# coding=utf-8 # Copyright 2018 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Auto Config class.""" import importlib import re import warnings from collections import OrderedDict from typing import List, Union from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module from ...utils import CONFIG_NAME, logging logger = logging.get_logger(__name__) CONFIG_MAPPING_NAMES = OrderedDict( [ # Add configs here ("albert", "AlbertConfig"), ("bart", "BartConfig"), ("beit", "BeitConfig"), ("bert", "BertConfig"), ("bert-generation", "BertGenerationConfig"), ("big_bird", "BigBirdConfig"), ("bigbird_pegasus", "BigBirdPegasusConfig"), ("blenderbot", "BlenderbotConfig"), ("blenderbot-small", "BlenderbotSmallConfig"), ("bloom", "BloomConfig"), ("camembert", "CamembertConfig"), ("canine", "CanineConfig"), ("clip", "CLIPConfig"), ("convbert", "ConvBertConfig"), ("convnext", "ConvNextConfig"), ("ctrl", "CTRLConfig"), ("cvt", "CvtConfig"), ("data2vec-audio", "Data2VecAudioConfig"), ("data2vec-text", "Data2VecTextConfig"), ("data2vec-vision", "Data2VecVisionConfig"), ("deberta", "DebertaConfig"), ("deberta-v2", "DebertaV2Config"), ("decision_transformer", "DecisionTransformerConfig"), ("deit", "DeiTConfig"), ("detr", "DetrConfig"), ("distilbert", "DistilBertConfig"), ("dpr", "DPRConfig"), ("dpt", "DPTConfig"), ("electra", "ElectraConfig"), ("encoder-decoder", "EncoderDecoderConfig"), ("flaubert", "FlaubertConfig"), ("flava", "FlavaConfig"), ("fnet", "FNetConfig"), ("fsmt", "FSMTConfig"), ("funnel", "FunnelConfig"), ("glpn", "GLPNConfig"), ("gpt2", "GPT2Config"), ("gpt_neo", "GPTNeoConfig"), ("gpt_neox", "GPTNeoXConfig"), ("gptj", "GPTJConfig"), ("hubert", "HubertConfig"), ("ibert", "IBertConfig"), ("imagegpt", "ImageGPTConfig"), ("layoutlm", "LayoutLMConfig"), ("layoutlmv2", "LayoutLMv2Config"), ("layoutlmv3", "LayoutLMv3Config"), ("led", "LEDConfig"), ("levit", "LevitConfig"), ("longformer", "LongformerConfig"), ("luke", "LukeConfig"), ("lxmert", "LxmertConfig"), ("m2m_100", "M2M100Config"), ("marian", "MarianConfig"), ("maskformer", "MaskFormerConfig"), ("mbart", "MBartConfig"), ("mctct", "MCTCTConfig"), ("megatron-bert", "MegatronBertConfig"), ("mobilebert", "MobileBertConfig"), ("mpnet", "MPNetConfig"), ("mt5", "MT5Config"), ("nystromformer", "NystromformerConfig"), ("openai-gpt", "OpenAIGPTConfig"), ("opt", "OPTConfig"), ("pegasus", "PegasusConfig"), ("perceiver", "PerceiverConfig"), ("plbart", "PLBartConfig"), ("poolformer", "PoolFormerConfig"), ("prophetnet", "ProphetNetConfig"), ("qdqbert", "QDQBertConfig"), ("rag", "RagConfig"), ("realm", "RealmConfig"), ("reformer", "ReformerConfig"), ("regnet", "RegNetConfig"), ("rembert", "RemBertConfig"), ("resnet", "ResNetConfig"), ("retribert", "RetriBertConfig"), ("roberta", "RobertaConfig"), ("roformer", "RoFormerConfig"), ("segformer", "SegformerConfig"), ("sew", "SEWConfig"), ("sew-d", "SEWDConfig"), ("speech-encoder-decoder", "SpeechEncoderDecoderConfig"), ("speech_to_text", "Speech2TextConfig"), ("speech_to_text_2", "Speech2Text2Config"), ("splinter", "SplinterConfig"), ("squeezebert", "SqueezeBertConfig"), ("swin", "SwinConfig"), ("t5", "T5Config"), ("tapas", "TapasConfig"), ("trajectory_transformer", "TrajectoryTransformerConfig"), ("transfo-xl", "TransfoXLConfig"), ("trocr", "TrOCRConfig"), ("unispeech", "UniSpeechConfig"), ("unispeech-sat", "UniSpeechSatConfig"), ("van", "VanConfig"), ("vilt", "ViltConfig"), ("vision-encoder-decoder", "VisionEncoderDecoderConfig"), ("vision-text-dual-encoder", "VisionTextDualEncoderConfig"), ("visual_bert", "VisualBertConfig"), ("vit", "ViTConfig"), ("vit_mae", "ViTMAEConfig"), ("wav2vec2", "Wav2Vec2Config"), ("wav2vec2-conformer", "Wav2Vec2ConformerConfig"), ("wavlm", "WavLMConfig"), ("xglm", "XGLMConfig"), ("xlm", "XLMConfig"), ("xlm-prophetnet", "XLMProphetNetConfig"), ("xlm-roberta", "XLMRobertaConfig"), ("xlm-roberta-xl", "XLMRobertaXLConfig"), ("xlnet", "XLNetConfig"), ("yolos", "YolosConfig"), ("yoso", "YosoConfig"), ] ) CONFIG_ARCHIVE_MAP_MAPPING_NAMES = OrderedDict( [ # Add archive maps here) ("albert", "ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("bart", "BART_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("beit", "BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("bert", "BERT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("big_bird", "BIG_BIRD_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("bigbird_pegasus", "BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("blenderbot", "BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("blenderbot-small", "BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("bloom", "BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("camembert", "CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("canine", "CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("clip", "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("convbert", "CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("convnext", "CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("ctrl", "CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("cvt", "CVT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("data2vec-audio", "DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("data2vec-text", "DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("data2vec-vision", "DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("deberta", "DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("deberta-v2", "DEBERTA_V2_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("deit", "DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("detr", "DETR_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("distilbert", "DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("dpr", "DPR_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("dpt", "DPT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("electra", "ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("flaubert", "FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("flava", "FLAVA_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("fnet", "FNET_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("fsmt", "FSMT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("funnel", "FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("glpn", "GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("gpt2", "GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("gpt_neo", "GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("gpt_neox", "GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("gptj", "GPTJ_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("hubert", "HUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("ibert", "IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("imagegpt", "IMAGEGPT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("layoutlm", "LAYOUTLM_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("layoutlmv2", "LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("layoutlmv3", "LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("led", "LED_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("levit", "LEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("longformer", "LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("luke", "LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("lxmert", "LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("m2m_100", "M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("maskformer", "MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("mbart", "MBART_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("mctct", "MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("megatron-bert", "MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("mpnet", "MPNET_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("nystromformer", "NYSTROMFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("openai-gpt", "OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("opt", "OPT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("pegasus", "PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("perceiver", "PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("plbart", "PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("poolformer", "POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("prophetnet", "PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("qdqbert", "QDQBERT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("realm", "REALM_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("regnet", "REGNET_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("rembert", "REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("resnet", "RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("retribert", "RETRIBERT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("roberta", "ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("roformer", "ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("segformer", "SEGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("sew", "SEW_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