Unverified Commit f7d80cb3 authored by Ethan's avatar Ethan Committed by GitHub
Browse files

Fix steps bugs in no trainer examples (#24197)

Fix step bugs in no trainer + load checkpoint + grad acc
parent 08ae37c8
......@@ -453,10 +453,11 @@ def main():
resume_step = None
completed_steps = starting_epoch * num_update_steps_per_epoch
else:
resume_step = int(training_difference.replace("step_", ""))
# need to multiply `gradient_accumulation_steps` to reflect real steps
resume_step = int(training_difference.replace("step_", "")) * args.gradient_accumulation_steps
starting_epoch = resume_step // len(train_dataloader)
resume_step -= starting_epoch * len(train_dataloader)
completed_steps = resume_step
completed_steps = resume_step // args.gradient_accumulation_step
# update the progress_bar if load from checkpoint
progress_bar.update(completed_steps)
......
......@@ -666,7 +666,7 @@ def main():
resume_step = int(training_difference.replace("step_", "")) * args.gradient_accumulation_steps
starting_epoch = resume_step // len(train_dataloader)
resume_step -= starting_epoch * len(train_dataloader)
completed_steps = resume_step
completed_steps = resume_step // args.gradient_accumulation_steps
# update the progress_bar if load from checkpoint
progress_bar.update(completed_steps)
......
......@@ -572,7 +572,7 @@ def main():
resume_step = int(training_difference.replace("step_", "")) * args.gradient_accumulation_steps
starting_epoch = resume_step // len(train_dataloader)
resume_step -= starting_epoch * len(train_dataloader)
completed_steps = resume_step
completed_steps = resume_step // args.gradient_accumulation_steps
# update the progress_bar if load from checkpoint
progress_bar.update(completed_steps)
......
......@@ -616,7 +616,7 @@ def main():
resume_step = int(training_difference.replace("step_", "")) * args.gradient_accumulation_steps
starting_epoch = resume_step // len(train_dataloader)
resume_step -= starting_epoch * len(train_dataloader)
completed_steps = resume_step
completed_steps = resume_step // args.gradient_accumulation_steps
# update the progress_bar if load from checkpoint
progress_bar.update(completed_steps)
......
......@@ -559,10 +559,11 @@ def main():
resume_step = None
completed_steps = starting_epoch * num_update_steps_per_epoch
else:
resume_step = int(training_difference.replace("step_", ""))
# need to multiply `gradient_accumulation_steps` to reflect real steps
resume_step = int(training_difference.replace("step_", "")) * args.gradient_accumulation_steps
starting_epoch = resume_step // len(train_dataloader)
resume_step -= starting_epoch * len(train_dataloader)
completed_steps = resume_step
completed_steps = resume_step // args.gradient_accumulation_stepp
# update the progress_bar if load from checkpoint
progress_bar.update(completed_steps)
......
......@@ -811,10 +811,11 @@ def main():
resume_step = None
completed_steps = starting_epoch * num_update_steps_per_epoch
else:
resume_step = int(training_difference.replace("step_", ""))
# need to multiply `gradient_accumulation_steps` to reflect real steps
resume_step = int(training_difference.replace("step_", "")) * args.gradient_accumulation_steps
starting_epoch = resume_step // len(train_dataloader)
resume_step -= starting_epoch * len(train_dataloader)
completed_steps = resume_step
completed_steps = resume_step // args.gradient_accumulation_stepp
# update the progress_bar if load from checkpoint
progress_bar.update(completed_steps)
......
......@@ -830,7 +830,7 @@ def main():
resume_step = int(training_difference.replace("step_", ""))
starting_epoch = resume_step // len(train_dataloader)
resume_step -= starting_epoch * len(train_dataloader)
completed_steps = resume_step
completed_steps = resume_step // args.gradient_accumulation_stepp
# update the progress_bar if load from checkpoint
progress_bar.update(completed_steps)
......
......@@ -556,10 +556,11 @@ def main():
resume_step = None
completed_steps = starting_epoch * num_update_steps_per_epoch
else:
resume_step = int(training_difference.replace("step_", ""))
# need to multiply `gradient_accumulation_steps` to reflect real steps
resume_step = int(training_difference.replace("step_", "")) * args.gradient_accumulation_steps
starting_epoch = resume_step // len(train_dataloader)
resume_step -= starting_epoch * len(train_dataloader)
completed_steps = resume_step
completed_steps = resume_step // args.gradient_accumulation_stepp
# update the progress_bar if load from checkpoint
progress_bar.update(completed_steps)
......
......@@ -628,10 +628,11 @@ def main():
resume_step = None
completed_steps = starting_epoch * num_update_steps_per_epoch
else:
resume_step = int(training_difference.replace("step_", ""))
# need to multiply `gradient_accumulation_steps` to reflect real steps
resume_step = int(training_difference.replace("step_", "")) * args.gradient_accumulation_steps
starting_epoch = resume_step // len(train_dataloader)
resume_step -= starting_epoch * len(train_dataloader)
completed_steps = resume_step
completed_steps = resume_step // args.gradient_accumulation_stepp
# update the progress_bar if load from checkpoint
progress_bar.update(completed_steps)
......
......@@ -501,10 +501,16 @@ def main():
if "epoch" in training_difference:
starting_epoch = int(training_difference.replace("epoch_", "")) + 1
resume_step = None
completed_steps = starting_epoch * num_update_steps_per_epoch
else:
resume_step = int(training_difference.replace("step_", ""))
# need to multiply `gradient_accumulation_steps` to reflect real steps
resume_step = int(training_difference.replace("step_", "")) * args.gradient_accumulation_steps
starting_epoch = resume_step // len(train_dataloader)
resume_step -= starting_epoch * len(train_dataloader)
completed_steps = resume_step // args.gradient_accumulation_step
# update the progress_bar if load from checkpoint
progress_bar.update(completed_steps)
for epoch in range(starting_epoch, args.num_train_epochs):
model.train()
......
......@@ -659,10 +659,16 @@ def main():
if "epoch" in training_difference:
starting_epoch = int(training_difference.replace("epoch_", "")) + 1
resume_step = None
completed_steps = starting_epoch * num_update_steps_per_epoch
else:
resume_step = int(training_difference.replace("step_", ""))
# need to multiply `gradient_accumulation_steps` to reflect real steps
resume_step = int(training_difference.replace("step_", "")) * args.gradient_accumulation_steps
starting_epoch = resume_step // len(train_dataloader)
resume_step -= starting_epoch * len(train_dataloader)
completed_steps = resume_step // args.gradient_accumulation_stepp
# update the progress_bar if load from checkpoint
progress_bar.update(completed_steps)
for epoch in range(starting_epoch, args.num_train_epochs):
model.train()
......
......@@ -613,7 +613,7 @@ def main():
resume_step = int(training_difference.replace("step_", "")) * args.gradient_accumulation_steps
starting_epoch = resume_step // len(train_dataloader)
resume_step -= starting_epoch * len(train_dataloader)
completed_steps = resume_step
completed_steps = resume_step // args.gradient_accumulation_stepp
# update the progress_bar if load from checkpoint
progress_bar.update(completed_steps)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment