"docs/source/en/model_doc/deberta.md" did not exist on "78a53d59cb6fa444a95d6be4d15fb3a25e6a8a2e"
Unverified Commit fb1c62e9 authored by Arthur's avatar Arthur Committed by GitHub
Browse files

[`Add Mamba`] Adds support for the `Mamba` models (#28094)



* initial-commit

* start cleaning

* small nits

* small nits

* current updates

* add kernels

* small refactoring little step

* add comments

* styling

* nit

* nits

* Style

* Small changes

* Push dummy mambda simple slow

* nit

* Use original names

* Use original names and remove norm

* Updates for inference params

* Style nd updates

* nits

* Match logits

* Add a test

* Add expected generated text

* nits doc, imports and styling

* style

* oups

* dont install kernels, invite users to install the required kernels

* let use use the original packages

* styling

* nits

* fix some copieds

* update doc

* fix-copies

* styling done

* nits

* fix import check

* run but wrong cuda ress

* mamba CUDA works :)

* fix the fast path

* config naming nits

* conversion script is not required at this stage

* finish fixing the fast path: generation make sense now!

* nit

* Let's start working on the CIs

* style

* better style

* more nits

* test nit

* quick fix for now

* nits

* nit

* nit

* nit

* nits

* update test rest

* fixup

* update test

* nit

* some fixes

* nits

* update test values

* fix styling

* nit

* support peft

* integrations tests require torchg

* also add slow markers

* styling

* chose forward wisely

* nits

* update tests

* fix gradient checkpointing

* fixup

* nit

* fix doc

* check copies

* fix the docstring

* fix some more tests

* style

* fix beam search

* add init schene

* update

* nit

* fix

* fixup the doc

* fix the doc

* fixup

* tentative update but slow is no longer good

* nit

* should we always use float32?

* nits

* revert wrong changes

* res in float32

* cleanup

* skip fmt for now

* update generation values

* update test values running original model

* fixup

* update tests + rename inference_params to cache_params + make sure training does not use cache_params

* small nits

* more nits

* fix final CIs

* style

* nit doc

* I hope final doc nits

* nit

* 🫠

* final touch!

* fix torch import

* Apply suggestions from code review
Co-authored-by: default avatarLysandre Debut <hi@lysand.re>

* Apply suggestions from code review

* fix fix and fix

* fix base model prefix!

* nit

* Update src/transformers/models/mamba/__init__.py

* Update docs/source/en/model_doc/mamba.md
Co-authored-by: default avatarLysandre Debut <hi@lysand.re>

* nit

---------
Co-authored-by: default avatarLysandre Debut <hi@lysand.re>
parent 87a0783d
# coding=utf-8
# Copyright 2024 state-spaces/mamba org and HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch MAMBA model."""
import math
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import CrossEntropyLoss
from ...activations import ACT2FN
from ...modeling_utils import PreTrainedModel
from ...utils import (
ModelOutput,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
)
from ...utils.import_utils import is_causal_conv1d_available, is_mamba_ssm_available
from .configuration_mamba import MambaConfig
logger = logging.get_logger(__name__)
if is_mamba_ssm_available():
from mamba_ssm.ops.selective_scan_interface import mamba_inner_fn, selective_scan_fn
from mamba_ssm.ops.triton.selective_state_update import selective_state_update
else:
selective_state_update, selective_scan_fn, mamba_inner_fn = None, None, None
if is_causal_conv1d_available():
from causal_conv1d import causal_conv1d_fn, causal_conv1d_update
else:
causal_conv1d_update, causal_conv1d_fn = None, None
is_fast_path_available = all(
(selective_state_update, selective_scan_fn, causal_conv1d_fn, causal_conv1d_update, mamba_inner_fn)
)
_CHECKPOINT_FOR_DOC = "ArthurZ/mamba-130m"
_CONFIG_FOR_DOC = "MambaConfig"
MAMBA_PRETRAINED_MODEL_ARCHIVE_LIST = [] # See all Mamba models at https://huggingface.co/models?filter=mamba
class MambaMixer(nn.Module):
"""
Compute ∆, A, B, C, and D the state space parameters and compute the `contextualized_states`.
A, D are input independent (see Mamba paper [1] Section 3.5.2 "Interpretation of A" for why A isn't selective)
∆, B, C are input-dependent (this is a key difference between Mamba and the linear time invariant S4,
and is why Mamba is called **selective** state spaces)
"""
def __init__(self, config, layer_idx):
super().__init__()
self.hidden_size = config.hidden_size
self.ssm_state_size = config.state_size
self.conv_kernel_size = config.conv_kernel
self.intermediate_size = config.intermediate_size
self.time_step_rank = config.time_step_rank
self.layer_idx = layer_idx
self.use_conv_bias = config.use_conv_bias
self.conv1d = nn.Conv1d(
in_channels=self.intermediate_size,
out_channels=self.intermediate_size,
bias=config.use_conv_bias,
kernel_size=config.conv_kernel,
groups=self.intermediate_size,
padding=config.conv_kernel - 1,
)
self.activation = config.hidden_act
self.act = ACT2FN[config.hidden_act]
# projection of the input hidden states
self.in_proj = nn.Linear(self.hidden_size, self.intermediate_size * 2, bias=config.use_bias)
# selective projection used to make dt, B and C input dependant
self.x_proj = nn.Linear(self.intermediate_size, self.time_step_rank + self.ssm_state_size * 2, bias=False)
# time step projection (discretization)
self.dt_proj = nn.Linear(self.time_step_rank, self.intermediate_size, bias=True)
# S4D real initialization. These are not discretized!
# The core is to load them, compute the discrete states, then write the updated state. Keeps the memory bounded
A = torch.arange(1, self.ssm_state_size + 1, dtype=torch.float32)[None, :]
A = A.expand(self.intermediate_size, -1).contiguous()
self.A_log = nn.Parameter(torch.log(A))
self.D = nn.Parameter(torch.ones(self.intermediate_size))
self.out_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.use_bias)
self.use_bias = config.use_bias
if not is_fast_path_available:
logger.warning_once(
"The fast path is not available because on of `(selective_state_update, selective_scan_fn, causal_conv1d_fn, causal_conv1d_update, mamba_inner_fn)`"
" is None. Falling back to the naive implementation. To install follow https://github.com/state-spaces/mamba/#installation and"
" https://github.com/Dao-AILab/causal-conv1d"
)
def cuda_kernels_forward(self, hidden_states: torch.Tensor, cache_params=None):
# 1. Gated MLP's linear projection
projected_states = self.in_proj(hidden_states).transpose(1, 2)
if self.training and cache_params is None: # Doesn't support outputting the states -> used for training
contextualized_states = mamba_inner_fn(
projected_states,
self.conv1d.weight,
self.conv1d.bias if self.use_conv_bias else None,
self.x_proj.weight,
self.dt_proj.weight,
self.out_proj.weight,
self.out_proj.bias.float() if self.use_bias else None,
-torch.exp(self.A_log.float()),
None, # input-dependent B
None, # input-dependent C
self.D.float(),
delta_bias=self.dt_proj.bias.float(),
delta_softplus=True,
)
else:
hidden_states, gate = projected_states.chunk(2, dim=1)
# 2. Convolution sequence transformation
conv_weights = self.conv1d.weight.view(self.conv1d.weight.size(0), self.conv1d.weight.size(2))
if cache_params is not None and cache_params.seqlen_offset > 0:
hidden_states = causal_conv1d_update(
hidden_states.squeeze(-1),
cache_params.conv_states[self.layer_idx],
conv_weights,
self.conv1d.bias,
self.activation,
)
hidden_states = hidden_states.unsqueeze(-1)
else:
if cache_params is not None:
conv_states = nn.functional.pad(
hidden_states, (self.conv_kernel_size - hidden_states.shape[-1], 0)
)
cache_params.conv_states[self.layer_idx].copy_(conv_states)
hidden_states = causal_conv1d_fn(
hidden_states, conv_weights, self.conv1d.bias, activation=self.activation
)
# 3. State Space Model sequence transformation
# 3.a. input varying initialization of time_step, B and C
ssm_parameters = self.x_proj(hidden_states.transpose(1, 2))
time_step, B, C = torch.split(
ssm_parameters, [self.time_step_rank, self.ssm_state_size, self.ssm_state_size], dim=-1
)
discrete_time_step = self.dt_proj.weight @ time_step.transpose(1, 2)
A = -torch.exp(self.A_log.float())
# 3.c perform the recurrence y ← SSM(A, B, C)(x)
time_proj_bias = self.dt_proj.bias.float() if hasattr(self.dt_proj, "bias") else None
if cache_params is not None and cache_params.seqlen_offset > 0:
scan_outputs = selective_state_update(
cache_params.ssm_states[self.layer_idx],
hidden_states[..., 0],
discrete_time_step[..., 0],
A,
B[:, 0],
C[:, 0],
self.D,
gate[..., 0],
time_proj_bias,
dt_softplus=True,
).unsqueeze(-1)
else:
scan_outputs, ssm_state = selective_scan_fn(
hidden_states,
discrete_time_step,
A,
B.transpose(1, 2),
C.transpose(1, 2),
self.D.float(),
gate,
time_proj_bias,
delta_softplus=True,
return_last_state=True,
)
if ssm_state is not None and cache_params is not None:
cache_params.ssm_states[self.layer_idx].copy_(ssm_state)
# 4. Final linear projection
contextualized_states = self.out_proj(scan_outputs.transpose(1, 2))
return contextualized_states
# fmt: off
def slow_forward(self, input_states, cache_params=None):
batch_size, seq_len, _ = input_states.shape
dtype = input_states.dtype
# 1. Gated MLP's linear projection
projected_states = self.in_proj(input_states).transpose(1, 2) # [batch, 2 * intermediate_size, seq_len]
hidden_states, gate = projected_states.chunk(2, dim=1)
# 2. Convolution sequence transformation
if cache_params is not None:
ssm_state = cache_params.ssm_states[self.layer_idx]
if cache_params.seqlen_offset > 0:
conv_state = cache_params.conv_states[self.layer_idx] # [batch, intermediate_size, conv_kernel_size]
conv_state = torch.roll(conv_state, shifts=-1, dims=-1)
conv_state[:, :, -1] = hidden_states[:, :, 0]
cache_params.conv_states[self.layer_idx].copy_(conv_state)
hidden_states = torch.sum(conv_state * self.conv1d.weight[:, 0, :], dim=-1)
if self.use_conv_bias:
hidden_states += self.conv1d.bias
hidden_states = self.act(hidden_states).to(dtype).unsqueeze(-1) # [batch, intermediate_size, 1] : decoding
else:
conv_state = nn.functional.pad(
hidden_states,
(self.conv_kernel_size - hidden_states.shape[-1], 0)
)
cache_params.conv_states[self.layer_idx].copy_(conv_state)
hidden_states = self.act(self.conv1d(hidden_states)[..., :seq_len]) # [batch, intermediate_size, seq_len]
else:
ssm_state = torch.zeros(
(batch_size, self.intermediate_size, self.ssm_state_size),
device=hidden_states.device, dtype=dtype
)
hidden_states = self.act(self.conv1d(hidden_states)[..., :seq_len]) # [batch, intermediate_size, seq_len]
# 3. State Space Model sequence transformation
# 3.a. Selection: [batch, seq_len, self.time_step_rank + self.ssm_state_size * 2]
ssm_parameters = self.x_proj(hidden_states.transpose(1, 2))
time_step, B, C = torch.split(
ssm_parameters, [self.time_step_rank, self.ssm_state_size, self.ssm_state_size], dim=-1
)
discrete_time_step = self.dt_proj(time_step) # [batch, seq_len, intermediate_size]
discrete_time_step = nn.functional.softplus(discrete_time_step).transpose(1, 2) # [batch, intermediate_size, seq_len]
# 3.b. Discretization: B and C to [batch, seq_len, intermediate_size, ssm_state_size] (SRAM)
A = -torch.exp(self.A_log.float()) # [intermediate_size, ssm_state_size]
discrete_A = torch.exp(A[None, :, None, :] * discrete_time_step[:, :, :, None]) # [batch, intermediate_size, seq_len, ssm_state_size]
discrete_B = discrete_time_step[:, :, :, None] * B[:, None, :, :].float() # [batch, intermediade_size, seq_len, ssm_state_size]
deltaB_u = discrete_B * hidden_states[:, :, :, None].float()
# 3.c perform the recurrence y ← SSM(A, B, C)(x)
scan_outputs = []
for i in range(seq_len):
ssm_state = discrete_A[:, :, i, :] * ssm_state + deltaB_u[:, :, i, :] # [batch, intermediade_size, ssm_state]
scan_output = torch.matmul(ssm_state.to(dtype), C[:, i, :].unsqueeze(-1)) # [batch, intermediade_size, 1]
scan_outputs.append(scan_output[:, :, 0])
scan_output = torch.stack(scan_outputs, dim=-1) # [batch, seq_len, intermediade_size]
scan_output = scan_output + (hidden_states * self.D[None, :, None])
scan_output = (scan_output * self.act(gate))
if cache_params is not None:
cache_params.ssm_states[self.layer_idx].copy_(ssm_state)
# 4. Final linear projection
contextualized_states = self.out_proj(scan_output.transpose(1, 2)) # [batch, seq_len, hidden_size]
return contextualized_states
# fmt: on
def forward(self, hidden_states, cache_params=None):
if is_fast_path_available and "cuda" in self.x_proj.weight.device.type:
return self.cuda_kernels_forward(hidden_states, cache_params)
return self.slow_forward(hidden_states, cache_params)
class MambaCache:
def __init__(self, config, batch_size, dtype=torch.float16, device=None):
self.seqlen_offset = 0
self.dtype = dtype
intermediate_size = config.intermediate_size
ssm_state_size = config.state_size
conv_kernel_size = config.conv_kernel
self.conv_states = {
i: torch.zeros(batch_size, intermediate_size, conv_kernel_size, device=device, dtype=dtype)
for i in range(config.num_hidden_layers)
}
self.ssm_states = {
i: torch.zeros(batch_size, intermediate_size, ssm_state_size, device=device, dtype=dtype)
for i in range(config.num_hidden_layers)
}
class MambaRMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
LlamaRMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
class MambaBlock(nn.Module):
def __init__(self, config, layer_idx):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.residual_in_fp32 = config.residual_in_fp32
self.norm = MambaRMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
self.mixer = MambaMixer(config, layer_idx=layer_idx)
def forward(self, hidden_states, cache_params=None):
residual = hidden_states
hidden_states = self.norm(hidden_states.to(dtype=self.norm.weight.dtype))
if self.residual_in_fp32:
residual = residual.to(torch.float32)
hidden_states = self.mixer(hidden_states, cache_params=cache_params)
hidden_states = residual + hidden_states
return hidden_states
class MambaPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = MambaConfig
base_model_prefix = "backbone"
_no_split_modules = ["MambaBlock"]
supports_gradient_checkpointing = True
def _init_weights(self, module):
"""Initialize the weights."""
if isinstance(module, MambaMixer):
module.A_log._no_weight_decay = True
module.D._no_weight_decay = True
dt_init_std = self.config.time_step_rank**-0.5 * self.config.time_step_scale
if self.config.time_step_init_scheme == "constant":
nn.init.constant_(module.dt_proj.weight, dt_init_std)
elif self.config.time_step_init_scheme == "random":
nn.init.uniform_(module.dt_proj.weight, -dt_init_std, dt_init_std)
dt = torch.exp(
torch.rand(self.config.intermediate_size)
* (math.log(self.config.time_step_max) - math.log(self.config.time_step_min))
+ math.log(self.config.time_step_min)
).clamp(min=self.config.time_step_floor)
# # Inverse of softplus: https://github.com/pytorch/pytorch/issues/72759
inv_dt = dt + torch.log(-torch.expm1(-dt))
with torch.no_grad():
module.dt_proj.bias.copy_(inv_dt)
module.dt_proj.bias._no_reinit = True
if isinstance(module, nn.Linear):
if module.bias is not None:
if not getattr(module.bias, "_no_reinit", False):
nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
nn.init.normal_(module.weight, std=self.config.initializer_range)
if self.config.rescale_prenorm_residual:
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
#
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
for name, p in module.named_parameters():
if name in ["out_proj.weight"]:
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
# Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
# We need to reinit p since this code could be called multiple times
# Having just p *= scale would repeatedly scale it down
nn.init.kaiming_uniform_(p, a=math.sqrt(5))
with torch.no_grad():
p /= math.sqrt(self.config.num_layers)
@dataclass
class MambaOutput(ModelOutput):
"""
Class for the MAMBA model outputs.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
cache_params (list of five `torch.FloatTensor` of shape `(batch_size, hidden_size, num_hidden_layers)`):
The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to
avoid providing the old `input_ids`.
Includes both the State space model states weights after the selective scan, and the Convolutional states
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
"""
last_hidden_state: torch.FloatTensor = None
cache_params: Optional[List[torch.FloatTensor]] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
@dataclass
class MambaCausalLMOutput(ModelOutput):
"""
Base class for causal language model (or autoregressive) outputs.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss (for next-token prediction).
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
cache_params (list of five `torch.FloatTensor` of shape `(batch_size, hidden_size, num_hidden_layers)`):
The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to
avoid providing the old `input_ids`.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
cache_params: Optional[List[torch.FloatTensor]] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
MAMBA_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`MambaConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
MAMBA_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
Indices of input sequence tokens in the vocabulary.
If `cache_params.seqlen_offset>0`, only `input_ids` that do not have their past calculated should be passed as
`input_ids`.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
cache_params (`MambaCache`, *optional*):
If passed along, the model uses the previous state in all the blocks (which will give the output for the
`input_ids` provided as if the model add `state_input_ids + input_ids` as context).
use_cache (`bool`, *optional*):
If set to `True`, the `cache_params` is returned and can be used to quickly generate the next logits.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare MAMBA Model transformer outputting raw hidden-states without any specific head on top.",
MAMBA_START_DOCSTRING,
)
class MambaModel(MambaPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size)
self.layers = nn.ModuleList([MambaBlock(config, layer_idx=idx) for idx in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
self.norm_f = MambaRMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings
def set_input_embeddings(self, new_embeddings):
self.embeddings = new_embeddings
@add_start_docstrings_to_model_forward(MAMBA_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=MambaOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.LongTensor] = None,
cache_params: Optional[List[torch.FloatTensor]] = None,
use_cache: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs, # `attention_mask` is passed by the tokenizer and we don't want it
) -> Union[Tuple, MambaOutput]:
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if (input_ids is None) ^ (inputs_embeds is not None): # ^ is python for xor
raise ValueError(
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
)
if inputs_embeds is None:
inputs_embeds = self.embeddings(input_ids)
if self.gradient_checkpointing and self.training and use_cache:
use_cache = False
if cache_params is None and use_cache:
cache_params = MambaCache(
self.config, inputs_embeds.size(0), device=inputs_embeds.device, dtype=inputs_embeds.dtype
)
hidden_states = inputs_embeds
all_hidden_states = () if output_hidden_states else None
for mixer_block in self.layers:
if self.gradient_checkpointing and self.training:
hidden_states = self._gradient_checkpointing_func(mixer_block.__call__, hidden_states, cache_params)
else:
hidden_states = mixer_block(hidden_states, cache_params=cache_params)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if use_cache:
cache_params.seqlen_offset += inputs_embeds.shape[1]
hidden_states = self.norm_f(hidden_states)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, cache_params, all_hidden_states] if v is not None)
return MambaOutput(
last_hidden_state=hidden_states,
cache_params=cache_params if use_cache else None,
hidden_states=all_hidden_states,
)
@add_start_docstrings(
"""
The MAMBA Model transformer with a language modeling head on top (linear layer with weights tied to the input
embeddings).
""",
MAMBA_START_DOCSTRING,
)
class MambaForCausalLM(MambaPreTrainedModel):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.backbone = MambaModel(config)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def get_input_embeddings(self):
return self.backbone.get_input_embeddings()
def set_input_embeddings(self, new_embeddings):
return self.backbone.set_input_embeddings(new_embeddings)
def _update_model_kwargs_for_generation(
self, outputs: ModelOutput, model_kwargs: Dict[str, Any], **kwargs
) -> Dict[str, Any]:
model_kwargs["cache_params"] = outputs["cache_params"]
return model_kwargs
def prepare_inputs_for_generation(
self, input_ids, cache_params=None, inputs_embeds=None, attention_mask=None, **kwargs
):
# only last token for inputs_ids if the state is passed along.
if cache_params is not None:
input_ids = input_ids[:, -1].unsqueeze(-1)
if inputs_embeds is not None and cache_params is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs["cache_params"] = cache_params
return model_inputs
@add_start_docstrings_to_model_forward(MAMBA_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=MambaCausalLMOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
cache_params: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs, # for now we need this for generation
) -> Union[Tuple, MambaCausalLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
mamba_outputs = self.backbone(
input_ids,
cache_params=cache_params,
inputs_embeds=inputs_embeds,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = mamba_outputs[0]
logits = self.lm_head(hidden_states.to(self.lm_head.weight.dtype)).float()
loss = None
if labels is not None:
# move labels to correct device to enable model parallelism
labels = labels.to(logits.device)
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
if not return_dict:
output = (logits,) + mamba_outputs[1:]
return ((loss,) + output) if loss is not None else output
return MambaCausalLMOutput(
loss=loss,
logits=logits,
cache_params=mamba_outputs.cache_params,
hidden_states=mamba_outputs.hidden_states,
)
......@@ -5022,6 +5022,30 @@ class M2M100PreTrainedModel(metaclass=DummyObject):
requires_backends(self, ["torch"])
MAMBA_PRETRAINED_MODEL_ARCHIVE_LIST = None
class MambaForCausalLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MambaModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MambaPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MarianForCausalLM(metaclass=DummyObject):
_backends = ["torch"]
......
......@@ -307,6 +307,27 @@ def is_torch_cuda_available():
return False
def is_mamba_ssm_available():
if is_torch_available():
import torch
if not torch.cuda.is_available():
return False
else:
return _is_package_available("mamba_ssm")
return False
def is_causal_conv1d_available():
if is_torch_available():
import torch
if not torch.cuda.is_available():
return False
return _is_package_available("causal_conv1d")
return False
def is_torch_mps_available():
if is_torch_available():
import torch
......
# coding=utf-8
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import unittest
from typing import Dict, List, Tuple
from unittest.util import safe_repr
from parameterized import parameterized
from transformers import AutoTokenizer, MambaConfig, is_torch_available
from transformers.testing_utils import require_torch, require_torch_multi_gpu, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MambaForCausalLM,
MambaModel,
)
from transformers.models.mamba.modeling_mamba import MambaCache
from transformers.pytorch_utils import is_torch_greater_or_equal_than_2_0
else:
is_torch_greater_or_equal_than_2_0 = False
class MambaModelTester:
def __init__(
self,
parent,
batch_size=14,
seq_length=7,
is_training=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=2,
intermediate_size=32,
hidden_act="silu",
hidden_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
num_labels=3,
num_choices=4,
scope=None,
tie_word_embeddings=True,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.num_labels = num_labels
self.num_choices = num_choices
self.scope = scope
self.bos_token_id = vocab_size - 1
self.eos_token_id = vocab_size - 1
self.pad_token_id = vocab_size - 1
self.tie_word_embeddings = tie_word_embeddings
def get_large_model_config(self):
return MambaConfig.from_pretrained("hf-internal-testing/mamba-2.8b")
def prepare_config_and_inputs(
self, gradient_checkpointing=False, scale_attn_by_inverse_layer_idx=False, reorder_and_upcast_attn=False
):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = self.get_config(
gradient_checkpointing=gradient_checkpointing,
scale_attn_by_inverse_layer_idx=scale_attn_by_inverse_layer_idx,
reorder_and_upcast_attn=reorder_and_upcast_attn,
)
return (
config,
input_ids,
None,
sequence_labels,
token_labels,
choice_labels,
)
def get_config(
self, gradient_checkpointing=False, scale_attn_by_inverse_layer_idx=False, reorder_and_upcast_attn=False
):
return MambaConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
intermediate_size=self.intermediate_size,
activation_function=self.hidden_act,
n_positions=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
use_cache=True,
bos_token_id=self.bos_token_id,
eos_token_id=self.eos_token_id,
pad_token_id=self.pad_token_id,
gradient_checkpointing=gradient_checkpointing,
tie_word_embeddings=self.tie_word_embeddings,
)
def get_pipeline_config(self):
config = self.get_config()
config.vocab_size = 300
return config
def prepare_config_and_inputs_for_decoder(self):
(
config,
input_ids,
sequence_labels,
token_labels,
choice_labels,
) = self.prepare_config_and_inputs()
return (
config,
input_ids,
sequence_labels,
token_labels,
choice_labels,
)
def create_and_check_mamba_model(self, config, input_ids, *args):
config.output_hidden_states = True
model = MambaModel(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
self.parent.assertEqual(len(result.hidden_states), config.num_hidden_layers + 1)
def create_and_check_causl_lm(self, config, input_ids, *args):
model = MambaForCausalLM(config)
model.to(torch_device)
model.eval()
result = model(input_ids, labels=input_ids)
self.parent.assertEqual(result.loss.shape, ())
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def create_and_check_state_equivalency(self, config, input_ids, *args):
model = MambaModel(config=config)
model.to(torch_device)
model.eval()
outputs = model(input_ids)
output_whole = outputs.last_hidden_state
outputs = model(input_ids[:, :-1], use_cache=True)
output_one = outputs.last_hidden_state
# Using the state computed on the first inputs, we will get the same output
outputs = model(input_ids[:, -1:], cache_params=outputs.cache_params)
output_two = outputs.last_hidden_state
self.parent.assertTrue(torch.allclose(torch.cat([output_one, output_two], dim=1), output_whole, atol=1e-5))
# TODO the orignal mamba does not support decoding more than 1 token neither do we
def create_and_check_forward_and_backwards(self, config, input_ids, *args, gradient_checkpointing=False):
model = MambaForCausalLM(config)
model.to(torch_device)
if gradient_checkpointing:
model.gradient_checkpointing_enable()
result = model(input_ids, labels=input_ids)
self.parent.assertEqual(result.loss.shape, ())
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
result.loss.backward()
def prepare_config_and_inputs_for_common(self):
(
config,
input_ids,
_,
sequence_labels,
token_labels,
choice_labels,
) = self.prepare_config_and_inputs()
inputs_dict = {"input_ids": input_ids}
return config, inputs_dict
@unittest.skipIf(
not is_torch_greater_or_equal_than_2_0, reason="See https://github.com/huggingface/transformers/pull/24204"
)
@require_torch
class MambaModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (MambaModel, MambaForCausalLM) if is_torch_available() else ()
fx_compatible = False # FIXME let's try to support this @ArthurZucker
test_torchscript = False # FIXME let's try to support this @ArthurZucker
test_missing_keys = False
test_model_parallel = False
test_pruning = False
test_head_masking = False # Mamba does not have attention heads
test_model_parallel = False
pipeline_model_mapping = (
{"feature-extraction": MambaModel, "text-generation": MambaForCausalLM} if is_torch_available() else {}
)
def setUp(self):
self.model_tester = MambaModelTester(self)
self.config_tester = ConfigTester(
self, config_class=MambaConfig, n_embd=37, common_properties=["hidden_size", "num_hidden_layers"]
)
def assertInterval(self, member, container, msg=None):
r"""
Simple utility function to check if a member is inside an interval.
"""
if isinstance(member, torch.Tensor):
max_value, min_value = member.max().item(), member.min().item()
elif isinstance(member, list) or isinstance(member, tuple):
max_value, min_value = max(member), min(member)
if not isinstance(container, list):
raise TypeError("container should be a list or tuple")
elif len(container) != 2:
raise ValueError("container should have 2 elements")
expected_min, expected_max = container
is_inside_interval = (min_value >= expected_min) and (max_value <= expected_max)
if not is_inside_interval:
standardMsg = "%s not found in %s" % (safe_repr(member), safe_repr(container))
self.fail(self._formatMessage(msg, standardMsg))
def test_config(self):
self.config_tester.run_common_tests()
@unittest.skip("No attention in mamba")
def test_retain_grad_hidden_states_attentions(self):
pass
@require_torch_multi_gpu
def test_multi_gpu_data_parallel_forward(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
# some params shouldn't be scattered by nn.DataParallel
# so just remove them if they are present.
blacklist_non_batched_params = ["cache_params"]
for k in blacklist_non_batched_params:
inputs_dict.pop(k, None)
# move input tensors to cuda:O
for k, v in inputs_dict.items():
if torch.is_tensor(v):
inputs_dict[k] = v.to(0)
for model_class in self.all_model_classes:
model = model_class(config=config)
model.to(0)
model.eval()
# Wrap model in nn.DataParallel
model = torch.nn.DataParallel(model)
with torch.no_grad():
_ = model(**self._prepare_for_class(inputs_dict, model_class))
def test_mamba_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mamba_model(*config_and_inputs)
def test_mamba_lm_head_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_causl_lm(*config_and_inputs)
def test_state_equivalency(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_state_equivalency(*config_and_inputs)
def test_initialization(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config=config)
for name, param in model.named_parameters():
if "dt_proj.bias" in name:
dt = torch.exp(
torch.tensor([0, 1]) * (math.log(config.time_step_max) - math.log(config.time_step_min))
+ math.log(config.time_step_min)
).clamp(min=config.time_step_floor)
inv_dt = dt + torch.log(-torch.expm1(-dt))
if param.requires_grad:
self.assertTrue(param.data.max().item() <= inv_dt[1])
self.assertTrue(param.data.min().item() >= inv_dt[0])
elif "A_log" in name:
A = torch.arange(1, config.state_size + 1, dtype=torch.float32)[None, :]
self.assertTrue(torch.allclose(param.data, torch.log(A), atol=1e-5, rtol=1e-5))
elif "D" in name:
if param.requires_grad:
# check if it's a ones like
self.assertTrue(torch.allclose(param.data, torch.ones_like(param.data), atol=1e-5, rtol=1e-5))
@unittest.skip("Mamba does not use attention")
def test_attention_outputs(self):
r"""
Overriding the test_attention_outputs test as the attention outputs of Mamba are different from other models
it has a shape `batch_size, seq_len, hidden_size`.
"""
pass
@slow
def test_model_from_pretrained(self):
model = MambaModel.from_pretrained("hf-internal-testing/mamba-130m")
self.assertIsNotNone(model)
def test_model_outputs_equivalence(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
with torch.no_grad():
tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs)
dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple()
def recursive_check(tuple_object, dict_object):
if isinstance(tuple_object, MambaCache): # MODIFIED PART START
recursive_check(tuple_object.conv_states, dict_object.conv_states)
recursive_check(tuple_object.ssm_states, dict_object.ssm_states)
elif isinstance(tuple_object, (List, Tuple)): # MODIFIED PART END
for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
recursive_check(tuple_iterable_value, dict_iterable_value)
elif isinstance(tuple_object, Dict):
for tuple_iterable_value, dict_iterable_value in zip(
tuple_object.values(), dict_object.values()
):
recursive_check(tuple_iterable_value, dict_iterable_value)
elif tuple_object is None:
return
else:
self.assertTrue(
torch.allclose(tuple_object, dict_object, atol=1e-5),
msg=(
"Tuple and dict output are not equal. Difference:"
f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:"
f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has"
f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}."
),
)
recursive_check(tuple_output, dict_output)
for model_class in self.all_model_classes:
model = model_class(config)
model.to(torch_device)
model.eval()
tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
dict_inputs = self._prepare_for_class(inputs_dict, model_class)
check_equivalence(model, tuple_inputs, dict_inputs)
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
check_equivalence(model, tuple_inputs, dict_inputs)
tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
dict_inputs = self._prepare_for_class(inputs_dict, model_class)
check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})
@require_torch
class MambaIntegrationTests(unittest.TestCase):
def setUp(self):
self.model_id = "ArthurZ/mamba-2.8b"
self.tokenizer = AutoTokenizer.from_pretrained(self.model_id)
@parameterized.expand([(torch_device,), ("cpu",)])
def test_simple_generate(self, device):
tokenizer = AutoTokenizer.from_pretrained("ArthurZ/mamba-130m")
tokenizer.pad_token = tokenizer.eos_token
model = MambaForCausalLM.from_pretrained("ArthurZ/mamba-130m", torch_dtype=torch.float16)
model.to(device)
model.config.use_cache = True
input_ids = tokenizer("Hey how are you doing?", return_tensors="pt")["input_ids"].to(device)
out = model.generate(input_ids, do_sample=False, max_new_tokens=10)
output_sentence = tokenizer.decode(out[0, :])
self.assertEqual(output_sentence, "Hey how are you doing?\n\nI'm so glad you're here.")
with torch.no_grad():
logits = model(input_ids=input_ids).logits
EXPECTED_LOGITS_NO_GRAD = torch.tensor(
[
-55.6875, -69.8750, -49.9062, -51.7500, -57.6875, -57.9375, -56.9688,
-57.9375, -54.6875, -55.9375, -55.3125, -58.0938, -60.5625, -47.0000,
-52.0312, -49.7812, -55.9375, -57.9062, -56.7812, -57.1250, -57.3438,
-58.3125, -57.8125, -58.7812, -59.6250, -59.0938, -58.7188, -52.9375,
-53.4688, -57.3750, -56.9375, -55.7500, -53.3125, -55.8438, -57.0000,
-56.9062, -56.2188, -54.7188, -56.4375, -57.5000
]
,dtype=torch.float32) # fmt: skip
torch.testing.assert_close(logits[0, 0, :40].cpu(), EXPECTED_LOGITS_NO_GRAD, rtol=1e-3, atol=1e-3)
@parameterized.expand([(torch_device,), ("cpu",)])
def test_simple_generate_cuda_kernels_tiny(self, device):
expected_output = "Hello my name is John and I am a newbie to the world"
input_ids = self.tokenizer("Hello my name is", return_tensors="pt").input_ids.to(device)
model = MambaForCausalLM.from_pretrained("ArthurZ/mamba-130m", torch_dtype=torch.float16).to(device)
output = model.generate(input_ids, max_new_tokens=10)
output_sentence = self.tokenizer.decode(output[0].tolist())
self.assertEqual(output_sentence, expected_output)
@parameterized.expand([(torch_device,), ("cpu",)])
@slow
def test_simple_generate_cuda_kernels_small(self, device):
expected_output = "Hello my name is\n\nI am a\n\nI am a"
input_ids = self.tokenizer("Hello my name is", return_tensors="pt").input_ids.to(device)
model = MambaForCausalLM.from_pretrained("ArthurZ/mamba-790m", torch_dtype=torch.float16).to(device)
output = model.generate(input_ids, max_new_tokens=10)
output_sentence = self.tokenizer.decode(output[0].tolist())
self.assertEqual(output_sentence, expected_output)
@parameterized.expand([(torch_device,), ("cpu",)])
@slow
def test_simple_generate_cuda_kernels_mid(self, device):
expected_output = "Hello my name is John and I am a\n\nI am a single father of a beautiful daughter. I am a"
input_ids = self.tokenizer("Hello my name is", return_tensors="pt").input_ids.to(device)
model = MambaForCausalLM.from_pretrained("ArthurZ/mamba-1.4b", torch_dtype=torch.float16).to(device)
output = model.generate(input_ids, max_new_tokens=20)
output_sentence = self.tokenizer.decode(output[0].tolist())
self.assertEqual(output_sentence, expected_output)
@parameterized.expand([(torch_device,), ("cpu",)])
@slow
def test_simple_generate_cuda_kernels_big(self, device):
expected_output = "Hello my name is John and I am a new member of this forum. I am a retired Marine and I am a member of the Marine Corps League. I am a"
input_ids = self.tokenizer("Hello my name is", return_tensors="pt").input_ids.to(device)
model = MambaForCausalLM.from_pretrained("ArthurZ/mamba-2.8b", torch_dtype=torch.float16).to(device)
output = model.generate(input_ids, max_new_tokens=30)
output_sentence = self.tokenizer.decode(output[0].tolist())
self.assertEqual(output_sentence, expected_output)
......@@ -34,6 +34,8 @@ CONFIG_MAPPING = transformers.models.auto.configuration_auto.CONFIG_MAPPING
SPECIAL_CASES_TO_ALLOW = {
# used to compute the property `self.chunk_length`
"EncodecConfig": ["overlap"],
# used as in the config to define `intermediate_size`
"MambaConfig": ["expand"],
# used as `self.bert_model = BertModel(config, ...)`
"DPRConfig": True,
"FuyuConfig": True,
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment