AutoModels ----------- In many cases, the architecture you want to use can be guessed from the name or the path of the pretrained model you are supplying to the ``from_pretrained`` method. AutoClasses are here to do this job for you so that you automatically retreive the relevant model given the name/path to the pretrained weights/config/vocabulary. There are two types of AutoClasses: - ``AutoModel``, ``AutoConfig`` and ``AutoTokenizer``: instantiating these ones will directly create a class of the relevant architecture (ex: ``model = AutoModel.from_pretrained('bert-base-cased')`` will create a instance of ``BertModel``) - All the others (``AutoModelWithLMHead``, ``AutoModelForSequenceClassification``...) are standardized Auto classes for finetuning. Instantiating these will create instance of the same class (``AutoModelWithLMHead``, ``AutoModelForSequenceClassification``...) comprising (i) the relevant base model class (as mentioned just above) and (ii) a standard fine-tuning head on top, convenient for the task. ``AutoConfig`` ~~~~~~~~~~~~~~~~~~~~~ .. autoclass:: pytorch_transformers.AutoConfig :members: ``AutoModel`` ~~~~~~~~~~~~~~~~~~~~~ .. autoclass:: pytorch_transformers.AutoModel :members: ``AutoModelWithLMHead`` ~~~~~~~~~~~~~~~~~~~~~~~~~ .. autoclass:: pytorch_transformers.AutoModelWithLMHead :members: ``AutoModelForSequenceClassification`` ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. autoclass:: pytorch_transformers.AutoModelForSequenceClassification :members: ``AutoTokenizer`` ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. autoclass:: pytorch_transformers.AutoTokenizer :members: