"examples/vscode:/vscode.git/clone" did not exist on "aa925a52fad9d6b98dac4c1b27f881bef7e88dad"
Unverified Commit f5b5c5bd authored by Sylvain Gugger's avatar Sylvain Gugger Committed by GitHub
Browse files

Avoid unnecessary warnings when loading pretrained model (#5922)

* Avoid unnecessary warnings when loading pretrained model

* Fix test

* Add other keys to ignore

* keys_to_ignore_at_load -> authorized_missing_keys
parent 29afb576
......@@ -938,6 +938,7 @@ class BartModel(PretrainedBartModel):
)
class BartForConditionalGeneration(PretrainedBartModel):
base_model_prefix = "model"
authorized_missing_keys = [r"final_logits_bias", r"encoder\.version", r"decoder\.version"]
def __init__(self, config: BartConfig):
super().__init__(config)
......
......@@ -577,6 +577,8 @@ class GPT2Model(GPT2PreTrainedModel):
GPT2_START_DOCSTRING,
)
class GPT2LMHeadModel(GPT2PreTrainedModel):
authorized_missing_keys = [r"h\.\d+\.attn\.masked_bias", r"lm_head\.weight"]
def __init__(self, config):
super().__init__(config)
self.transformer = GPT2Model(config)
......
......@@ -1027,6 +1027,8 @@ class T5Model(T5PreTrainedModel):
@add_start_docstrings("""T5 Model with a `language modeling` head on top. """, T5_START_DOCSTRING)
class T5ForConditionalGeneration(T5PreTrainedModel):
authorized_missing_keys = [r"encoder\.embed_tokens\.weight", r"decoder\.embed_tokens\.weight", r"lm_head\.weight"]
def __init__(self, config):
super().__init__(config)
self.model_dim = config.d_model
......
......@@ -17,6 +17,7 @@
import inspect
import logging
import os
import re
from dataclasses import dataclass
from typing import Callable, Dict, List, Optional, Tuple
......@@ -289,9 +290,12 @@ class PreTrainedModel(nn.Module, ModuleUtilsMixin, GenerationMixin):
- **base_model_prefix** (:obj:`str`) -- A string indicating the attribute associated to the base model in
derived classes of the same architecture adding modules on top of the base model.
- **authorized_missing_keys** (:obj:`Optional[List[str]]`) -- A list of re pattern of tensor names to ignore
when loading the model (and avoid unnecessary warnings).
"""
config_class = None
base_model_prefix = ""
authorized_missing_keys = None
@property
def dummy_inputs(self) -> Dict[str, torch.Tensor]:
......@@ -806,9 +810,14 @@ class PreTrainedModel(nn.Module, ModuleUtilsMixin, GenerationMixin):
head_model_state_dict_without_base_prefix = [
key.split(cls.base_model_prefix + ".")[-1] for key in model.state_dict().keys()
]
missing_keys.extend(head_model_state_dict_without_base_prefix - base_model_state_dict)
# Some models may have keys that are not in the state by design, removing them before needlessly warning
# the user.
if cls.authorized_missing_keys is not None:
for pat in cls.authorized_missing_keys:
missing_keys = [k for k in missing_keys if re.search(pat, k) is None]
if len(unexpected_keys) > 0:
logger.warning(
f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when "
......
......@@ -311,6 +311,7 @@ class GPT2ModelTest(ModelTesterMixin, unittest.TestCase):
all_generative_model_classes = (
(GPT2LMHeadModel,) if is_torch_available() else ()
) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly
test_missing_keys = False
def setUp(self):
self.model_tester = GPT2ModelTester(self)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment