy_format: false
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
trust_remote_code: true
### method
stage: sft
do_train: true
finetuning_type: full
deepspeed: examples/deepspeed/ds_z3_config.json # choices: [ds_z0_config.json, ds_z2_config.json, ds_z3_config.json]
### dataset
dataset: identity,alpaca_en_demo
template: llama3
cutoff_len: 2048
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
dataloader_num_workers: 4
### output
output_dir: saves/llama3-8b/full/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
save_only_model: false
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 2
learning_rate: 1.0e-5
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
bf16: true
ddp_timeout: 180000000
resume_from_checkpoint: null
### eval
# eval_dataset: alpaca_en_demo
# val_size: 0.1
# per_device_eval_batch_size: 1
# eval_strategy: steps
# eval_steps: 500
### model
model_name_or_path: Qwen/Qwen2.5-VL-7B-Instruct
image_max_pixels: 262144
video_max_pixels: 16384
trust_remote_code: true
### method
stage: sft
do_train: true
finetuning_type: full
freeze_vision_tower: true
freeze_multi_modal_projector: true
freeze_language_model: false
deepspeed: examples/deepspeed/ds_z3_config.json
### dataset
dataset: mllm_demo,identity,alpaca_en_demo
template: qwen2_vl
cutoff_len: 2048
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
dataloader_num_workers: 4
### output
output_dir: saves/qwen2_5vl-7b/full/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
save_only_model: false
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 2
learning_rate: 1.0e-5
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
bf16: true
ddp_timeout: 180000000
resume_from_checkpoint: null
### eval
# val_size: 0.1
# per_device_eval_batch_size: 1
# eval_strategy: steps
# eval_steps: 500
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
trust_remote_code: true
### method
stage: dpo
do_train: true
finetuning_type: lora
lora_rank: 8
lora_target: all
pref_beta: 0.1
pref_loss: sigmoid # choices: [sigmoid (dpo), orpo, simpo]
### dataset
dataset: dpo_en_demo
template: llama3
cutoff_len: 2048
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
dataloader_num_workers: 4
### output
output_dir: saves/llama3-8b/lora/dpo
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
save_only_model: false
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 5.0e-6
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
bf16: true
ddp_timeout: 180000000
resume_from_checkpoint: null
### eval
# eval_dataset: dpo_en_demo
# val_size: 0.1
# per_device_eval_batch_size: 1
# eval_strategy: steps
# eval_steps: 500
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
adapter_name_or_path: saves/llama3-8b/lora/sft
trust_remote_code: true
### method
finetuning_type: lora
### dataset
task: mmlu_test # choices: [mmlu_test, ceval_validation, cmmlu_test]
template: fewshot
lang: en
n_shot: 5
### output
save_dir: saves/llama3-8b/lora/eval
### eval
batch_size: 4
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
trust_remote_code: true
### method
stage: kto
do_train: true
finetuning_type: lora
lora_rank: 8
lora_target: all
pref_beta: 0.1
### dataset
dataset: kto_en_demo
template: llama3
cutoff_len: 2048
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
dataloader_num_workers: 4
### output
output_dir: saves/llama3-8b/lora/kto
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 5.0e-6
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
bf16: true
ddp_timeout: 180000000
### eval
# val_size: 0.1
# per_device_eval_batch_size: 1
# eval_strategy: steps
# eval_steps: 500
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
reward_model: saves/llama3-8b/lora/reward
trust_remote_code: true
### method
stage: ppo
do_train: true
finetuning_type: lora
lora_rank: 8
lora_target: all
### dataset
dataset: identity,alpaca_en_demo
template: llama3
cutoff_len: 2048
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
dataloader_num_workers: 4
### output
output_dir: saves/llama3-8b/lora/ppo
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 1.0e-5
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
bf16: true
ddp_timeout: 180000000
### generate
max_new_tokens: 512
top_k: 0
top_p: 0.9
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
trust_remote_code: true
### method
stage: pt
do_train: true
finetuning_type: lora
lora_rank: 8
lora_target: all
### dataset
dataset: c4_demo
cutoff_len: 2048
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
dataloader_num_workers: 4
### output
output_dir: saves/llama3-8b/lora/pretrain