("sew-d", "SEW_D_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("speech_to_text", "SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("speech_to_text_2", "SPEECH_TO_TEXT_2_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("splinter", "SPLINTER_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("squeezebert", "SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("swin", "SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("t5", "T5_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("tapas", "TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("transfo-xl", "TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("unispeech", "UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("unispeech-sat", "UNISPEECH_SAT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("van", "VAN_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("vilt", "VILT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("visual_bert", "VISUAL_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("vit", "VIT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("vit_mae", "VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("wav2vec2", "WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("wav2vec2-conformer", "WAV2VEC2_CONFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("xglm", "XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("xlm", "XLM_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("xlm-prophetnet", "XLM_PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("xlm-roberta", "XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("xlnet", "XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("yolos", "YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("yoso", "YOSO_PRETRAINED_CONFIG_ARCHIVE_MAP"), ] ) MODEL_NAMES_MAPPING = OrderedDict( [ # Add full (and cased) model names here ("albert", "ALBERT"), ("bart", "BART"), ("barthez", "BARThez"), ("bartpho", "BARTpho"), ("beit", "BEiT"), ("bert", "BERT"), ("bert-generation", "Bert Generation"), ("bert-japanese", "BertJapanese"), ("bertweet", "BERTweet"), ("big_bird", "BigBird"), ("bigbird_pegasus", "BigBird-Pegasus"), ("blenderbot", "Blenderbot"), ("blenderbot-small", "BlenderbotSmall"), ("bloom", "BLOOM"), ("bort", "BORT"), ("byt5", "ByT5"), ("camembert", "CamemBERT"), ("canine", "CANINE"), ("clip", "CLIP"), ("convbert", "ConvBERT"), ("convnext", "ConvNeXT"), ("cpm", "CPM"), ("ctrl", "CTRL"), ("cvt", "CvT"), ("data2vec-audio", "Data2VecAudio"), ("data2vec-text", "Data2VecText"), ("data2vec-vision", "Data2VecVision"), ("deberta", "DeBERTa"), ("deberta-v2", "DeBERTa-v2"), ("decision_transformer", "Decision Transformer"), ("deit", "DeiT"), ("detr", "DETR"), ("dialogpt", "DialoGPT"), ("distilbert", "DistilBERT"), ("dit", "DiT"), ("dpr", "DPR"), ("dpt", "DPT"), ("electra", "ELECTRA"), ("encoder-decoder", "Encoder decoder"), ("flaubert", "FlauBERT"), ("flava", "FLAVA"), ("fnet", "FNet"), ("fsmt", "FairSeq Machine-Translation"), ("funnel", "Funnel Transformer"), ("glpn", "GLPN"), ("gpt2", "OpenAI GPT-2"), ("gpt_neo", "GPT Neo"), ("gpt_neox", "GPT NeoX"), ("gptj", "GPT-J"), ("herbert", "HerBERT"), ("hubert", "Hubert"), ("ibert", "I-BERT"), ("imagegpt", "ImageGPT"), ("layoutlm", "LayoutLM"), ("layoutlmv2", "LayoutLMv2"), ("layoutlmv3", "LayoutLMv3"), ("layoutxlm", "LayoutXLM"), ("led", "LED"), ("levit", "LeViT"), ("longformer", "Longformer"), ("luke", "LUKE"), ("lxmert", "LXMERT"), ("m2m_100", "M2M100"), ("marian", "Marian"), ("maskformer", "MaskFormer"), ("mbart", "mBART"), ("mbart50", "mBART-50"), ("mctct", "M-CTC-T"), ("megatron-bert", "Megatron-BERT"), ("megatron_gpt2", "Megatron-GPT2"), ("mluke", "mLUKE"), ("mobilebert", "MobileBERT"), ("mpnet", "MPNet"), ("mt5", "MT5"), ("nystromformer", "Nyströmformer"), ("openai-gpt", "OpenAI GPT"), ("opt", "OPT"), ("pegasus", "Pegasus"), ("perceiver", "Perceiver"), ("phobert", "PhoBERT"), ("plbart", "PLBart"), ("poolformer", "PoolFormer"), ("prophetnet", "ProphetNet"), ("qdqbert", "QDQBert"), ("rag", "RAG"), ("realm", "REALM"), ("reformer", "Reformer"), ("regnet", "RegNet"), ("rembert", "RemBERT"), ("resnet", "ResNet"), ("retribert", "RetriBERT"), ("roberta", "RoBERTa"), ("roformer", "RoFormer"), ("segformer", "SegFormer"), ("sew", "SEW"), ("sew-d", "SEW-D"), ("speech-encoder-decoder", "Speech Encoder decoder"), ("speech_to_text", "Speech2Text"), ("speech_to_text_2", "Speech2Text2"), ("splinter", "Splinter"), ("squeezebert", "SqueezeBERT"), ("swin", "Swin Transformer"), ("t5", "T5"), ("t5v1.1", "T5v1.1"), ("tapas", "TAPAS"), ("tapex", "TAPEX"), ("trajectory_transformer", "Trajectory Transformer"), ("transfo-xl", "Transformer-XL"), ("trocr", "TrOCR"), ("unispeech", "UniSpeech"), ("unispeech-sat", "UniSpeechSat"), ("van", "VAN"), ("vilt", "ViLT"), ("vision-encoder-decoder", "Vision Encoder decoder"), ("vision-text-dual-encoder", "VisionTextDualEncoder"), ("visual_bert", "VisualBERT"), ("vit", "ViT"), ("vit_mae", "ViTMAE"), ("wav2vec2", "Wav2Vec2"), ("wav2vec2-conformer", "Wav2Vec2-Conformer"), ("wav2vec2_phoneme", "Wav2Vec2Phoneme"), ("wavlm", "WavLM"), ("xglm", "XGLM"), ("xlm", "XLM"), ("xlm-prophetnet", "XLM-ProphetNet"), ("xlm-roberta", "XLM-RoBERTa"), ("xlm-roberta-xl", "XLM-RoBERTa-XL"), ("xlnet", "XLNet"), ("xls_r", "XLS-R"), ("xlsr_wav2vec2", "XLSR-Wav2Vec2"), ("yolos", "YOLOS"), ("yoso", "YOSO"), ] ) SPECIAL_MODEL_TYPE_TO_MODULE_NAME = OrderedDict( [ ("openai-gpt", "openai"), ("data2vec-audio", "data2vec"), ("data2vec-text", "data2vec"), ("data2vec-vision", "data2vec"), ] ) def model_type_to_module_name(key): """Converts a config key to the corresponding module.""" # Special treatment if key in SPECIAL_MODEL_TYPE_TO_MODULE_NAME: return SPECIAL_MODEL_TYPE_TO_MODULE_NAME[key] return key.replace("-", "_") def config_class_to_model_type(config): """Converts a config class name to the corresponding model type""" for key, cls in CONFIG_MAPPING_NAMES.items(): if cls == config: return key return None class _LazyConfigMapping(OrderedDict): """ A dictionary that lazily load its values when they are requested. """ def __init__(self, mapping): self._mapping = mapping self._extra_content = {} self._modules = {} def __getitem__(self, key): if key in self._extra_content: return self._extra_content[key] if key not in self._mapping: raise KeyError(key) value = self._mapping[key] module_name = model_type_to_module_name(key) if module_name not in self._modules: self._modules[module_name] = importlib.import_module(f".{module_name}", "transformers.models") if hasattr(self._modules[module_name], value): return getattr(self._modules[module_name], value) # Some of the mappings have entries model_type -> config of another model type. In that case we try to grab the # object at the top level. transformers_module = importlib.import_module("transformers") return getattr(transformers_module, value) def keys(self): return list(self._mapping.keys()) + list(self._extra_content.keys()) def values(self): return [self[k] for k in self._mapping.keys()] + list(self._extra_content.values()) def items(self): return [(k, self[k]) for k in self._mapping.keys()] + list(self._extra_content.items()) def __iter__(self): return iter(list(self._mapping.keys()) + list(self._extra_content.keys())) def __contains__(self, item): return item in self._mapping or item in self._extra_content def register(self, key, value): """ Register a new configuration in this mapping. """ if key in self._mapping.keys(): raise ValueError(f"'{key}' is already used by a Transformers config, pick another name.") self._extra_content[key] = value CONFIG_MAPPING = _LazyConfigMapping(CONFIG_MAPPING_NAMES) class _LazyLoadAllMappings(OrderedDict): """ A mapping that will load all pairs of key values at the first access (either by indexing, requestions keys, values, etc.) Args: mapping: The mapping to load. """ def __init__(self, mapping): self._mapping = mapping self._initialized = False self._data = {} def _initialize(self): if self._initialized: return warnings.warn( "ALL_PRETRAINED_CONFIG_ARCHIVE_MAP is deprecated and will be removed in v5 of Transformers. " "It does not contain all available model checkpoints, far from it. Checkout hf.co/models for that.", FutureWarning, ) for model_type, map_name in self._mapping.items(): module_name = model_type_to_module_name(model_type) module = importlib.import_module(f".{module_name}", "transformers.models") mapping = getattr(module, map_name) self._data.update(mapping) self._initialized = True def __getitem__(self, key): self._initialize() return self._data[key] def keys(self): self._initialize() return self._data.keys() def values(self): self._initialize() return self._data.values() def items(self): self._initialize() return self._data.keys() def __iter__(self): self._initialize() return iter(self._data) def __contains__(self, item): self._initialize() return item in self._data ALL_PRETRAINED_CONFIG_ARCHIVE_MAP = _LazyLoadAllMappings(CONFIG_ARCHIVE_MAP_MAPPING_NAMES) def _get_class_name(model_class: Union[str, List[str]]): if isinstance(model_class, (list, tuple)): return " or ".join([f"[`{c}`]" for c in model_class if c is not None]) return f"[`{model_class}`]" def _list_model_options(indent, config_to_class=None, use_model_types=True): if config_to_class is None and not use_model_types: raise ValueError("Using `use_model_types=False` requires a `config_to_class` dictionary.") if use_model_types: if config_to_class is None: model_type_to_name = {model_type: f"[`{config}`]" for model_type, config in CONFIG_MAPPING_NAMES.items()} else: model_type_to_name = { model_type: _get_class_name(model_class) for model_type, model_class in config_to_class.items() if model_type in MODEL_NAMES_MAPPING } lines = [ f"{indent}- **{model_type}** -- {model_type_to_name[model_type]} ({MODEL_NAMES_MAPPING[model_type]} model)" for model_type in sorted(model_type_to_name.keys()) ] else: config_to_name = { CONFIG_MAPPING_NAMES[config]: _get_class_name(clas) for config, clas in config_to_class.items() if config in CONFIG_MAPPING_NAMES } config_to_model_name = { config: MODEL_NAMES_MAPPING[model_type] for model_type, config in CONFIG_MAPPING_NAMES.items() } lines = [ f"{indent}- [`{config_name}`] configuration class:" f" {config_to_name[config_name]} ({config_to_model_name[config_name]} model)" for config_name in sorted(config_to_name.keys()) ] return "\n".join(lines) def replace_list_option_in_docstrings(config_to_class=None, use_model_types=True): def docstring_decorator(fn): docstrings = fn.__doc__ lines = docstrings.split("\n") i = 0 while i < len(lines) and re.search(r"^(\s*)List options\s*$", lines[i]) is None: i += 1 if i < len(lines): indent = re.search(r"^(\s*)List options\s*$", lines[i]).groups()[0] if use_model_types: indent = f"{indent} " lines[i] = _list_model_options(indent, config_to_class=config_to_class, use_model_types=use_model_types) docstrings = "\n".join(lines) else: raise ValueError( f"The function {fn} should have an empty 'List options' in its docstring as placeholder, current" f" docstring is:\n{docstrings}" ) fn.__doc__ = docstrings return fn return docstring_decorator class AutoConfig: r""" This is a generic configuration class that will be instantiated as one of the configuration classes of the library when created with the [`~AutoConfig.from_pretrained`] class method. This class cannot be instantiated directly using `__init__()` (throws an error). """ def __init__(self): raise EnvironmentError( "AutoConfig is designed to be instantiated " "using the `AutoConfig.from_pretrained(pretrained_model_name_or_path)` method." ) @classmethod def for_model(cls, model_type: str, *args, **kwargs): if model_type in CONFIG_MAPPING: config_class = CONFIG_MAPPING[model_type] return config_class(*args, **kwargs) raise ValueError( f"Unrecognized model identifier: {model_type}. Should contain one of {', '.join(CONFIG_MAPPING.keys())}" ) @classmethod @replace_list_option_in_docstrings() def from_pretrained(cls, pretrained_model_name_or_path, **kwargs): r""" Instantiate one of the configuration classes of the library from a pretrained model configuration. The configuration class to instantiate is selected based on the `model_type` property of the config object that is loaded, or when it's missing, by falling back to using pattern matching on `pretrained_model_name_or_path`: List options Args: pretrained_model_name_or_path (`str` or `os.PathLike`): Can be either: - A string, the *model id* of a pretrained model configuration hosted inside a model repo on huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a user or organization name, like `dbmdz/bert-base-german-cased`. - A path to a *directory* containing a configuration file saved using the [`~PretrainedConfig.save_pretrained`] method, or the [`~PreTrainedModel.save_pretrained`] method, e.g., `./my_model_directory/`. - A path or url to a saved configuration JSON *file*, e.g., `./my_model_directory/configuration.json`. cache_dir (`str` or `os.PathLike`, *optional*): Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. force_download (`bool`, *optional*, defaults to `False`): Whether or not to force the (re-)download the model weights and configuration files and override the cached versions if they exist. resume_download (`bool`, *optional*, defaults to `False`): Whether or not to delete incompletely received files. Will attempt to resume the download if such a file exists. proxies (`Dict[str, str]`, *optional*): A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. revision (`str`, *optional*, defaults to `"main"`): The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any identifier allowed by git. return_unused_kwargs (`bool`, *optional*, defaults to `False`): If `False`, then this function returns just the final configuration object. If `True`, then this functions returns a `Tuple(config, unused_kwargs)` where *unused_kwargs* is a dictionary consisting of the key/value pairs whose keys are not configuration attributes: i.e., the part of `kwargs` which has not been used to update `config` and is otherwise ignored. trust_remote_code (`bool`, *optional*, defaults to `False`): Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set to `True` for repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. kwargs(additional keyword arguments, *optional*): The values in kwargs of any keys which are configuration attributes will be used to override the loaded values. Behavior concerning key/value pairs whose keys are *not* configuration attributes is controlled by the `return_unused_kwargs` keyword parameter. Examples: ```python >>> from transformers import AutoConfig >>> # Download configuration from huggingface.co and cache. >>> config = AutoConfig.from_pretrained("bert-base-uncased") >>> # Download configuration from huggingface.co (user-uploaded) and cache. >>> config = AutoConfig.from_pretrained("dbmdz/bert-base-german-cased") >>> # If configuration file is in a directory (e.g., was saved using *save_pretrained('./test/saved_model/')*). >>> config = AutoConfig.from_pretrained("./test/bert_saved_model/") >>> # Load a specific configuration file. >>> config = AutoConfig.from_pretrained("./test/bert_saved_model/my_configuration.json") >>> # Change some config attributes when loading a pretrained config. >>> config = AutoConfig.from_pretrained("bert-base-uncased", output_attentions=True, foo=False) >>> config.output_attentions True >>> config, unused_kwargs = AutoConfig.from_pretrained( ... "bert-base-uncased", output_attentions=True, foo=False, return_unused_kwargs=True ... ) >>> config.output_attentions True >>> unused_kwargs {'foo': False} ```""" kwargs["_from_auto"] = True kwargs["name_or_path"] = pretrained_model_name_or_path trust_remote_code = kwargs.pop("trust_remote_code", False) config_dict, _ = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) if "auto_map" in config_dict and "AutoConfig" in config_dict["auto_map"]: if not trust_remote_code: raise ValueError( f"Loading {pretrained_model_name_or_path} requires you to execute the configuration file in that" " repo on your local machine. Make sure you have read the code there to avoid malicious use, then" " set the option `trust_remote_code=True` to remove this error." ) if kwargs.get("revision", None) is None: logger.warning( "Explicitly passing a `revision` is encouraged when loading a configuration with custom code to " "ensure no malicious code has been contributed in a newer revision." ) class_ref = config_dict["auto_map"]["AutoConfig"] module_file, class_name = class_ref.split(".") config_class = get_class_from_dynamic_module( pretrained_model_name_or_path, module_file + ".py", class_name, **kwargs ) return config_class.from_pretrained(pretrained_model_name_or_path, **kwargs) elif "model_type" in config_dict: config_class = CONFIG_MAPPING[config_dict["model_type"]] return config_class.from_dict(config_dict, **kwargs) else: # Fallback: use pattern matching on the string. # We go from longer names to shorter names to catch roberta before bert (for instance) for pattern in sorted(CONFIG_MAPPING.keys(), key=len, reverse=True): if pattern in str(pretrained_model_name_or_path): return CONFIG_MAPPING[pattern].from_dict(config_dict, **kwargs) raise ValueError( f"Unrecognized model in {pretrained_model_name_or_path}. " f"Should have a `model_type` key in its {CONFIG_NAME}, or contain one of the following strings " f"in its name: {', '.join(CONFIG_MAPPING.keys())}" ) @staticmethod def register(model_type, config): """ Register a new configuration for this class. Args: model_type (`str`): The model type like "bert" or "gpt". config ([`PretrainedConfig`]): The config to register. """ if issubclass(config, PretrainedConfig) and config.model_type != model_type: raise ValueError( "The config you are passing has a `model_type` attribute that is not consistent with the model type " f"you passed (config has {config.model_type} and you passed {model_type}. Fix one of those so they " "match!" ) CONFIG_MAPPING.register(model_type, config)