## RAG This is the RAG-Token Model of the the paper [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/pdf/2005.11401.pdf) by Patrick Lewis, Ethan Perez, Aleksandara Piktus et al. ## Usage: ```python from transformers import RagTokenizer, RagRetriever, RagTokenForGeneration tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-nq") retriever = RagRetriever.from_pretrained("facebook/rag-token-nq", index_name="exact", use_dummy_dataset=True) model = RagTokenForGeneration.from_pretrained("facebook/rag-token-nq", retriever=retriever) input_dict = tokenizer.prepare_seq2seq_batch("How many people live in Paris?", "In Paris, there are 10 million people.", return_tensors="pt") generated = model.generate(input_ids=input_dict["input_ids"]) print(tokenizer.batch_decode(generated, skip_special_tokens=True)[0]) # generated_string should give 270,000,000 -> a bit too many I think ```