# coding=utf-8 # Copyright 2018 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Auto Model class. """ from __future__ import absolute_import, division, print_function, unicode_literals import logging import torch from torch import nn from .file_utils import add_start_docstrings from .modeling_auto import AutoModel, AutoModelWithLMHead from .modeling_utils import PreTrainedModel, SequenceSummary logger = logging.getLogger(__name__) class PreTrainedSeq2seq(PreTrainedModel): r""" :class:`~transformers.Seq2seq` is a generic model class that will be instantiated as a Seq2seq model with one of the base model classes of the library as encoder and (optionally) as decoder when created with the `AutoModel.from_pretrained(pretrained_model_name_or_path)` class method. """ def __init__(self, encoder, decoder): super(PreTrainedSeq2seq, self).__init__() self.encoder = encoder self.decoder = decoder @classmethod def from_pretrained( cls, encoder_pretrained_model_name_or_path, decoder_pretrained_model_name_or_path, *model_args, **kwargs ): r""" Instantiates an encoder and a decoder from one or two base classes of the library from pre-trained model checkpoints. The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated) To train the model, you need to first set it back in training mode with `model.train()` Params: encoder_pretrained_model_name_or_path: information necessary to initiate the encoder. Either: - a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``. - a path to a `directory` containing model weights saved using :func:`~transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``. - a path or url to a `tensorflow index checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In this case, ``from_tf`` should be set to True and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards. decoder_pretrained_model_name_or_path: information necessary to initiate the decoder. Either: - a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``. - a path to a `directory` containing model weights saved using :func:`~transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``. - a path or url to a `tensorflow index checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In this case, ``from_tf`` should be set to True and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards. model_args: (`optional`) Sequence of positional arguments: All remaning positional arguments will be passed to the underlying model's ``__init__`` method config: (`optional`) instance of a class derived from :class:`~transformers.PretrainedConfig`: Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when: - the model is a model provided by the library (loaded with the ``shortcut-name`` string of a pretrained model), or - the model was saved using :func:`~transformers.PreTrainedModel.save_pretrained` and is reloaded by suppling the save directory. - the model is loaded by suppling a local directory as ``pretrained_model_name_or_path`` and a configuration JSON file named `config.json` is found in the directory. state_dict: (`optional`) dict: an optional state dictionnary for the model to use instead of a state dictionary loaded from saved weights file. This option can be used if you want to create a model from a pretrained configuration but load your own weights. In this case though, you should check if using :func:`~transformers.PreTrainedModel.save_pretrained` and :func:`~transformers.PreTrainedModel.from_pretrained` is not a simpler option. cache_dir: (`optional`) string: Path to a directory in which a downloaded pre-trained model configuration should be cached if the standard cache should not be used. force_download: (`optional`) boolean, default False: Force to (re-)download the model weights and configuration files and override the cached versions if they exists. proxies: (`optional`) dict, default None: A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. output_loading_info: (`optional`) boolean: Set to ``True`` to also return a dictionnary containing missing keys, unexpected keys and error messages. kwargs: (`optional`) Remaining dictionary of keyword arguments. Can be used to update the configuration object (after it being loaded) and initiate the model. (e.g. ``output_attention=True``). Behave differently depending on whether a `config` is provided or automatically loaded: - If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the underlying model's ``__init__`` method (we assume all relevant updates to the configuration have already been done) - If a configuration is not provided, ``kwargs`` will be first passed to the configuration class initialization function (:func:`~transformers.PretrainedConfig.from_pretrained`). Each key of ``kwargs`` that corresponds to a configuration attribute will be used to override said attribute with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model's ``__init__`` function. You can specify different kwargs for the decoder by prefixing the key with `decoder_` (e.g. ``decoder_output_attention=True``). Examples:: model = PreTrainedSeq2seq.from_pretained('bert-base-uncased', 'bert-base-uncased') # initialize Bert2Bert """ # Separate the encoder- and decoder- specific kwargs. A kwarg is # decoder-specific it the key starts with `decoder_` kwargs_decoder = {} kwargs_encoder = kwargs for key in kwargs_encoder.keys(): if key.startswith("decoder_"): kwargs_decoder[key.replace("decoder_", "")] = kwargs_encoder.pop(key) # Load and initialize the encoder and decoder # The distinction between encoder and decoder at the model level is made # by the value of the flag `is_decoder` that we need to set correctly. encoder = kwargs.pop("encoder_model", None) if encoder is None: kwargs_encoder["is_decoder"] = False encoder = AutoModel.from_pretrained( encoder_pretrained_model_name_or_path, *model_args, **kwargs_encoder ) decoder = kwargs.pop("decoder_model", None) if decoder is None: kwargs_decoder["is_decoder"] = True decoder = AutoModelWithLMHead.from_pretrained( decoder_pretrained_model_name_or_path, **kwargs_decoder ) model = cls(encoder, decoder) return model def forward(self, encoder_input_ids, decoder_input_ids, **kwargs): """ The forward pass on a seq2eq depends what we are performing: - During training we perform one forward pass through both the encoder and decoder; - During prediction, we perform one forward pass through the encoder, and then perform several forward passes with the encoder's hidden state through the decoder to decode a full sequence. Therefore, we skip the forward pass on the encoder if an argument named `encoder_hidden_state` is passed to this function. Params: encoder_input_ids: ``torch.LongTensor`` of shape ``(batch_size, sequence_length)`` Indices of encoder input sequence tokens in the vocabulary. decoder_input_ids: ``torch.LongTensor`` of shape ``(batch_size, sequence_length)`` Indices of decoder input sequence tokens in the vocabulary. """ # Separate the encoder- and decoder- specific kwargs. A kwarg is # decoder-specific it the key starts with `decoder_` kwargs_decoder = {} kwargs_encoder = kwargs for key in kwargs_encoder.keys(): if key.startswith("decoder_"): kwargs_decoder[key.replace("decoder_", "")] = kwargs_encoder.pop(key) # Encode if needed (training, first prediction pass) encoder_hidden_states = kwargs_encoder.pop("encoder_hidden_states", None) if encoder_hidden_states is None: encoder_outputs = self.encoder(encoder_input_ids, **kwargs_encoder) encoder_hidden_states = encoder_outputs[0] else: encoder_outputs = () # Decode kwargs_decoder["encoder_hidden_states"] = encoder_hidden_states decoder_outputs = self.decoder(decoder_input_ids, **kwargs_decoder) return decoder_outputs + encoder_outputs class Model2Model(PreTrainedSeq2seq): def __init__(self): super(Model2Model, self).__init__() self.tie_weights() def tie_weights(self): """ Tying the encoder and decoders' embeddings together. We need for each to get down to the embedding weights. However the different model classes are inconsistent to that respect: - BertModel: embeddings.word_embeddings - RoBERTa: embeddings.word_embeddings - XLMModel: embeddings - GPT2: wte - BertForMaskedLM: bert.embeddings.word_embeddings - RobertaForMaskedLM: roberta.embeddings.word_embeddings argument of the XEmbedding layer for each model, but it is "blocked" by a model-specific keyword (bert, )... """ # self._tie_or_clone_weights(self.encoder, self.decoder) raise NotImplementedError class Model2LSTM(PreTrainedSeq2seq): @classmethod def from_pretrained(cls, *args, **kwargs): if kwargs.get("decoder_model", None) is None: # We will create a randomly initilized LSTM model as decoder if "decoder_config" not in kwargs: raise ValueError( "To load an LSTM in Seq2seq model, please supply either: " " - a torch.nn.LSTM model as `decoder_model` parameter (`decoder_model=lstm_model`), or" " - a dictionary of configuration parameters that will be used to initialize a" " torch.nn.LSTM model as `decoder_config` keyword argument. " " E.g. `decoder_config={'input_size': 768, 'hidden_size': 768, 'num_layers': 2}`" ) kwargs["decoder_model"] = torch.nn.LSTM(kwargs.pop("decoder_config")) model = super(Model2LSTM, cls).from_pretrained(*args, **kwargs) return model