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
save_only_model: false
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
bf16: true
ddp_timeout: 180000000
resume_from_checkpoint: null
### eval
# eval_dataset: c4_demo
# val_size: 0.1
# per_device_eval_batch_size: 1
# eval_strategy: steps
# eval_steps: 500
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
trust_remote_code: true
### method
stage: rm
do_train: true
finetuning_type: lora
lora_rank: 8
lora_target: all
### dataset
dataset: dpo_en_demo
template: llama3
cutoff_len: 2048
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
dataloader_num_workers: 4
### output
output_dir: saves/llama3-8b/lora/reward
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
save_only_model: false
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
bf16: true
ddp_timeout: 180000000
resume_from_checkpoint: null
### eval
# eval_dataset: dpo_en_demo
# val_size: 0.1
# per_device_eval_batch_size: 1
# eval_strategy: steps
# eval_steps: 500
#!/bin/bash
set -x
MODEL_PATH=meta-llama/Meta-Llama-3-8B-Instruct
llamafactory-cli train \
--model_name_or_path ${MODEL_PATH} \
--trust_remote_code \
--stage sft \
--do_train \
--finetuning_type lora \
--lora_rank 8 \
--lora_target all \
--dataset identity,alpaca_en_demo \
--template llama3 \
--cutoff_len 2048 \
--max_samples 1000 \
--overwrite_cache \
--preprocessing_num_workers 16 \
--dataloader_num_workers 4 \
--output_dir saves/llama3-8b/lora/sft \
--logging_steps 10 \
--save_steps 500 \
--plot_loss \
--overwrite_output_dir \
--save_only_model false \
--report_to none \
--per_device_train_batch_size 1 \
--gradient_accumulation_steps 8 \
--learning_rate 1e-4 \
--num_train_epochs 3.0 \
--lr_scheduler_type cosine \
--warmup_ratio 0.1 \
--bf16 \
--ddp_timeout 180000000
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
trust_remote_code: true
### method
stage: sft
do_train: true
finetuning_type: lora
lora_rank: 8
lora_target: all
### dataset
dataset: identity,alpaca_en_demo
template: llama3
cutoff_len: 2048
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
dataloader_num_workers: 4
### output
output_dir: saves/llama3-8b/lora/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
save_only_model: false
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
bf16: true
ddp_timeout: 180000000
resume_from_checkpoint: null
### eval
# eval_dataset: alpaca_en_demo
# val_size: 0.1
# per_device_eval_batch_size: 1
# eval_strategy: steps
# eval_steps: 500
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
trust_remote_code: true
### method
stage: sft
do_train: true
finetuning_type: lora
lora_rank: 8
lora_target: all
deepspeed: examples/deepspeed/ds_z3_config.json # choices: [ds_z0_config.json, ds_z2_config.json, ds_z3_config.json]
### dataset
dataset: identity,alpaca_en_demo
template: llama3
cutoff_len: 2048
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
dataloader_num_workers: 4
### output
output_dir: saves/llama3-8b/lora/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
save_only_model: false
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 2
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
bf16: true
ddp_timeout: 180000000
resume_from_checkpoint: null
### eval
# eval_dataset: alpaca_en_demo
# val_size: 0.1
# per_device_eval_batch_size: 1
# eval_strategy: steps
# eval_steps: 500
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct # or use local absolute path
trust_remote_code: true
### method
stage: sft
do_train: true
finetuning_type: lora
lora_rank: 8
lora_target: all
### dataset
dataset: identity,alpaca_en_demo
dataset_dir: REMOTE:llamafactory/demo_data # or use local absolute path
template: llama3
cutoff_len: 2048
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
dataloader_num_workers: 4
### output
output_dir: tmp_dir
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
save_only_model: false
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### ray
ray_run_name: llama3_8b_sft_lora
ray_storage_path: ./saves
ray_num_workers: 4 # Number of GPUs to use.
placement_strategy: PACK
resources_per_worker:
GPU: 1
# ray_init_kwargs:
# runtime_env:
# env_vars:
# <YOUR-ENV-VAR-HERE>: "<YOUR-ENV-VAR-HERE>"
# pip:
# - emoji
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
bf16: true
ddp_timeout: 180000000
resume_from_checkpoint: null
### eval
# eval_dataset: alpaca_en_demo
# val_size: 0.1
# per_device_eval_batch_size: 1
# eval_strategy: steps
# eval_steps: 500
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment