import tensorflow as tf import tensorflow_datasets from pytorch_transformers import BertTokenizer, BertForSequenceClassification, TFBertForSequenceClassification, glue_convert_examples_to_features # Load tokenizer, model, dataset tokenizer = BertTokenizer.from_pretrained('bert-base-cased') tf_model = TFBertForSequenceClassification.from_pretrained('bert-base-cased') dataset = tensorflow_datasets.load("glue/mrpc") # Prepare dataset for GLUE train_dataset = glue_convert_examples_to_features(dataset['train'], tokenizer, task='mrpc', max_length=128) valid_dataset = glue_convert_examples_to_features(dataset['validation'], tokenizer, task='mrpc', max_length=128) train_dataset = train_dataset.shuffle(100).batch(32).repeat(3) valid_dataset = valid_dataset.batch(64) # Compile tf.keras model for training learning_rate = tf.keras.optimizers.schedules.PolynomialDecay(2e-5, 345, end_learning_rate=0) optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate, epsilon=1e-08, clipnorm=1.0) loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) tf_model.compile(optimizer=optimizer, loss=loss, metrics=['sparse_categorical_accuracy']) # Train and evaluate using tf.keras.Model.fit() tf_model.fit(train_dataset, epochs=3, steps_per_epoch=115, validation_data=valid_dataset, validation_steps=7) # Save the model and load it in PyTorch tf_model.save_pretrained('./runs/') pt_model = BertForSequenceClassification.from_pretrained('./runs/', from_tf=True) # Quickly inspect a few predictions inputs = tokenizer.encode_plus("I said the company is doing great", "The company has good results", add_special_tokens=True, return_tensors='pt') pred = pt_model(torch.tensor(tokens))