# DistilRoBERTa + Sentiment Analysis ๐Ÿ˜‚๐Ÿ˜ข๐Ÿ˜ก๐Ÿ˜ƒ๐Ÿ˜ฏ This in an adapted version of [@omarsar0](https://twitter.com/omarsar0) [tutorial](https://t.co/WMnATW0Hwf?amp=1) He explains everything so detailed and provided the dataset. I just changed some parameters and created the ```config.json```file to upload it to [๐Ÿค—Transformers HUB](https://huggingface.co/) In this tutorial, he shows how to fine-tune a language model (LM) for **emotion classification** with code adapted from this [tutorial](https://zablo.net/blog/post/custom-classifier-on-bert-model-guide-polemo2-sentiment-analysis/) by MARCIN ZABลOCKI. The emotions covered are: - sadness ๐Ÿ˜ข - joy ๐Ÿ˜ƒ - love ๐Ÿฅฐ - anger ๐Ÿ˜ก - fear ๐Ÿ˜ฑ - surprise ๐Ÿ˜ฏ ## Details of the language model The base model used is [DistilRoBERTa](https://huggingface.co/distilroberta-base) ## Details of the downstream task (Sentence classification) - Dataset ๐Ÿ“š | Dataset split | # Size | # Sequences | | ---------------------- | ----- | ------| |Train | 1.58M | 20000 | Validation | 200 KB | | Test | 202 KB | ## Results after training ๐Ÿ‹๏ธโ€โ™€๏ธ๐Ÿงพ |emotion |precision |recall| f1-score| support| |-------|-------------|------|----------|----------| |sadness| 0.973868 |0.949066 |0.961307| 589| |joy |0.970313 |0.901306 |0.934537| 689| |love |0.743119 |0.925714 |0.824427| 175| |anger | 0.884615| 0.969349| 0.925046| 261| |fear |0.951456 |0.875000| 0.911628| 224| |surprise| 0.750000| 0.919355| 0.826087| 62| | | | | | | |**accuracy**| | | 0.924000| 2000| |**macro avg**| 0.878895| 0.923298| 0.897172| 2000| |**weighted avg**| 0.931355| 0.924000| 0.925620| 2000| ## Model in action ๐Ÿ”จ Fast usage with **pipelines** ๐Ÿงช ```python from transformers import pipeline nlp_sentiment = pipeline( "sentiment-analysis", model="mrm8488/distilroberta-base-finetuned-sentiment", tokenizer="mrm8488/distilroberta-base-finetuned-sentiment" ) text = "i feel i should return to the start of the weekend so my loyal readers can get a feeling for things up to this point" nlp_sentiment(text) # Output: [{'label': 'love', 'score': 0.2183746}] ``` > Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488) > Made with in Spain