## RAG This is a "base" version of the RAG-Sequence Model of the the paper [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/pdf/2005.11401.pdf) by Patrick Lewis, Ethan Perez, Aleksandara Piktus et al. ## Usage: ```python from transformers import RagTokenizer, RagRetriever, RagSequenceForGeneration tokenizer = RagTokenizer.from_pretrained("facebook/rag-sequence-base") retriever = RagRetriever.from_pretrained("facebook/rag-sequence-base", index_name="exact", use_dummy_dataset=True) model = RagSequenceForGeneration.from_pretrained("facebook/rag-sequence-base", retriever=retriever) input_ids = tokenizer("What is the largest country in the world?", return_tensors="pt").input_ids generated = model.generate(input_ids=input_ids) generated_string = tokenizer.batch_decode(generated, skip_special_tokens=True) # => should give ["Asia ended in 2010 when China overtook Japan to become the world's second largest economy."] # Interesting answer. Definitely on topic, but might factual probably not fully correct. ```