# flake8: noqa # There's no way to ignore "F401 '...' imported but unused" warnings in this # module, but to preserve other warnings. So, don't check this module at all. __version__ = "2.4.1" # Work around to update TensorFlow's absl.logging threshold which alters the # default Python logging output behavior when present. # see: https://github.com/abseil/abseil-py/issues/99 # and: https://github.com/tensorflow/tensorflow/issues/26691#issuecomment-500369493 try: import absl.logging except ImportError: pass else: absl.logging.set_verbosity("info") absl.logging.set_stderrthreshold("info") absl.logging._warn_preinit_stderr = False import logging from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig from .configuration_auto import ALL_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoConfig from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig from .configuration_camembert import CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CamembertConfig from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .configuration_distilbert import DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig from .configuration_flaubert import FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, FlaubertConfig from .configuration_gpt2 import GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2Config from .configuration_mmbt import MMBTConfig from .configuration_openai import OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OpenAIGPTConfig from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig from .configuration_t5 import T5_PRETRAINED_CONFIG_ARCHIVE_MAP, T5Config from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig # Configurations from .configuration_utils import PretrainedConfig from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig from .configuration_xlm_roberta import XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig from .data import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadV1Processor, SquadV2Processor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, is_sklearn_available, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, ) # Files and general utilities from .file_utils import ( CONFIG_NAME, MODEL_CARD_NAME, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, add_end_docstrings, add_start_docstrings, cached_path, is_tf_available, is_torch_available, ) # Model Cards from .modelcard import ModelCard # TF 2.0 <=> PyTorch conversion utilities from .modeling_tf_pytorch_utils import ( convert_tf_weight_name_to_pt_weight_name, load_pytorch_checkpoint_in_tf2_model, load_pytorch_model_in_tf2_model, load_pytorch_weights_in_tf2_model, load_tf2_checkpoint_in_pytorch_model, load_tf2_model_in_pytorch_model, load_tf2_weights_in_pytorch_model, ) # Pipelines from .pipelines import ( CsvPipelineDataFormat, FeatureExtractionPipeline, FillMaskPipeline, JsonPipelineDataFormat, NerPipeline, PipedPipelineDataFormat, Pipeline, PipelineDataFormat, QuestionAnsweringPipeline, TextClassificationPipeline, pipeline, ) from .tokenization_albert import AlbertTokenizer from .tokenization_auto import AutoTokenizer from .tokenization_bert import BasicTokenizer, BertTokenizer, BertTokenizerFast, WordpieceTokenizer from .tokenization_bert_japanese import BertJapaneseTokenizer, CharacterTokenizer, MecabTokenizer from .tokenization_camembert import CamembertTokenizer from .tokenization_ctrl import CTRLTokenizer from .tokenization_distilbert import DistilBertTokenizer from .tokenization_flaubert import FlaubertTokenizer from .tokenization_gpt2 import GPT2Tokenizer, GPT2TokenizerFast from .tokenization_openai import OpenAIGPTTokenizer from .tokenization_roberta import RobertaTokenizer from .tokenization_t5 import T5Tokenizer from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer # Tokenizers from .tokenization_utils import PreTrainedTokenizer from .tokenization_xlm import XLMTokenizer from .tokenization_xlm_roberta import XLMRobertaTokenizer from .tokenization_xlnet import SPIECE_UNDERLINE, XLNetTokenizer logger = logging.getLogger(__name__) # pylint: disable=invalid-name if is_sklearn_available(): from .data import glue_compute_metrics, xnli_compute_metrics # Modeling if is_torch_available(): from .modeling_utils import PreTrainedModel, prune_layer, Conv1D from .modeling_auto import ( AutoModel, AutoModelForPreTraining, AutoModelForSequenceClassification, AutoModelForQuestionAnswering, AutoModelWithLMHead, AutoModelForTokenClassification, ALL_PRETRAINED_MODEL_ARCHIVE_MAP, ) from .modeling_bert import ( BertPreTrainedModel, BertModel, BertForPreTraining, BertForMaskedLM, BertForNextSentencePrediction, BertForSequenceClassification, BertForMultipleChoice, BertForTokenClassification, BertForQuestionAnswering, load_tf_weights_in_bert, BERT_PRETRAINED_MODEL_ARCHIVE_MAP, ) from .modeling_openai import ( OpenAIGPTPreTrainedModel, OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, load_tf_weights_in_openai_gpt, OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP, ) from .modeling_transfo_xl import ( TransfoXLPreTrainedModel, TransfoXLModel, TransfoXLLMHeadModel, AdaptiveEmbedding, load_tf_weights_in_transfo_xl, TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_MAP, ) from .modeling_gpt2 import ( GPT2PreTrainedModel, GPT2Model, GPT2LMHeadModel, GPT2DoubleHeadsModel, load_tf_weights_in_gpt2, GPT2_PRETRAINED_MODEL_ARCHIVE_MAP, ) from .modeling_ctrl import CTRLPreTrainedModel, CTRLModel, CTRLLMHeadModel, CTRL_PRETRAINED_MODEL_ARCHIVE_MAP from .modeling_xlnet import ( XLNetPreTrainedModel, XLNetModel, XLNetLMHeadModel, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetForMultipleChoice, XLNetForQuestionAnsweringSimple, XLNetForQuestionAnswering, load_tf_weights_in_xlnet, XLNET_PRETRAINED_MODEL_ARCHIVE_MAP, ) from .modeling_xlm import ( XLMPreTrainedModel, XLMModel, XLMWithLMHeadModel, XLMForSequenceClassification, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLM_PRETRAINED_MODEL_ARCHIVE_MAP, ) from .modeling_roberta import ( RobertaForMaskedLM, RobertaModel, RobertaForSequenceClassification, RobertaForMultipleChoice, RobertaForTokenClassification, RobertaForQuestionAnswering, ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP, ) from .modeling_camembert import ( CamembertForMaskedLM, CamembertModel, CamembertForSequenceClassification, CamembertForTokenClassification, CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_MAP, ) from .modeling_distilbert import ( DistilBertPreTrainedModel, DistilBertForMaskedLM, DistilBertModel, DistilBertForSequenceClassification, DistilBertForQuestionAnswering, DistilBertForTokenClassification, DISTILBERT_PRETRAINED_MODEL_ARCHIVE_MAP, ) from .modeling_camembert import ( CamembertForMaskedLM, CamembertModel, CamembertForSequenceClassification, CamembertForMultipleChoice, CamembertForTokenClassification, CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_MAP, ) from .modeling_encoder_decoder import PreTrainedEncoderDecoder, Model2Model from .modeling_t5 import ( T5PreTrainedModel, T5Model, T5WithLMHeadModel, load_tf_weights_in_t5, T5_PRETRAINED_MODEL_ARCHIVE_MAP, ) from .modeling_albert import ( AlbertPreTrainedModel, AlbertModel, AlbertForMaskedLM, AlbertForSequenceClassification, AlbertForQuestionAnswering, load_tf_weights_in_albert, ALBERT_PRETRAINED_MODEL_ARCHIVE_MAP, ) from .modeling_xlm_roberta import ( XLMRobertaForMaskedLM, XLMRobertaModel, XLMRobertaForMultipleChoice, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP, ) from .modeling_mmbt import ModalEmbeddings, MMBTModel, MMBTForClassification from .modeling_flaubert import ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForSequenceClassification, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FLAUBERT_PRETRAINED_MODEL_ARCHIVE_MAP, ) # Optimization from .optimization import ( AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, ) # TensorFlow if is_tf_available(): from .modeling_tf_utils import TFPreTrainedModel, TFSharedEmbeddings, TFSequenceSummary, shape_list from .modeling_tf_auto import ( TFAutoModel, TFAutoModelForPreTraining, TFAutoModelForSequenceClassification, TFAutoModelForQuestionAnswering, TFAutoModelWithLMHead, TFAutoModelForTokenClassification, TF_ALL_PRETRAINED_MODEL_ARCHIVE_MAP, ) from .modeling_tf_bert import ( TFBertPreTrainedModel, TFBertMainLayer, TFBertEmbeddings, TFBertModel, TFBertForPreTraining, TFBertForMaskedLM, TFBertForNextSentencePrediction, TFBertForSequenceClassification, TFBertForMultipleChoice, TFBertForTokenClassification, TFBertForQuestionAnswering, TF_BERT_PRETRAINED_MODEL_ARCHIVE_MAP, ) from .modeling_tf_gpt2 import ( TFGPT2PreTrainedModel, TFGPT2MainLayer, TFGPT2Model, TFGPT2LMHeadModel, TFGPT2DoubleHeadsModel, TF_GPT2_PRETRAINED_MODEL_ARCHIVE_MAP, ) from .modeling_tf_openai import ( TFOpenAIGPTPreTrainedModel, TFOpenAIGPTMainLayer, TFOpenAIGPTModel, TFOpenAIGPTLMHeadModel, TFOpenAIGPTDoubleHeadsModel, TF_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP, ) from .modeling_tf_transfo_xl import ( TFTransfoXLPreTrainedModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLLMHeadModel, TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_MAP, ) from .modeling_tf_xlnet import ( TFXLNetPreTrainedModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetLMHeadModel, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetForQuestionAnsweringSimple, TF_XLNET_PRETRAINED_MODEL_ARCHIVE_MAP, ) from .modeling_tf_xlm import ( TFXLMPreTrainedModel, TFXLMMainLayer, TFXLMModel, TFXLMWithLMHeadModel, TFXLMForSequenceClassification, TFXLMForQuestionAnsweringSimple, TF_XLM_PRETRAINED_MODEL_ARCHIVE_MAP, ) from .modeling_tf_xlm_roberta import ( TFXLMRobertaForMaskedLM, TFXLMRobertaModel, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP, ) from .modeling_tf_roberta import ( TFRobertaPreTrainedModel, TFRobertaMainLayer, TFRobertaModel, TFRobertaForMaskedLM, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP, ) from .modeling_tf_camembert import ( TFCamembertModel, TFCamembertForMaskedLM, TFCamembertForSequenceClassification, TFCamembertForTokenClassification, TF_CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_MAP, ) from .modeling_tf_distilbert import ( TFDistilBertPreTrainedModel, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForQuestionAnswering, TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_MAP, ) from .modeling_tf_ctrl import ( TFCTRLPreTrainedModel, TFCTRLModel, TFCTRLLMHeadModel, TF_CTRL_PRETRAINED_MODEL_ARCHIVE_MAP, ) from .modeling_tf_albert import ( TFAlbertPreTrainedModel, TFAlbertModel, TFAlbertForMaskedLM, TFAlbertForSequenceClassification, TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_MAP, ) from .modeling_tf_t5 import ( TFT5PreTrainedModel, TFT5Model, TFT5WithLMHeadModel, TF_T5_PRETRAINED_MODEL_ARCHIVE_MAP, ) # Optimization from .optimization_tf import WarmUp, create_optimizer, AdamWeightDecay, GradientAccumulator if not is_tf_available() and not is_torch_available(): logger.warning( "Neither PyTorch nor TensorFlow >= 2.0 have been found." "Models won't be available and only tokenizers, configuration" "and file/data utilities can be used." )