Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
fd2f17a7
Commit
fd2f17a7
authored
Dec 21, 2019
by
Aymeric Augustin
Browse files
Fix E714 flake8 warning (x8).
parent
5eab3cf6
Changes
8
Show whitespace changes
Inline
Side-by-side
Showing
8 changed files
with
8 additions
and
8 deletions
+8
-8
examples/summarization/modeling_bertabs.py
examples/summarization/modeling_bertabs.py
+1
-1
templates/adding_a_new_model/modeling_tf_xxx.py
templates/adding_a_new_model/modeling_tf_xxx.py
+1
-1
transformers/modeling_tf_albert.py
transformers/modeling_tf_albert.py
+1
-1
transformers/modeling_tf_bert.py
transformers/modeling_tf_bert.py
+1
-1
transformers/modeling_tf_gpt2.py
transformers/modeling_tf_gpt2.py
+1
-1
transformers/modeling_tf_openai.py
transformers/modeling_tf_openai.py
+1
-1
transformers/modeling_tf_t5.py
transformers/modeling_tf_t5.py
+1
-1
transformers/modeling_tf_transfo_xl.py
transformers/modeling_tf_transfo_xl.py
+1
-1
No files found.
examples/summarization/modeling_bertabs.py
View file @
fd2f17a7
...
@@ -519,7 +519,7 @@ class MultiHeadedAttention(nn.Module):
...
@@ -519,7 +519,7 @@ class MultiHeadedAttention(nn.Module):
attn
=
self
.
softmax
(
scores
)
attn
=
self
.
softmax
(
scores
)
if
not
predefined_graph_1
is
None
:
if
predefined_graph_1
is
not
None
:
attn_masked
=
attn
[:,
-
1
]
*
predefined_graph_1
attn_masked
=
attn
[:,
-
1
]
*
predefined_graph_1
attn_masked
=
attn_masked
/
(
torch
.
sum
(
attn_masked
,
2
).
unsqueeze
(
2
)
+
1e-9
)
attn_masked
=
attn_masked
/
(
torch
.
sum
(
attn_masked
,
2
).
unsqueeze
(
2
)
+
1e-9
)
...
...
templates/adding_a_new_model/modeling_tf_xxx.py
View file @
fd2f17a7
...
@@ -152,7 +152,7 @@ class TFXxxMainLayer(tf.keras.layers.Layer):
...
@@ -152,7 +152,7 @@ class TFXxxMainLayer(tf.keras.layers.Layer):
# attention_probs has shape bsz x n_heads x N x N
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
if
not
head_mask
is
None
:
if
head_mask
is
not
None
:
raise
NotImplementedError
raise
NotImplementedError
else
:
else
:
head_mask
=
[
None
]
*
self
.
num_hidden_layers
head_mask
=
[
None
]
*
self
.
num_hidden_layers
...
...
transformers/modeling_tf_albert.py
View file @
fd2f17a7
...
@@ -686,7 +686,7 @@ class TFAlbertModel(TFAlbertPreTrainedModel):
...
@@ -686,7 +686,7 @@ class TFAlbertModel(TFAlbertPreTrainedModel):
# attention_probs has shape bsz x n_heads x N x N
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
if
not
head_mask
is
None
:
if
head_mask
is
not
None
:
raise
NotImplementedError
raise
NotImplementedError
else
:
else
:
head_mask
=
[
None
]
*
self
.
num_hidden_layers
head_mask
=
[
None
]
*
self
.
num_hidden_layers
...
...
transformers/modeling_tf_bert.py
View file @
fd2f17a7
...
@@ -562,7 +562,7 @@ class TFBertMainLayer(tf.keras.layers.Layer):
...
@@ -562,7 +562,7 @@ class TFBertMainLayer(tf.keras.layers.Layer):
# attention_probs has shape bsz x n_heads x N x N
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
if
not
head_mask
is
None
:
if
head_mask
is
not
None
:
raise
NotImplementedError
raise
NotImplementedError
else
:
else
:
head_mask
=
[
None
]
*
self
.
num_hidden_layers
head_mask
=
[
None
]
*
self
.
num_hidden_layers
...
...
transformers/modeling_tf_gpt2.py
View file @
fd2f17a7
...
@@ -311,7 +311,7 @@ class TFGPT2MainLayer(tf.keras.layers.Layer):
...
@@ -311,7 +311,7 @@ class TFGPT2MainLayer(tf.keras.layers.Layer):
# attention_probs has shape bsz x n_heads x N x N
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
if
not
head_mask
is
None
:
if
head_mask
is
not
None
:
raise
NotImplementedError
raise
NotImplementedError
else
:
else
:
head_mask
=
[
None
]
*
self
.
num_hidden_layers
head_mask
=
[
None
]
*
self
.
num_hidden_layers
...
...
transformers/modeling_tf_openai.py
View file @
fd2f17a7
...
@@ -303,7 +303,7 @@ class TFOpenAIGPTMainLayer(tf.keras.layers.Layer):
...
@@ -303,7 +303,7 @@ class TFOpenAIGPTMainLayer(tf.keras.layers.Layer):
# attention_probs has shape bsz x n_heads x N x N
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
if
not
head_mask
is
None
:
if
head_mask
is
not
None
:
raise
NotImplementedError
raise
NotImplementedError
else
:
else
:
head_mask
=
[
None
]
*
self
.
num_hidden_layers
head_mask
=
[
None
]
*
self
.
num_hidden_layers
...
...
transformers/modeling_tf_t5.py
View file @
fd2f17a7
...
@@ -456,7 +456,7 @@ class TFT5MainLayer(tf.keras.layers.Layer):
...
@@ -456,7 +456,7 @@ class TFT5MainLayer(tf.keras.layers.Layer):
# attention_probs has shape bsz x n_heads x N x N
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
if
not
head_mask
is
None
:
if
head_mask
is
not
None
:
raise
NotImplementedError
raise
NotImplementedError
else
:
else
:
head_mask
=
[
None
]
*
self
.
num_hidden_layers
head_mask
=
[
None
]
*
self
.
num_hidden_layers
...
...
transformers/modeling_tf_transfo_xl.py
View file @
fd2f17a7
...
@@ -554,7 +554,7 @@ class TFTransfoXLMainLayer(tf.keras.layers.Layer):
...
@@ -554,7 +554,7 @@ class TFTransfoXLMainLayer(tf.keras.layers.Layer):
# attention_probs has shape bsz x n_heads x N x N
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] (a head_mask for each layer)
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] (a head_mask for each layer)
# and head_mask is converted to shape [num_hidden_layers x qlen x klen x bsz x n_head]
# and head_mask is converted to shape [num_hidden_layers x qlen x klen x bsz x n_head]
if
not
head_mask
is
None
:
if
head_mask
is
not
None
:
raise
NotImplementedError
raise
NotImplementedError
else
:
else
:
head_mask
=
[
None
]
*
self
.
n_layer
head_mask
=
[
None
]
*
self
.
n_layer
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment