Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
fae4d1c2
Unverified
Commit
fae4d1c2
authored
Dec 21, 2019
by
Thomas Wolf
Committed by
GitHub
Dec 21, 2019
Browse files
Merge pull request #2217 from aaugustin/test-parallelization
Support running tests in parallel
parents
ac1b449c
b8e924e1
Changes
30
Show whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
157 additions
and
185 deletions
+157
-185
.circleci/config.yml
.circleci/config.yml
+39
-18
setup.py
setup.py
+1
-0
templates/adding_a_new_model/tests/modeling_tf_xxx_test.py
templates/adding_a_new_model/tests/modeling_tf_xxx_test.py
+2
-5
templates/adding_a_new_model/tests/modeling_xxx_test.py
templates/adding_a_new_model/tests/modeling_xxx_test.py
+2
-5
transformers/file_utils.py
transformers/file_utils.py
+53
-51
transformers/tests/modeling_albert_test.py
transformers/tests/modeling_albert_test.py
+2
-5
transformers/tests/modeling_bert_test.py
transformers/tests/modeling_bert_test.py
+2
-5
transformers/tests/modeling_common_test.py
transformers/tests/modeling_common_test.py
+24
-31
transformers/tests/modeling_ctrl_test.py
transformers/tests/modeling_ctrl_test.py
+2
-5
transformers/tests/modeling_distilbert_test.py
transformers/tests/modeling_distilbert_test.py
+2
-4
transformers/tests/modeling_gpt2_test.py
transformers/tests/modeling_gpt2_test.py
+2
-5
transformers/tests/modeling_openai_test.py
transformers/tests/modeling_openai_test.py
+2
-5
transformers/tests/modeling_roberta_test.py
transformers/tests/modeling_roberta_test.py
+2
-5
transformers/tests/modeling_t5_test.py
transformers/tests/modeling_t5_test.py
+2
-5
transformers/tests/modeling_tf_albert_test.py
transformers/tests/modeling_tf_albert_test.py
+3
-8
transformers/tests/modeling_tf_auto_test.py
transformers/tests/modeling_tf_auto_test.py
+9
-9
transformers/tests/modeling_tf_bert_test.py
transformers/tests/modeling_tf_bert_test.py
+2
-5
transformers/tests/modeling_tf_ctrl_test.py
transformers/tests/modeling_tf_ctrl_test.py
+2
-5
transformers/tests/modeling_tf_distilbert_test.py
transformers/tests/modeling_tf_distilbert_test.py
+2
-4
transformers/tests/modeling_tf_gpt2_test.py
transformers/tests/modeling_tf_gpt2_test.py
+2
-5
No files found.
.circleci/config.yml
View file @
fae4d1c2
version
:
2
jobs
:
build
_py3_torch_and_tf
:
run_tests
_py3_torch_and_tf
:
working_directory
:
~/transformers
docker
:
-
image
:
circleci/python:3.5
environment
:
OMP_NUM_THREADS
:
1
resource_class
:
xlarge
parallelism
:
1
steps
:
...
...
@@ -11,49 +13,67 @@ jobs:
-
run
:
sudo pip install torch
-
run
:
sudo pip install tensorflow
-
run
:
sudo pip install --progress-bar off .
-
run
:
sudo pip install pytest codecov pytest-cov
-
run
:
sudo pip install pytest codecov pytest-cov
pytest-xdist
-
run
:
sudo pip install tensorboardX scikit-learn
-
run
:
python -m pytest -
s
v ./transformers/tests/ --cov
-
run
:
python -m pytest -
n 8 --dist=loadfile -s -
v ./transformers/tests/ --cov
-
run
:
codecov
build
_py3_torch
:
run_tests
_py3_torch
:
working_directory
:
~/transformers
docker
:
-
image
:
circleci/python:3.5
environment
:
OMP_NUM_THREADS
:
1
resource_class
:
xlarge
parallelism
:
1
steps
:
-
checkout
-
run
:
sudo pip install torch
-
run
:
sudo pip install --progress-bar off .
-
run
:
sudo pip install pytest codecov pytest-cov
-
run
:
sudo pip install pytest codecov pytest-cov
pytest-xdist
-
run
:
sudo pip install tensorboardX scikit-learn
-
run
:
python -m pytest -sv ./transformers/tests/ --cov
-
run
:
python -m pytest -sv ./examples/
-
run
:
python -m pytest -n 8 --dist=loadfile -s -v ./transformers/tests/ --cov
-
run
:
codecov
build
_py3_tf
:
run_tests
_py3_tf
:
working_directory
:
~/transformers
docker
:
-
image
:
circleci/python:3.5
environment
:
OMP_NUM_THREADS
:
1
resource_class
:
xlarge
parallelism
:
1
steps
:
-
checkout
-
run
:
sudo pip install tensorflow
-
run
:
sudo pip install --progress-bar off .
-
run
:
sudo pip install pytest codecov pytest-cov
-
run
:
sudo pip install pytest codecov pytest-cov
pytest-xdist
-
run
:
sudo pip install tensorboardX scikit-learn
-
run
:
python -m pytest -
s
v ./transformers/tests/ --cov
-
run
:
python -m pytest -
n 8 --dist=loadfile -s -
v ./transformers/tests/ --cov
-
run
:
codecov
build
_py3_custom_tokenizers
:
run_tests
_py3_custom_tokenizers
:
working_directory
:
~/transformers
docker
:
-
image
:
circleci/python:3.5
steps
:
-
checkout
-
run
:
sudo pip install --progress-bar off .
-
run
:
sudo pip install pytest
-
run
:
sudo pip install pytest
pytest-xdist
-
run
:
sudo pip install mecab-python3
-
run
:
RUN_CUSTOM_TOKENIZERS=1 python -m pytest -sv ./transformers/tests/tokenization_bert_japanese_test.py
run_examples_py3_torch
:
working_directory
:
~/transformers
docker
:
-
image
:
circleci/python:3.5
environment
:
OMP_NUM_THREADS
:
1
resource_class
:
xlarge
parallelism
:
1
steps
:
-
checkout
-
run
:
sudo pip install torch
-
run
:
sudo pip install --progress-bar off .
-
run
:
sudo pip install pytest pytest-xdist
-
run
:
sudo pip install tensorboardX scikit-learn
-
run
:
python -m pytest -n 8 --dist=loadfile -s -v ./examples/
deploy_doc
:
working_directory
:
~/transformers
docker
:
...
...
@@ -66,7 +86,7 @@ jobs:
-
run
:
sudo pip install --progress-bar off -r docs/requirements.txt
-
run
:
sudo pip install --progress-bar off -r requirements.txt
-
run
:
./.circleci/deploy.sh
repository_consistency
:
check_
repository_consistency
:
working_directory
:
~/transformers
docker
:
-
image
:
circleci/python:3.5
...
...
@@ -85,9 +105,10 @@ workflows:
version
:
2
build_and_test
:
jobs
:
-
repository_consistency
-
build_py3_custom_tokenizers
-
build_py3_torch_and_tf
-
build_py3_torch
-
build_py3_tf
-
check_repository_consistency
-
run_examples_py3_torch
-
run_tests_py3_custom_tokenizers
-
run_tests_py3_torch_and_tf
-
run_tests_py3_torch
-
run_tests_py3_tf
-
deploy_doc
:
*workflow_filters
setup.py
View file @
fae4d1c2
...
...
@@ -59,6 +59,7 @@ setup(
"tests.*"
,
"tests"
]),
install_requires
=
[
'numpy'
,
'boto3'
,
'filelock'
,
'requests'
,
'tqdm'
,
'regex != 2019.12.17'
,
...
...
templates/adding_a_new_model/tests/modeling_tf_xxx_test.py
View file @
fae4d1c2
...
...
@@ -17,12 +17,11 @@ from __future__ import division
from
__future__
import
print_function
import
unittest
import
shutil
import
sys
from
.modeling_tf_common_test
import
(
TFCommonTestCases
,
ids_tensor
)
from
.configuration_common_test
import
ConfigTester
from
.utils
import
require_tf
,
slow
from
.utils
import
CACHE_DIR
,
require_tf
,
slow
from
transformers
import
XxxConfig
,
is_tf_available
...
...
@@ -245,10 +244,8 @@ class TFXxxModelTest(TFCommonTestCases.TFCommonModelTester):
@
slow
def
test_model_from_pretrained
(
self
):
cache_dir
=
"/tmp/transformers_test/"
for
model_name
in
[
'xxx-base-uncased'
]:
model
=
TFXxxModel
.
from_pretrained
(
model_name
,
cache_dir
=
cache_dir
)
shutil
.
rmtree
(
cache_dir
)
model
=
TFXxxModel
.
from_pretrained
(
model_name
,
cache_dir
=
CACHE_DIR
)
self
.
assertIsNotNone
(
model
)
if
__name__
==
"__main__"
:
...
...
templates/adding_a_new_model/tests/modeling_xxx_test.py
View file @
fae4d1c2
...
...
@@ -17,13 +17,12 @@ from __future__ import division
from
__future__
import
print_function
import
unittest
import
shutil
from
transformers
import
is_torch_available
from
.modeling_common_test
import
(
CommonTestCases
,
ids_tensor
)
from
.configuration_common_test
import
ConfigTester
from
.utils
import
require_torch
,
slow
,
torch_device
from
.utils
import
CACHE_DIR
,
require_torch
,
slow
,
torch_device
if
is_torch_available
():
from
transformers
import
(
XxxConfig
,
XxxModel
,
XxxForMaskedLM
,
...
...
@@ -249,10 +248,8 @@ class XxxModelTest(CommonTestCases.CommonModelTester):
@
slow
def
test_model_from_pretrained
(
self
):
cache_dir
=
"/tmp/transformers_test/"
for
model_name
in
list
(
XXX_PRETRAINED_MODEL_ARCHIVE_MAP
.
keys
())[:
1
]:
model
=
XxxModel
.
from_pretrained
(
model_name
,
cache_dir
=
cache_dir
)
shutil
.
rmtree
(
cache_dir
)
model
=
XxxModel
.
from_pretrained
(
model_name
,
cache_dir
=
CACHE_DIR
)
self
.
assertIsNotNone
(
model
)
if
__name__
==
"__main__"
:
...
...
transformers/file_utils.py
View file @
fae4d1c2
...
...
@@ -10,10 +10,9 @@ import json
import
logging
import
os
import
six
import
shutil
import
tempfile
import
fnmatch
from
functools
import
wraps
from
functools
import
partial
,
wraps
from
hashlib
import
sha256
from
io
import
open
...
...
@@ -25,6 +24,8 @@ from tqdm.auto import tqdm
from
contextlib
import
contextmanager
from
.
import
__version__
from
filelock
import
FileLock
logger
=
logging
.
getLogger
(
__name__
)
# pylint: disable=invalid-name
try
:
...
...
@@ -334,25 +335,31 @@ def get_from_cache(url, cache_dir=None, force_download=False, proxies=None, etag
# If we don't have a connection (etag is None) and can't identify the file
# try to get the last downloaded one
if
not
os
.
path
.
exists
(
cache_path
)
and
etag
is
None
:
matching_files
=
fnmatch
.
filter
(
os
.
listdir
(
cache_dir
),
filename
+
'.*'
)
matching_files
=
list
(
filter
(
lambda
s
:
not
s
.
endswith
(
'.json'
),
matching_files
))
matching_files
=
[
file
for
file
in
fnmatch
.
filter
(
os
.
listdir
(
cache_dir
),
filename
+
'.*'
)
if
not
file
.
endswith
(
'.json'
)
and
not
file
.
endswith
(
'.lock'
)
]
if
matching_files
:
cache_path
=
os
.
path
.
join
(
cache_dir
,
matching_files
[
-
1
])
# Prevent parallel downloads of the same file with a lock.
lock_path
=
cache_path
+
'.lock'
with
FileLock
(
lock_path
):
if
resume_download
:
incomplete_path
=
cache_path
+
'.incomplete'
@
contextmanager
def
_resumable_file_manager
():
with
open
(
incomplete_path
,
'a+b'
)
as
f
:
yield
f
os
.
remove
(
incomplete_path
)
temp_file_manager
=
_resumable_file_manager
if
os
.
path
.
exists
(
incomplete_path
):
resume_size
=
os
.
stat
(
incomplete_path
).
st_size
else
:
resume_size
=
0
else
:
temp_file_manager
=
tempfile
.
NamedTemporaryFile
temp_file_manager
=
partial
(
tempfile
.
NamedTemporaryFile
,
dir
=
cache_dir
,
delete
=
False
)
resume_size
=
0
if
etag
is
not
None
and
(
not
os
.
path
.
exists
(
cache_path
)
or
force_download
):
...
...
@@ -371,12 +378,9 @@ def get_from_cache(url, cache_dir=None, force_download=False, proxies=None, etag
# we are copying the file before closing it, so flush to avoid truncation
temp_file
.
flush
()
# shutil.copyfileobj() starts at the current position, so go to the start
temp_file
.
seek
(
0
)
logger
.
info
(
"copying %s to cache at %s"
,
temp_file
.
name
,
cache_path
)
with
open
(
cache_path
,
'wb'
)
as
cache_file
:
shutil
.
copyfileobj
(
temp_file
,
cache_file
)
logger
.
info
(
"storing %s in cache at %s"
,
url
,
cache_path
)
os
.
rename
(
temp_file
.
name
,
cache_path
)
logger
.
info
(
"creating metadata file for %s"
,
cache_path
)
meta
=
{
'url'
:
url
,
'etag'
:
etag
}
...
...
@@ -387,6 +391,4 @@ def get_from_cache(url, cache_dir=None, force_download=False, proxies=None, etag
output_string
=
unicode
(
output_string
,
'utf-8'
)
# The beauty of python 2
meta_file
.
write
(
output_string
)
logger
.
info
(
"removing temp file %s"
,
temp_file
.
name
)
return
cache_path
transformers/tests/modeling_albert_test.py
View file @
fae4d1c2
...
...
@@ -17,13 +17,12 @@ from __future__ import division
from
__future__
import
print_function
import
unittest
import
shutil
from
transformers
import
is_torch_available
from
.modeling_common_test
import
(
CommonTestCases
,
ids_tensor
)
from
.configuration_common_test
import
ConfigTester
from
.utils
import
require_torch
,
slow
,
torch_device
from
.utils
import
CACHE_DIR
,
require_torch
,
slow
,
torch_device
if
is_torch_available
():
from
transformers
import
(
AlbertConfig
,
AlbertModel
,
AlbertForMaskedLM
,
...
...
@@ -230,10 +229,8 @@ class AlbertModelTest(CommonTestCases.CommonModelTester):
@
slow
def
test_model_from_pretrained
(
self
):
cache_dir
=
"/tmp/transformers_test/"
for
model_name
in
list
(
ALBERT_PRETRAINED_MODEL_ARCHIVE_MAP
.
keys
())[:
1
]:
model
=
AlbertModel
.
from_pretrained
(
model_name
,
cache_dir
=
cache_dir
)
shutil
.
rmtree
(
cache_dir
)
model
=
AlbertModel
.
from_pretrained
(
model_name
,
cache_dir
=
CACHE_DIR
)
self
.
assertIsNotNone
(
model
)
if
__name__
==
"__main__"
:
...
...
transformers/tests/modeling_bert_test.py
View file @
fae4d1c2
...
...
@@ -17,13 +17,12 @@ from __future__ import division
from
__future__
import
print_function
import
unittest
import
shutil
from
transformers
import
is_torch_available
from
.modeling_common_test
import
(
CommonTestCases
,
ids_tensor
,
floats_tensor
)
from
.configuration_common_test
import
ConfigTester
from
.utils
import
require_torch
,
slow
,
torch_device
from
.utils
import
CACHE_DIR
,
require_torch
,
slow
,
torch_device
if
is_torch_available
():
from
transformers
import
(
BertConfig
,
BertModel
,
BertForMaskedLM
,
...
...
@@ -360,10 +359,8 @@ class BertModelTest(CommonTestCases.CommonModelTester):
@
slow
def
test_model_from_pretrained
(
self
):
cache_dir
=
"/tmp/transformers_test/"
for
model_name
in
list
(
BERT_PRETRAINED_MODEL_ARCHIVE_MAP
.
keys
())[:
1
]:
model
=
BertModel
.
from_pretrained
(
model_name
,
cache_dir
=
cache_dir
)
shutil
.
rmtree
(
cache_dir
)
model
=
BertModel
.
from_pretrained
(
model_name
,
cache_dir
=
CACHE_DIR
)
self
.
assertIsNotNone
(
model
)
...
...
transformers/tests/modeling_common_test.py
View file @
fae4d1c2
...
...
@@ -18,7 +18,7 @@ from __future__ import print_function
import
copy
import
sys
import
os
import
os
.path
import
shutil
import
tempfile
import
json
...
...
@@ -30,7 +30,7 @@ import logging
from
transformers
import
is_torch_available
from
.utils
import
require_torch
,
slow
,
torch_device
from
.utils
import
CACHE_DIR
,
require_torch
,
slow
,
torch_device
if
is_torch_available
():
import
torch
...
...
@@ -218,20 +218,21 @@ class CommonTestCases:
inputs
=
inputs_dict
[
'input_ids'
]
# Let's keep only input_ids
try
:
torch
.
jit
.
trace
(
model
,
inputs
)
traced_gpt2
=
torch
.
jit
.
trace
(
model
,
inputs
)
except
RuntimeError
:
self
.
fail
(
"Couldn't trace module."
)
with
TemporaryDirectory
()
as
tmp_dir_name
:
pt_file_name
=
os
.
path
.
join
(
tmp_dir_name
,
"traced_model.pt"
)
try
:
traced_gpt2
=
torch
.
jit
.
trace
(
model
,
inputs
)
torch
.
jit
.
save
(
traced_gpt2
,
"traced_model.pt"
)
except
RuntimeError
:
torch
.
jit
.
save
(
traced_gpt2
,
pt_file_name
)
except
Exception
:
self
.
fail
(
"Couldn't save module."
)
try
:
loaded_model
=
torch
.
jit
.
load
(
"traced_model.pt"
)
os
.
remove
(
"traced_model.pt"
)
except
ValueError
:
loaded_model
=
torch
.
jit
.
load
(
pt_file_name
)
except
Exception
:
self
.
fail
(
"Couldn't load module."
)
model
.
to
(
torch_device
)
...
...
@@ -352,11 +353,10 @@ class CommonTestCases:
heads_to_prune
=
{
0
:
list
(
range
(
1
,
self
.
model_tester
.
num_attention_heads
)),
-
1
:
[
0
]}
model
.
prune_heads
(
heads_to_prune
)
directory
=
"pruned_model"
if
not
os
.
path
.
exists
(
directory
):
os
.
makedirs
(
directory
)
model
.
save_pretrained
(
directory
)
model
=
model_class
.
from_pretrained
(
directory
)
with
TemporaryDirectory
()
as
temp_dir_name
:
model
.
save_pretrained
(
temp_dir_name
)
model
=
model_class
.
from_pretrained
(
temp_dir_name
)
model
.
to
(
torch_device
)
with
torch
.
no_grad
():
...
...
@@ -366,7 +366,6 @@ class CommonTestCases:
self
.
assertEqual
(
attentions
[
1
].
shape
[
-
3
],
self
.
model_tester
.
num_attention_heads
)
self
.
assertEqual
(
attentions
[
-
1
].
shape
[
-
3
],
self
.
model_tester
.
num_attention_heads
-
1
)
shutil
.
rmtree
(
directory
)
def
test_head_pruning_save_load_from_config_init
(
self
):
if
not
self
.
test_pruning
:
...
...
@@ -426,14 +425,10 @@ class CommonTestCases:
self
.
assertEqual
(
attentions
[
2
].
shape
[
-
3
],
self
.
model_tester
.
num_attention_heads
)
self
.
assertEqual
(
attentions
[
3
].
shape
[
-
3
],
self
.
model_tester
.
num_attention_heads
)
directory
=
"pruned_model"
if
not
os
.
path
.
exists
(
directory
):
os
.
makedirs
(
directory
)
model
.
save_pretrained
(
directory
)
model
=
model_class
.
from_pretrained
(
directory
)
with
TemporaryDirectory
()
as
temp_dir_name
:
model
.
save_pretrained
(
temp_dir_name
)
model
=
model_class
.
from_pretrained
(
temp_dir_name
)
model
.
to
(
torch_device
)
shutil
.
rmtree
(
directory
)
with
torch
.
no_grad
():
outputs
=
model
(
**
inputs_dict
)
...
...
@@ -758,10 +753,8 @@ class CommonTestCases:
[[],
[]])
def
create_and_check_model_from_pretrained
(
self
):
cache_dir
=
"/tmp/transformers_test/"
for
model_name
in
list
(
self
.
base_model_class
.
pretrained_model_archive_map
.
keys
())[:
1
]:
model
=
self
.
base_model_class
.
from_pretrained
(
model_name
,
cache_dir
=
cache_dir
)
shutil
.
rmtree
(
cache_dir
)
model
=
self
.
base_model_class
.
from_pretrained
(
model_name
,
cache_dir
=
CACHE_DIR
)
self
.
parent
.
assertIsNotNone
(
model
)
def
prepare_config_and_inputs_for_common
(
self
):
...
...
transformers/tests/modeling_ctrl_test.py
View file @
fae4d1c2
...
...
@@ -16,7 +16,6 @@ from __future__ import division
from
__future__
import
print_function
import
unittest
import
shutil
import
pdb
from
transformers
import
is_torch_available
...
...
@@ -27,7 +26,7 @@ if is_torch_available():
from
.modeling_common_test
import
(
CommonTestCases
,
ids_tensor
)
from
.configuration_common_test
import
ConfigTester
from
.utils
import
require_torch
,
slow
,
torch_device
from
.utils
import
CACHE_DIR
,
require_torch
,
slow
,
torch_device
@
require_torch
...
...
@@ -205,10 +204,8 @@ class CTRLModelTest(CommonTestCases.CommonModelTester):
@
slow
def
test_model_from_pretrained
(
self
):
cache_dir
=
"/tmp/transformers_test/"
for
model_name
in
list
(
CTRL_PRETRAINED_MODEL_ARCHIVE_MAP
.
keys
())[:
1
]:
model
=
CTRLModel
.
from_pretrained
(
model_name
,
cache_dir
=
cache_dir
)
shutil
.
rmtree
(
cache_dir
)
model
=
CTRLModel
.
from_pretrained
(
model_name
,
cache_dir
=
CACHE_DIR
)
self
.
assertIsNotNone
(
model
)
...
...
transformers/tests/modeling_distilbert_test.py
View file @
fae4d1c2
...
...
@@ -27,7 +27,7 @@ if is_torch_available():
from
.modeling_common_test
import
(
CommonTestCases
,
ids_tensor
)
from
.configuration_common_test
import
ConfigTester
from
.utils
import
require_torch
,
slow
,
torch_device
from
.utils
import
CACHE_DIR
,
require_torch
,
slow
,
torch_device
@
require_torch
...
...
@@ -235,10 +235,8 @@ class DistilBertModelTest(CommonTestCases.CommonModelTester):
# @slow
# def test_model_from_pretrained(self):
# cache_dir = "/tmp/transformers_test/"
# for model_name in list(DISTILBERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
# model = DistilBertModel.from_pretrained(model_name, cache_dir=cache_dir)
# shutil.rmtree(cache_dir)
# model = DistilBertModel.from_pretrained(model_name, cache_dir=CACHE_DIR)
# self.assertIsNotNone(model)
if
__name__
==
"__main__"
:
...
...
transformers/tests/modeling_gpt2_test.py
View file @
fae4d1c2
...
...
@@ -17,7 +17,6 @@ from __future__ import division
from
__future__
import
print_function
import
unittest
import
shutil
from
transformers
import
is_torch_available
...
...
@@ -27,7 +26,7 @@ if is_torch_available():
from
.modeling_common_test
import
(
CommonTestCases
,
ids_tensor
)
from
.configuration_common_test
import
ConfigTester
from
.utils
import
require_torch
,
slow
,
torch_device
from
.utils
import
CACHE_DIR
,
require_torch
,
slow
,
torch_device
@
require_torch
...
...
@@ -239,10 +238,8 @@ class GPT2ModelTest(CommonTestCases.CommonModelTester):
@
slow
def
test_model_from_pretrained
(
self
):
cache_dir
=
"/tmp/transformers_test/"
for
model_name
in
list
(
GPT2_PRETRAINED_MODEL_ARCHIVE_MAP
.
keys
())[:
1
]:
model
=
GPT2Model
.
from_pretrained
(
model_name
,
cache_dir
=
cache_dir
)
shutil
.
rmtree
(
cache_dir
)
model
=
GPT2Model
.
from_pretrained
(
model_name
,
cache_dir
=
CACHE_DIR
)
self
.
assertIsNotNone
(
model
)
...
...
transformers/tests/modeling_openai_test.py
View file @
fae4d1c2
...
...
@@ -17,7 +17,6 @@ from __future__ import division
from
__future__
import
print_function
import
unittest
import
shutil
from
transformers
import
is_torch_available
...
...
@@ -27,7 +26,7 @@ if is_torch_available():
from
.modeling_common_test
import
(
CommonTestCases
,
ids_tensor
)
from
.configuration_common_test
import
ConfigTester
from
.utils
import
require_torch
,
slow
,
torch_device
from
.utils
import
CACHE_DIR
,
require_torch
,
slow
,
torch_device
@
require_torch
...
...
@@ -207,10 +206,8 @@ class OpenAIGPTModelTest(CommonTestCases.CommonModelTester):
@
slow
def
test_model_from_pretrained
(
self
):
cache_dir
=
"/tmp/transformers_test/"
for
model_name
in
list
(
OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP
.
keys
())[:
1
]:
model
=
OpenAIGPTModel
.
from_pretrained
(
model_name
,
cache_dir
=
cache_dir
)
shutil
.
rmtree
(
cache_dir
)
model
=
OpenAIGPTModel
.
from_pretrained
(
model_name
,
cache_dir
=
CACHE_DIR
)
self
.
assertIsNotNone
(
model
)
...
...
transformers/tests/modeling_roberta_test.py
View file @
fae4d1c2
...
...
@@ -17,7 +17,6 @@ from __future__ import division
from
__future__
import
print_function
import
unittest
import
shutil
from
transformers
import
is_torch_available
...
...
@@ -29,7 +28,7 @@ if is_torch_available():
from
.modeling_common_test
import
(
CommonTestCases
,
ids_tensor
)
from
.configuration_common_test
import
ConfigTester
from
.utils
import
require_torch
,
slow
,
torch_device
from
.utils
import
CACHE_DIR
,
require_torch
,
slow
,
torch_device
@
require_torch
...
...
@@ -199,10 +198,8 @@ class RobertaModelTest(CommonTestCases.CommonModelTester):
@
slow
def
test_model_from_pretrained
(
self
):
cache_dir
=
"/tmp/transformers_test/"
for
model_name
in
list
(
ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP
.
keys
())[:
1
]:
model
=
RobertaModel
.
from_pretrained
(
model_name
,
cache_dir
=
cache_dir
)
shutil
.
rmtree
(
cache_dir
)
model
=
RobertaModel
.
from_pretrained
(
model_name
,
cache_dir
=
CACHE_DIR
)
self
.
assertIsNotNone
(
model
)
...
...
transformers/tests/modeling_t5_test.py
View file @
fae4d1c2
...
...
@@ -17,13 +17,12 @@ from __future__ import division
from
__future__
import
print_function
import
unittest
import
shutil
from
transformers
import
is_torch_available
from
.modeling_common_test
import
(
CommonTestCases
,
ids_tensor
,
floats_tensor
)
from
.configuration_common_test
import
ConfigTester
from
.utils
import
require_torch
,
slow
,
torch_device
from
.utils
import
CACHE_DIR
,
require_torch
,
slow
,
torch_device
if
is_torch_available
():
from
transformers
import
(
T5Config
,
T5Model
,
T5WithLMHeadModel
)
...
...
@@ -175,10 +174,8 @@ class T5ModelTest(CommonTestCases.CommonModelTester):
@
slow
def
test_model_from_pretrained
(
self
):
cache_dir
=
"/tmp/transformers_test/"
for
model_name
in
list
(
T5_PRETRAINED_MODEL_ARCHIVE_MAP
.
keys
())[:
1
]:
model
=
T5Model
.
from_pretrained
(
model_name
,
cache_dir
=
cache_dir
)
shutil
.
rmtree
(
cache_dir
)
model
=
T5Model
.
from_pretrained
(
model_name
,
cache_dir
=
CACHE_DIR
)
self
.
assertIsNotNone
(
model
)
if
__name__
==
"__main__"
:
...
...
transformers/tests/modeling_tf_albert_test.py
View file @
fae4d1c2
...
...
@@ -17,12 +17,11 @@ from __future__ import division
from
__future__
import
print_function
import
unittest
import
shutil
import
sys
from
.modeling_tf_common_test
import
(
TFCommonTestCases
,
ids_tensor
)
from
.configuration_common_test
import
ConfigTester
from
.utils
import
require_tf
,
slow
from
.utils
import
CACHE_DIR
,
require_tf
,
slow
from
transformers
import
AlbertConfig
,
is_tf_available
...
...
@@ -217,12 +216,8 @@ class TFAlbertModelTest(TFCommonTestCases.TFCommonModelTester):
@
slow
def
test_model_from_pretrained
(
self
):
cache_dir
=
"/tmp/transformers_test/"
# for model_name in list(TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
for
model_name
in
[
'albert-base-uncased'
]:
model
=
TFAlbertModel
.
from_pretrained
(
model_name
,
cache_dir
=
cache_dir
)
shutil
.
rmtree
(
cache_dir
)
for
model_name
in
list
(
TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_MAP
.
keys
())[:
1
]:
model
=
TFAlbertModel
.
from_pretrained
(
model_name
,
cache_dir
=
CACHE_DIR
)
self
.
assertIsNotNone
(
model
)
...
...
transformers/tests/modeling_tf_auto_test.py
View file @
fae4d1c2
...
...
@@ -46,11 +46,11 @@ class TFAutoModelTest(unittest.TestCase):
logging
.
basicConfig
(
level
=
logging
.
INFO
)
# for model_name in list(TF_BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
for
model_name
in
[
'bert-base-uncased'
]:
config
=
AutoConfig
.
from_pretrained
(
model_name
,
force_download
=
True
)
config
=
AutoConfig
.
from_pretrained
(
model_name
)
self
.
assertIsNotNone
(
config
)
self
.
assertIsInstance
(
config
,
BertConfig
)
model
=
TFAutoModel
.
from_pretrained
(
model_name
,
force_download
=
True
)
model
=
TFAutoModel
.
from_pretrained
(
model_name
)
self
.
assertIsNotNone
(
model
)
self
.
assertIsInstance
(
model
,
TFBertModel
)
...
...
@@ -59,11 +59,11 @@ class TFAutoModelTest(unittest.TestCase):
logging
.
basicConfig
(
level
=
logging
.
INFO
)
# for model_name in list(TF_BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
for
model_name
in
[
'bert-base-uncased'
]:
config
=
AutoConfig
.
from_pretrained
(
model_name
,
force_download
=
True
)
config
=
AutoConfig
.
from_pretrained
(
model_name
)
self
.
assertIsNotNone
(
config
)
self
.
assertIsInstance
(
config
,
BertConfig
)
model
=
TFAutoModelWithLMHead
.
from_pretrained
(
model_name
,
force_download
=
True
)
model
=
TFAutoModelWithLMHead
.
from_pretrained
(
model_name
)
self
.
assertIsNotNone
(
model
)
self
.
assertIsInstance
(
model
,
TFBertForMaskedLM
)
...
...
@@ -72,11 +72,11 @@ class TFAutoModelTest(unittest.TestCase):
logging
.
basicConfig
(
level
=
logging
.
INFO
)
# for model_name in list(TF_BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
for
model_name
in
[
'bert-base-uncased'
]:
config
=
AutoConfig
.
from_pretrained
(
model_name
,
force_download
=
True
)
config
=
AutoConfig
.
from_pretrained
(
model_name
)
self
.
assertIsNotNone
(
config
)
self
.
assertIsInstance
(
config
,
BertConfig
)
model
=
TFAutoModelForSequenceClassification
.
from_pretrained
(
model_name
,
force_download
=
True
)
model
=
TFAutoModelForSequenceClassification
.
from_pretrained
(
model_name
)
self
.
assertIsNotNone
(
model
)
self
.
assertIsInstance
(
model
,
TFBertForSequenceClassification
)
...
...
@@ -85,17 +85,17 @@ class TFAutoModelTest(unittest.TestCase):
logging
.
basicConfig
(
level
=
logging
.
INFO
)
# for model_name in list(TF_BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
for
model_name
in
[
'bert-base-uncased'
]:
config
=
AutoConfig
.
from_pretrained
(
model_name
,
force_download
=
True
)
config
=
AutoConfig
.
from_pretrained
(
model_name
)
self
.
assertIsNotNone
(
config
)
self
.
assertIsInstance
(
config
,
BertConfig
)
model
=
TFAutoModelForQuestionAnswering
.
from_pretrained
(
model_name
,
force_download
=
True
)
model
=
TFAutoModelForQuestionAnswering
.
from_pretrained
(
model_name
)
self
.
assertIsNotNone
(
model
)
self
.
assertIsInstance
(
model
,
TFBertForQuestionAnswering
)
def
test_from_pretrained_identifier
(
self
):
logging
.
basicConfig
(
level
=
logging
.
INFO
)
model
=
TFAutoModelWithLMHead
.
from_pretrained
(
SMALL_MODEL_IDENTIFIER
,
force_download
=
True
)
model
=
TFAutoModelWithLMHead
.
from_pretrained
(
SMALL_MODEL_IDENTIFIER
)
self
.
assertIsInstance
(
model
,
TFBertForMaskedLM
)
...
...
transformers/tests/modeling_tf_bert_test.py
View file @
fae4d1c2
...
...
@@ -17,12 +17,11 @@ from __future__ import division
from
__future__
import
print_function
import
unittest
import
shutil
import
sys
from
.modeling_tf_common_test
import
(
TFCommonTestCases
,
ids_tensor
)
from
.configuration_common_test
import
ConfigTester
from
.utils
import
require_tf
,
slow
from
.utils
import
CACHE_DIR
,
require_tf
,
slow
from
transformers
import
BertConfig
,
is_tf_available
...
...
@@ -310,11 +309,9 @@ class TFBertModelTest(TFCommonTestCases.TFCommonModelTester):
@
slow
def
test_model_from_pretrained
(
self
):
cache_dir
=
"/tmp/transformers_test/"
# for model_name in list(TF_BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
for
model_name
in
[
'bert-base-uncased'
]:
model
=
TFBertModel
.
from_pretrained
(
model_name
,
cache_dir
=
cache_dir
)
shutil
.
rmtree
(
cache_dir
)
model
=
TFBertModel
.
from_pretrained
(
model_name
,
cache_dir
=
CACHE_DIR
)
self
.
assertIsNotNone
(
model
)
if
__name__
==
"__main__"
:
...
...
transformers/tests/modeling_tf_ctrl_test.py
View file @
fae4d1c2
...
...
@@ -17,12 +17,11 @@ from __future__ import division
from
__future__
import
print_function
import
unittest
import
shutil
import
sys
from
.modeling_tf_common_test
import
(
TFCommonTestCases
,
ids_tensor
)
from
.configuration_common_test
import
ConfigTester
from
.utils
import
require_tf
,
slow
from
.utils
import
CACHE_DIR
,
require_tf
,
slow
from
transformers
import
CTRLConfig
,
is_tf_available
...
...
@@ -189,10 +188,8 @@ class TFCTRLModelTest(TFCommonTestCases.TFCommonModelTester):
@
slow
def
test_model_from_pretrained
(
self
):
cache_dir
=
"/tmp/transformers_test/"
for
model_name
in
list
(
TF_CTRL_PRETRAINED_MODEL_ARCHIVE_MAP
.
keys
())[:
1
]:
model
=
TFCTRLModel
.
from_pretrained
(
model_name
,
cache_dir
=
cache_dir
)
shutil
.
rmtree
(
cache_dir
)
model
=
TFCTRLModel
.
from_pretrained
(
model_name
,
cache_dir
=
CACHE_DIR
)
self
.
assertIsNotNone
(
model
)
if
__name__
==
"__main__"
:
...
...
transformers/tests/modeling_tf_distilbert_test.py
View file @
fae4d1c2
...
...
@@ -20,7 +20,7 @@ import unittest
from
.modeling_tf_common_test
import
(
TFCommonTestCases
,
ids_tensor
)
from
.configuration_common_test
import
ConfigTester
from
.utils
import
require_tf
,
slow
from
.utils
import
CACHE_DIR
,
require_tf
,
slow
from
transformers
import
DistilBertConfig
,
is_tf_available
...
...
@@ -211,10 +211,8 @@ class TFDistilBertModelTest(TFCommonTestCases.TFCommonModelTester):
# @slow
# def test_model_from_pretrained(self):
# cache_dir = "/tmp/transformers_test/"
# for model_name in list(DISTILBERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
# model = DistilBertModel.from_pretrained(model_name, cache_dir=cache_dir)
# shutil.rmtree(cache_dir)
# model = DistilBertModel.from_pretrained(model_name, cache_dir=CACHE_DIR)
# self.assertIsNotNone(model)
if
__name__
==
"__main__"
:
...
...
transformers/tests/modeling_tf_gpt2_test.py
View file @
fae4d1c2
...
...
@@ -17,12 +17,11 @@ from __future__ import division
from
__future__
import
print_function
import
unittest
import
shutil
import
sys
from
.modeling_tf_common_test
import
(
TFCommonTestCases
,
ids_tensor
)
from
.configuration_common_test
import
ConfigTester
from
.utils
import
require_tf
,
slow
from
.utils
import
CACHE_DIR
,
require_tf
,
slow
from
transformers
import
GPT2Config
,
is_tf_available
...
...
@@ -220,10 +219,8 @@ class TFGPT2ModelTest(TFCommonTestCases.TFCommonModelTester):
@
slow
def
test_model_from_pretrained
(
self
):
cache_dir
=
"/tmp/transformers_test/"
for
model_name
in
list
(
TF_GPT2_PRETRAINED_MODEL_ARCHIVE_MAP
.
keys
())[:
1
]:
model
=
TFGPT2Model
.
from_pretrained
(
model_name
,
cache_dir
=
cache_dir
)
shutil
.
rmtree
(
cache_dir
)
model
=
TFGPT2Model
.
from_pretrained
(
model_name
,
cache_dir
=
CACHE_DIR
)
self
.
assertIsNotNone
(
model
)
if
__name__
==
"__main__"
:
...
...
Prev
1
2
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment