# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ GLUE processors and helpers """ from utils import DataProcessor import logging import os logger = logging.getLogger(__name__) def convert_examples_to_glue_features(examples, label_list, max_seq_length, tokenizer, output_mode, pad_on_left=False, pad_token=0, pad_token_segment_id=0, mask_padding_with_zero=True): """ Loads a data file into a list of `InputBatch`s """ label_map = {label: i for i, label in enumerate(label_list)} features = [] for (ex_index, example) in enumerate(examples): if ex_index % 10000 == 0: logger.info("Writing example %d of %d" % (ex_index, len(examples))) inputs = tokenizer.encode_plus( example.text_a, example.text_b, add_special_tokens=True, output_token_type=True, max_length=max_seq_length, truncate_first_sequence=True # We're truncating the first sequence as a priority ) input_ids, segment_ids = inputs["input_ids"], inputs["token_type_ids"] # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. input_mask = [1 if mask_padding_with_zero else 0] * len(input_ids) # Zero-pad up to the sequence length. padding_length = max_seq_length - len(input_ids) if pad_on_left: input_ids = ([pad_token] * padding_length) + input_ids input_mask = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask segment_ids = ([pad_token_segment_id] * padding_length) + segment_ids else: input_ids = input_ids + ([pad_token] * padding_length) input_mask = input_mask + ([0 if mask_padding_with_zero else 1] * padding_length) segment_ids = segment_ids + ([pad_token_segment_id] * padding_length) assert len(input_ids) == max_seq_length assert len(input_mask) == max_seq_length assert len(segment_ids) == max_seq_length if output_mode == "classification": label_id = label_map[example.label] elif output_mode == "regression": label_id = float(example.label) else: raise KeyError(output_mode) if ex_index < 5: logger.info("*** Example ***") logger.info("guid: %s" % (example.guid)) logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids])) logger.info("input_mask: %s" % " ".join([str(x) for x in input_mask])) logger.info("segment_ids: %s" % " ".join([str(x) for x in segment_ids])) logger.info("label: %s (id = %d)" % (example.label, label_id)) features.append( InputFeatures(input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, label_id=label_id)) return features class InputExample(object): """A single training/test example for simple sequence classification.""" def __init__(self, guid, text_a, text_b=None, label=None): """Constructs a InputExample. Args: guid: Unique id for the example. text_a: string. The untokenized text of the first sequence. For single sequence tasks, only this sequence must be specified. text_b: (Optional) string. The untokenized text of the second sequence. Only must be specified for sequence pair tasks. label: (Optional) string. The label of the example. This should be specified for train and dev examples, but not for test examples. """ self.guid = guid self.text_a = text_a self.text_b = text_b self.label = label class InputFeatures(object): """A single set of features of data.""" def __init__(self, input_ids, input_mask, segment_ids, label_id): self.input_ids = input_ids self.input_mask = input_mask self.segment_ids = segment_ids self.label_id = label_id class MrpcProcessor(DataProcessor): """Processor for the MRPC data set (GLUE version).""" def get_train_examples(self, data_dir): """See base class.""" logger.info("LOOKING AT {}".format(os.path.join(data_dir, "train.tsv"))) return self._create_examples( self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") def get_labels(self): """See base class.""" return ["0", "1"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, i) text_a = line[3] text_b = line[4] label = line[0] examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples class MnliProcessor(DataProcessor): """Processor for the MultiNLI data set (GLUE version).""" def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "dev_matched.tsv")), "dev_matched") def get_labels(self): """See base class.""" return ["contradiction", "entailment", "neutral"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, line[0]) text_a = line[8] text_b = line[9] label = line[-1] examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples class MnliMismatchedProcessor(MnliProcessor): """Processor for the MultiNLI Mismatched data set (GLUE version).""" def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "dev_mismatched.tsv")), "dev_matched") class ColaProcessor(DataProcessor): """Processor for the CoLA data set (GLUE version).""" def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") def get_labels(self): """See base class.""" return ["0", "1"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): guid = "%s-%s" % (set_type, i) text_a = line[3] label = line[1] examples.append( InputExample(guid=guid, text_a=text_a, text_b=None, label=label)) return examples class Sst2Processor(DataProcessor): """Processor for the SST-2 data set (GLUE version).""" def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") def get_labels(self): """See base class.""" return ["0", "1"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, i) text_a = line[0] label = line[1] examples.append( InputExample(guid=guid, text_a=text_a, text_b=None, label=label)) return examples class StsbProcessor(DataProcessor): """Processor for the STS-B data set (GLUE version).""" def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") def get_labels(self): """See base class.""" return [None] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, line[0]) text_a = line[7] text_b = line[8] label = line[-1] examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples class QqpProcessor(DataProcessor): """Processor for the QQP data set (GLUE version).""" def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") def get_labels(self): """See base class.""" return ["0", "1"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, line[0]) try: text_a = line[3] text_b = line[4] label = line[5] except IndexError: continue examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples class QnliProcessor(DataProcessor): """Processor for the QNLI data set (GLUE version).""" def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev_matched") def get_labels(self): """See base class.""" return ["entailment", "not_entailment"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, line[0]) text_a = line[1] text_b = line[2] label = line[-1] examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples class RteProcessor(DataProcessor): """Processor for the RTE data set (GLUE version).""" def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") def get_labels(self): """See base class.""" return ["entailment", "not_entailment"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, line[0]) text_a = line[1] text_b = line[2] label = line[-1] examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples class WnliProcessor(DataProcessor): """Processor for the WNLI data set (GLUE version).""" def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") def get_labels(self): """See base class.""" return ["0", "1"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, line[0]) text_a = line[1] text_b = line[2] label = line[-1] examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples GLUE_TASKS_NUM_LABELS = { "cola": 2, "mnli": 3, "mrpc": 2, "sst-2": 2, "sts-b": 1, "qqp": 2, "qnli": 2, "rte": 2, "wnli": 2, }