# This file is autogenerated by the command `make fix-copies`, do not edit. from ..file_utils import requires_tf class TensorFlowBenchmarkArguments: def __init__(self, *args, **kwargs): requires_tf(self) class TensorFlowBenchmark: def __init__(self, *args, **kwargs): requires_tf(self) def tf_top_k_top_p_filtering(*args, **kwargs): requires_tf(tf_top_k_top_p_filtering) class TFPreTrainedModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFSequenceSummary: def __init__(self, *args, **kwargs): requires_tf(self) class TFSharedEmbeddings: def __init__(self, *args, **kwargs): requires_tf(self) def shape_list(*args, **kwargs): requires_tf(shape_list) TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None class TFAlbertForMaskedLM: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFAlbertForMultipleChoice: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFAlbertForPreTraining: def __init__(self, *args, **kwargs): requires_tf(self) class TFAlbertForQuestionAnswering: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFAlbertForSequenceClassification: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFAlbertForTokenClassification: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFAlbertMainLayer: def __init__(self, *args, **kwargs): requires_tf(self) class TFAlbertModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFAlbertPreTrainedModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) TF_MODEL_FOR_CAUSAL_LM_MAPPING = None TF_MODEL_FOR_MASKED_LM_MAPPING = None TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING = None TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING = None TF_MODEL_FOR_PRETRAINING_MAPPING = None TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING = None TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING = None TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING = None TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING = None TF_MODEL_MAPPING = None TF_MODEL_WITH_LM_HEAD_MAPPING = None class TFAutoModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFAutoModelForCausalLM: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFAutoModelForMaskedLM: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFAutoModelForMultipleChoice: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFAutoModelForPreTraining: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFAutoModelForQuestionAnswering: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFAutoModelForSeq2SeqLM: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFAutoModelForSequenceClassification: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFAutoModelForTokenClassification: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFAutoModelWithLMHead: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFBartForConditionalGeneration: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFBartModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFBartPretrainedModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST = None class TFBertEmbeddings: def __init__(self, *args, **kwargs): requires_tf(self) class TFBertForMaskedLM: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFBertForMultipleChoice: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFBertForNextSentencePrediction: def __init__(self, *args, **kwargs): requires_tf(self) class TFBertForPreTraining: def __init__(self, *args, **kwargs): requires_tf(self) class TFBertForQuestionAnswering: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFBertForSequenceClassification: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFBertForTokenClassification: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFBertLMHeadModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFBertMainLayer: def __init__(self, *args, **kwargs): requires_tf(self) class TFBertModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFBertPreTrainedModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFBlenderbotForConditionalGeneration: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) TF_CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None class TFCamembertForMaskedLM: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFCamembertForMultipleChoice: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFCamembertForQuestionAnswering: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFCamembertForSequenceClassification: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFCamembertForTokenClassification: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFCamembertModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST = None class TFCTRLForSequenceClassification: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFCTRLLMHeadModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFCTRLModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFCTRLPreTrainedModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None class TFDistilBertForMaskedLM: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFDistilBertForMultipleChoice: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFDistilBertForQuestionAnswering: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFDistilBertForSequenceClassification: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFDistilBertForTokenClassification: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFDistilBertMainLayer: def __init__(self, *args, **kwargs): requires_tf(self) class TFDistilBertModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFDistilBertPreTrainedModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST = None TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST = None TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST = None class TFDPRContextEncoder: def __init__(self, *args, **kwargs): requires_tf(self) class TFDPRPretrainedContextEncoder: def __init__(self, *args, **kwargs): requires_tf(self) class TFDPRPretrainedQuestionEncoder: def __init__(self, *args, **kwargs): requires_tf(self) class TFDPRPretrainedReader: def __init__(self, *args, **kwargs): requires_tf(self) class TFDPRQuestionEncoder: def __init__(self, *args, **kwargs): requires_tf(self) class TFDPRReader: def __init__(self, *args, **kwargs): requires_tf(self) TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST = None class TFElectraForMaskedLM: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFElectraForMultipleChoice: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFElectraForPreTraining: def __init__(self, *args, **kwargs): requires_tf(self) class TFElectraForQuestionAnswering: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFElectraForSequenceClassification: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFElectraForTokenClassification: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFElectraModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFElectraPreTrainedModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None class TFFlaubertForMultipleChoice: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFFlaubertForQuestionAnsweringSimple: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFFlaubertForSequenceClassification: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFFlaubertForTokenClassification: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFFlaubertModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFFlaubertWithLMHeadModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST = None class TFFunnelBaseModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFFunnelForMaskedLM: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFFunnelForMultipleChoice: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFFunnelForPreTraining: def __init__(self, *args, **kwargs): requires_tf(self) class TFFunnelForQuestionAnswering: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFFunnelForSequenceClassification: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFFunnelForTokenClassification: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFFunnelModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST = None class TFGPT2DoubleHeadsModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFGPT2ForSequenceClassification: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFGPT2LMHeadModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFGPT2MainLayer: def __init__(self, *args, **kwargs): requires_tf(self) class TFGPT2Model: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFGPT2PreTrainedModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFLEDForConditionalGeneration: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFLEDModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFLEDPreTrainedModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None class TFLongformerForMaskedLM: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFLongformerForMultipleChoice: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFLongformerForQuestionAnswering: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFLongformerForSequenceClassification: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFLongformerForTokenClassification: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFLongformerModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFLongformerSelfAttention: def __init__(self, *args, **kwargs): requires_tf(self) TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST = None class TFLxmertForPreTraining: def __init__(self, *args, **kwargs): requires_tf(self) class TFLxmertMainLayer: def __init__(self, *args, **kwargs): requires_tf(self) class TFLxmertModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFLxmertPreTrainedModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFLxmertVisualFeatureEncoder: def __init__(self, *args, **kwargs): requires_tf(self) class TFMarianMTModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFMBartForConditionalGeneration: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None class TFMobileBertForMaskedLM: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFMobileBertForMultipleChoice: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFMobileBertForNextSentencePrediction: def __init__(self, *args, **kwargs): requires_tf(self) class TFMobileBertForPreTraining: def __init__(self, *args, **kwargs): requires_tf(self) class TFMobileBertForQuestionAnswering: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFMobileBertForSequenceClassification: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFMobileBertForTokenClassification: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFMobileBertMainLayer: def __init__(self, *args, **kwargs): requires_tf(self) class TFMobileBertModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFMobileBertPreTrainedModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) TF_MPNET_PRETRAINED_MODEL_ARCHIVE_LIST = None class TFMPNetForMaskedLM: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFMPNetForMultipleChoice: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFMPNetForQuestionAnswering: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFMPNetForSequenceClassification: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFMPNetForTokenClassification: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFMPNetMainLayer: def __init__(self, *args, **kwargs): requires_tf(self) class TFMPNetModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFMPNetPreTrainedModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFMT5EncoderModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFMT5ForConditionalGeneration: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFMT5Model: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) TF_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST = None class TFOpenAIGPTDoubleHeadsModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFOpenAIGPTForSequenceClassification: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFOpenAIGPTLMHeadModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFOpenAIGPTMainLayer: def __init__(self, *args, **kwargs): requires_tf(self) class TFOpenAIGPTModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFOpenAIGPTPreTrainedModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFPegasusForConditionalGeneration: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = None class TFRobertaForMaskedLM: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFRobertaForMultipleChoice: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFRobertaForQuestionAnswering: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFRobertaForSequenceClassification: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFRobertaForTokenClassification: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFRobertaMainLayer: def __init__(self, *args, **kwargs): requires_tf(self) class TFRobertaModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFRobertaPreTrainedModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST = None class TFT5EncoderModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFT5ForConditionalGeneration: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFT5Model: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFT5PreTrainedModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST = None class TFAdaptiveEmbedding: def __init__(self, *args, **kwargs): requires_tf(self) class TFTransfoXLForSequenceClassification: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFTransfoXLLMHeadModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFTransfoXLMainLayer: def __init__(self, *args, **kwargs): requires_tf(self) class TFTransfoXLModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFTransfoXLPreTrainedModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST = None class TFXLMForMultipleChoice: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFXLMForQuestionAnsweringSimple: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFXLMForSequenceClassification: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFXLMForTokenClassification: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFXLMMainLayer: def __init__(self, *args, **kwargs): requires_tf(self) class TFXLMModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFXLMPreTrainedModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFXLMWithLMHeadModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = None class TFXLMRobertaForMaskedLM: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFXLMRobertaForMultipleChoice: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFXLMRobertaForQuestionAnswering: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFXLMRobertaForSequenceClassification: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFXLMRobertaForTokenClassification: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFXLMRobertaModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST = None class TFXLNetForMultipleChoice: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFXLNetForQuestionAnsweringSimple: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFXLNetForSequenceClassification: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFXLNetForTokenClassification: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFXLNetLMHeadModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFXLNetMainLayer: def __init__(self, *args, **kwargs): requires_tf(self) class TFXLNetModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFXLNetPreTrainedModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class AdamWeightDecay: def __init__(self, *args, **kwargs): requires_tf(self) class GradientAccumulator: def __init__(self, *args, **kwargs): requires_tf(self) class WarmUp: def __init__(self, *args, **kwargs): requires_tf(self) def create_optimizer(*args, **kwargs): requires_tf(create_optimizer) class TFTrainer: def __init__(self, *args, **kwargs): requires_tf(self)