# Testing mixed int8 quantization ## Hardware requirements I am using a setup of 2 GPUs that are NVIDIA-Tesla T4 15GB ## Virutal envs ```conda create --name int8-testing python==3.8``` ```git clone https://github.com/younesbelkada/transformers.git && git checkout integration-8bit``` ```pip install -e ".[dev]"``` ```pip install -i https://test.pypi.org/simple/ bitsandbytes``` ```pip install git+https://github.com/huggingface/accelerate.git@e0212893ea6098cc0a7a3c7a6eb286a9104214c1``` ## Trobleshooting ```conda create --name int8-testing python==3.8``` ```pip install -i https://test.pypi.org/simple/ bitsandbytes``` ```conda install pytorch torchvision torchaudio -c pytorch``` ```git clone https://github.com/younesbelkada/transformers.git && git checkout integration-8bit``` ```pip install -e ".[dev]"``` ```pip install git+https://github.com/huggingface/accelerate.git@b52b793ea8bac108ba61192eead3cf11ca02433d``` ### Check driver settings: ``` nvcc --version ``` ``` ls -l $CONDA_PREFIX/lib/libcudart.so ``` ### Recurrent bugs Sometimes you have to run a "dummy" inference pass when dealing with a multi-GPU setup. Checkout the ```test_multi_gpu_loading``` and the ```test_pipeline``` functions.