Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
f5af8736
Unverified
Commit
f5af8736
authored
Oct 16, 2021
by
Patrick von Platen
Committed by
GitHub
Oct 16, 2021
Browse files
[Docs] More general docstrings (#14028)
* up * finish * up * up * finish
parent
47489a69
Changes
74
Hide whitespace changes
Inline
Side-by-side
Showing
14 changed files
with
89 additions
and
152 deletions
+89
-152
src/transformers/models/roformer/modeling_roformer.py
src/transformers/models/roformer/modeling_roformer.py
+6
-6
src/transformers/models/roformer/modeling_tf_roformer.py
src/transformers/models/roformer/modeling_tf_roformer.py
+7
-7
src/transformers/models/speech_to_text/modeling_speech_to_text.py
...sformers/models/speech_to_text/modeling_speech_to_text.py
+1
-1
src/transformers/models/splinter/modeling_splinter.py
src/transformers/models/splinter/modeling_splinter.py
+2
-2
src/transformers/models/squeezebert/modeling_squeezebert.py
src/transformers/models/squeezebert/modeling_squeezebert.py
+6
-6
src/transformers/models/transfo_xl/modeling_tf_transfo_xl.py
src/transformers/models/transfo_xl/modeling_tf_transfo_xl.py
+3
-3
src/transformers/models/transfo_xl/modeling_transfo_xl.py
src/transformers/models/transfo_xl/modeling_transfo_xl.py
+3
-3
src/transformers/models/wav2vec2/modeling_wav2vec2.py
src/transformers/models/wav2vec2/modeling_wav2vec2.py
+22
-85
src/transformers/models/xlm/modeling_tf_xlm.py
src/transformers/models/xlm/modeling_tf_xlm.py
+6
-6
src/transformers/models/xlm/modeling_xlm.py
src/transformers/models/xlm/modeling_xlm.py
+6
-6
src/transformers/models/xlnet/modeling_tf_xlnet.py
src/transformers/models/xlnet/modeling_tf_xlnet.py
+5
-5
src/transformers/models/xlnet/modeling_xlnet.py
src/transformers/models/xlnet/modeling_xlnet.py
+5
-5
templates/adding_a_new_model/cookiecutter-template-{{cookiecutter.modelname}}/modeling_tf_{{cookiecutter.lowercase_modelname}}.py
...ame}}/modeling_tf_{{cookiecutter.lowercase_modelname}}.py
+8
-8
templates/adding_a_new_model/cookiecutter-template-{{cookiecutter.modelname}}/modeling_{{cookiecutter.lowercase_modelname}}.py
...elname}}/modeling_{{cookiecutter.lowercase_modelname}}.py
+9
-9
No files found.
src/transformers/models/roformer/modeling_roformer.py
View file @
f5af8736
...
...
@@ -839,7 +839,7 @@ class RoFormerModel(RoFormerPreTrainedModel):
@
add_start_docstrings_to_model_forward
(
ROFORMER_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenize
r_class
=
_TOKENIZER_FOR_DOC
,
processo
r_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
_CHECKPOINT_FOR_DOC
,
output_type
=
BaseModelOutputWithPastAndCrossAttentions
,
config_class
=
_CONFIG_FOR_DOC
,
...
...
@@ -987,7 +987,7 @@ class RoFormerForMaskedLM(RoFormerPreTrainedModel):
@
add_start_docstrings_to_model_forward
(
ROFORMER_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenize
r_class
=
_TOKENIZER_FOR_DOC
,
processo
r_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
_CHECKPOINT_FOR_DOC
,
output_type
=
MaskedLMOutput
,
config_class
=
_CONFIG_FOR_DOC
,
...
...
@@ -1246,7 +1246,7 @@ class RoFormerForSequenceClassification(RoFormerPreTrainedModel):
@
add_start_docstrings_to_model_forward
(
ROFORMER_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenize
r_class
=
_TOKENIZER_FOR_DOC
,
processo
r_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
_CHECKPOINT_FOR_DOC
,
output_type
=
SequenceClassifierOutput
,
config_class
=
_CONFIG_FOR_DOC
,
...
...
@@ -1328,7 +1328,7 @@ class RoFormerForMultipleChoice(RoFormerPreTrainedModel):
ROFORMER_INPUTS_DOCSTRING
.
format
(
"batch_size, num_choices, sequence_length"
)
)
@
add_code_sample_docstrings
(
tokenize
r_class
=
_TOKENIZER_FOR_DOC
,
processo
r_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
_CHECKPOINT_FOR_DOC
,
output_type
=
MultipleChoiceModelOutput
,
config_class
=
_CONFIG_FOR_DOC
,
...
...
@@ -1418,7 +1418,7 @@ class RoFormerForTokenClassification(RoFormerPreTrainedModel):
@
add_start_docstrings_to_model_forward
(
ROFORMER_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenize
r_class
=
_TOKENIZER_FOR_DOC
,
processo
r_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
_CHECKPOINT_FOR_DOC
,
output_type
=
TokenClassifierOutput
,
config_class
=
_CONFIG_FOR_DOC
,
...
...
@@ -1505,7 +1505,7 @@ class RoFormerForQuestionAnswering(RoFormerPreTrainedModel):
@
add_start_docstrings_to_model_forward
(
ROFORMER_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenize
r_class
=
_TOKENIZER_FOR_DOC
,
processo
r_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
_CHECKPOINT_FOR_DOC
,
output_type
=
QuestionAnsweringModelOutput
,
config_class
=
_CONFIG_FOR_DOC
,
...
...
src/transformers/models/roformer/modeling_tf_roformer.py
View file @
f5af8736
...
...
@@ -814,7 +814,7 @@ class TFRoFormerModel(TFRoFormerPreTrainedModel):
@
add_start_docstrings_to_model_forward
(
ROFORMER_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenize
r_class
=
_TOKENIZER_FOR_DOC
,
processo
r_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
_CHECKPOINT_FOR_DOC
,
output_type
=
TFBaseModelOutputWithPooling
,
config_class
=
_CONFIG_FOR_DOC
,
...
...
@@ -886,7 +886,7 @@ class TFRoFormerForMaskedLM(TFRoFormerPreTrainedModel, TFMaskedLanguageModelingL
@
add_start_docstrings_to_model_forward
(
ROFORMER_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenize
r_class
=
_TOKENIZER_FOR_DOC
,
processo
r_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
_CHECKPOINT_FOR_DOC
,
output_type
=
TFMaskedLMOutput
,
config_class
=
_CONFIG_FOR_DOC
,
...
...
@@ -978,7 +978,7 @@ class TFRoFormerForCausalLM(TFRoFormerPreTrainedModel, TFCausalLanguageModelingL
return
self
.
mlm
.
predictions
@
add_code_sample_docstrings
(
tokenize
r_class
=
_TOKENIZER_FOR_DOC
,
processo
r_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
_CHECKPOINT_FOR_DOC
,
output_type
=
TFCausalLMOutput
,
config_class
=
_CONFIG_FOR_DOC
,
...
...
@@ -1103,7 +1103,7 @@ class TFRoFormerForSequenceClassification(TFRoFormerPreTrainedModel, TFSequenceC
@
add_start_docstrings_to_model_forward
(
ROFORMER_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenize
r_class
=
_TOKENIZER_FOR_DOC
,
processo
r_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
_CHECKPOINT_FOR_DOC
,
output_type
=
TFSequenceClassifierOutput
,
config_class
=
_CONFIG_FOR_DOC
,
...
...
@@ -1208,7 +1208,7 @@ class TFRoFormerForMultipleChoice(TFRoFormerPreTrainedModel, TFMultipleChoiceLos
ROFORMER_INPUTS_DOCSTRING
.
format
(
"batch_size, num_choices, sequence_length"
)
)
@
add_code_sample_docstrings
(
tokenize
r_class
=
_TOKENIZER_FOR_DOC
,
processo
r_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
_CHECKPOINT_FOR_DOC
,
output_type
=
TFMultipleChoiceModelOutput
,
config_class
=
_CONFIG_FOR_DOC
,
...
...
@@ -1344,7 +1344,7 @@ class TFRoFormerForTokenClassification(TFRoFormerPreTrainedModel, TFTokenClassif
@
add_start_docstrings_to_model_forward
(
ROFORMER_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenize
r_class
=
_TOKENIZER_FOR_DOC
,
processo
r_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
_CHECKPOINT_FOR_DOC
,
output_type
=
TFTokenClassifierOutput
,
config_class
=
_CONFIG_FOR_DOC
,
...
...
@@ -1437,7 +1437,7 @@ class TFRoFormerForQuestionAnswering(TFRoFormerPreTrainedModel, TFQuestionAnswer
@
add_start_docstrings_to_model_forward
(
ROFORMER_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenize
r_class
=
_TOKENIZER_FOR_DOC
,
processo
r_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
_CHECKPOINT_FOR_DOC
,
output_type
=
TFQuestionAnsweringModelOutput
,
config_class
=
_CONFIG_FOR_DOC
,
...
...
src/transformers/models/speech_to_text/modeling_speech_to_text.py
View file @
f5af8736
...
...
@@ -1138,7 +1138,7 @@ class Speech2TextModel(Speech2TextPreTrainedModel):
@
add_start_docstrings_to_model_forward
(
SPEECH_TO_TEXT_INPUTS_DOCSTRING
)
@
add_code_sample_docstrings
(
tokenize
r_class
=
_TOKENIZER_FOR_DOC
,
processo
r_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
_CHECKPOINT_FOR_DOC
,
output_type
=
Seq2SeqModelOutput
,
config_class
=
_CONFIG_FOR_DOC
,
...
...
src/transformers/models/splinter/modeling_splinter.py
View file @
f5af8736
...
...
@@ -635,7 +635,7 @@ class SplinterModel(SplinterPreTrainedModel):
@
add_start_docstrings_to_model_forward
(
SPLINTER_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenize
r_class
=
_TOKENIZER_FOR_DOC
,
processo
r_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
_CHECKPOINT_FOR_DOC
,
output_type
=
BaseModelOutputWithPastAndCrossAttentions
,
config_class
=
_CONFIG_FOR_DOC
,
...
...
@@ -836,7 +836,7 @@ class SplinterForQuestionAnswering(SplinterPreTrainedModel):
@
add_start_docstrings_to_model_forward
(
SPLINTER_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenize
r_class
=
_TOKENIZER_FOR_DOC
,
processo
r_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
_CHECKPOINT_FOR_DOC
,
output_type
=
QuestionAnsweringModelOutput
,
config_class
=
_CONFIG_FOR_DOC
,
...
...
src/transformers/models/squeezebert/modeling_squeezebert.py
View file @
f5af8736
...
...
@@ -571,7 +571,7 @@ class SqueezeBertModel(SqueezeBertPreTrainedModel):
@
add_start_docstrings_to_model_forward
(
SQUEEZEBERT_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenize
r_class
=
_TOKENIZER_FOR_DOC
,
processo
r_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
_CHECKPOINT_FOR_DOC
,
output_type
=
BaseModelOutputWithPooling
,
config_class
=
_CONFIG_FOR_DOC
,
...
...
@@ -664,7 +664,7 @@ class SqueezeBertForMaskedLM(SqueezeBertPreTrainedModel):
@
add_start_docstrings_to_model_forward
(
SQUEEZEBERT_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenize
r_class
=
_TOKENIZER_FOR_DOC
,
processo
r_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
_CHECKPOINT_FOR_DOC
,
output_type
=
MaskedLMOutput
,
config_class
=
_CONFIG_FOR_DOC
,
...
...
@@ -743,7 +743,7 @@ class SqueezeBertForSequenceClassification(SqueezeBertPreTrainedModel):
@
add_start_docstrings_to_model_forward
(
SQUEEZEBERT_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenize
r_class
=
_TOKENIZER_FOR_DOC
,
processo
r_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
_CHECKPOINT_FOR_DOC
,
output_type
=
SequenceClassifierOutput
,
config_class
=
_CONFIG_FOR_DOC
,
...
...
@@ -842,7 +842,7 @@ class SqueezeBertForMultipleChoice(SqueezeBertPreTrainedModel):
SQUEEZEBERT_INPUTS_DOCSTRING
.
format
(
"batch_size, num_choices, sequence_length"
)
)
@
add_code_sample_docstrings
(
tokenize
r_class
=
_TOKENIZER_FOR_DOC
,
processo
r_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
_CHECKPOINT_FOR_DOC
,
output_type
=
MultipleChoiceModelOutput
,
config_class
=
_CONFIG_FOR_DOC
,
...
...
@@ -934,7 +934,7 @@ class SqueezeBertForTokenClassification(SqueezeBertPreTrainedModel):
@
add_start_docstrings_to_model_forward
(
SQUEEZEBERT_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenize
r_class
=
_TOKENIZER_FOR_DOC
,
processo
r_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
_CHECKPOINT_FOR_DOC
,
output_type
=
TokenClassifierOutput
,
config_class
=
_CONFIG_FOR_DOC
,
...
...
@@ -1021,7 +1021,7 @@ class SqueezeBertForQuestionAnswering(SqueezeBertPreTrainedModel):
@
add_start_docstrings_to_model_forward
(
SQUEEZEBERT_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenize
r_class
=
_TOKENIZER_FOR_DOC
,
processo
r_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
_CHECKPOINT_FOR_DOC
,
output_type
=
QuestionAnsweringModelOutput
,
config_class
=
_CONFIG_FOR_DOC
,
...
...
src/transformers/models/transfo_xl/modeling_tf_transfo_xl.py
View file @
f5af8736
...
...
@@ -883,7 +883,7 @@ class TFTransfoXLModel(TFTransfoXLPreTrainedModel):
@
add_start_docstrings_to_model_forward
(
TRANSFO_XL_INPUTS_DOCSTRING
)
@
add_code_sample_docstrings
(
tokenize
r_class
=
_TOKENIZER_FOR_DOC
,
processo
r_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
_CHECKPOINT_FOR_DOC
,
output_type
=
TFTransfoXLModelOutput
,
config_class
=
_CONFIG_FOR_DOC
,
...
...
@@ -975,7 +975,7 @@ class TFTransfoXLLMHeadModel(TFTransfoXLPreTrainedModel):
@
add_start_docstrings_to_model_forward
(
TRANSFO_XL_INPUTS_DOCSTRING
)
@
add_code_sample_docstrings
(
tokenize
r_class
=
_TOKENIZER_FOR_DOC
,
processo
r_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
_CHECKPOINT_FOR_DOC
,
output_type
=
TFTransfoXLLMHeadModelOutput
,
config_class
=
_CONFIG_FOR_DOC
,
...
...
@@ -1091,7 +1091,7 @@ class TFTransfoXLForSequenceClassification(TFTransfoXLPreTrainedModel, TFSequenc
@
add_start_docstrings_to_model_forward
(
TRANSFO_XL_INPUTS_DOCSTRING
)
@
add_code_sample_docstrings
(
tokenize
r_class
=
_TOKENIZER_FOR_DOC
,
processo
r_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
_CHECKPOINT_FOR_DOC
,
output_type
=
TFTransfoXLSequenceClassifierOutputWithPast
,
config_class
=
_CONFIG_FOR_DOC
,
...
...
src/transformers/models/transfo_xl/modeling_transfo_xl.py
View file @
f5af8736
...
...
@@ -871,7 +871,7 @@ class TransfoXLModel(TransfoXLPreTrainedModel):
@
add_start_docstrings_to_model_forward
(
TRANSFO_XL_INPUTS_DOCSTRING
)
@
add_code_sample_docstrings
(
tokenize
r_class
=
_TOKENIZER_FOR_DOC
,
processo
r_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
_CHECKPOINT_FOR_DOC
,
output_type
=
TransfoXLModelOutput
,
config_class
=
_CONFIG_FOR_DOC
,
...
...
@@ -1052,7 +1052,7 @@ class TransfoXLLMHeadModel(TransfoXLPreTrainedModel):
@
add_start_docstrings_to_model_forward
(
TRANSFO_XL_INPUTS_DOCSTRING
)
@
add_code_sample_docstrings
(
tokenize
r_class
=
_TOKENIZER_FOR_DOC
,
processo
r_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
_CHECKPOINT_FOR_DOC
,
output_type
=
TransfoXLLMHeadModelOutput
,
config_class
=
_CONFIG_FOR_DOC
,
...
...
@@ -1174,7 +1174,7 @@ class TransfoXLForSequenceClassification(TransfoXLPreTrainedModel):
@
add_start_docstrings_to_model_forward
(
TRANSFO_XL_INPUTS_DOCSTRING
)
@
add_code_sample_docstrings
(
tokenize
r_class
=
_TOKENIZER_FOR_DOC
,
processo
r_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
_CHECKPOINT_FOR_DOC
,
output_type
=
TransfoXLSequenceClassifierOutputWithPast
,
config_class
=
_CONFIG_FOR_DOC
,
...
...
src/transformers/models/wav2vec2/modeling_wav2vec2.py
View file @
f5af8736
...
...
@@ -29,6 +29,7 @@ from ...activations import ACT2FN
from
...deepspeed
import
is_deepspeed_zero3_enabled
from
...file_utils
import
(
ModelOutput
,
add_code_sample_docstrings
,
add_start_docstrings
,
add_start_docstrings_to_model_forward
,
replace_return_docstrings
,
...
...
@@ -43,6 +44,7 @@ logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC
=
"Wav2Vec2Config"
_CHECKPOINT_FOR_DOC
=
"facebook/wav2vec2-base-960h"
_PROCESSOR_FOR_DOC
=
"Wav2Vec2Processor"
WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST
=
[
"facebook/wav2vec2-base-960h"
,
...
...
@@ -1118,7 +1120,13 @@ class Wav2Vec2Model(Wav2Vec2PreTrainedModel):
return
hidden_states
@
add_start_docstrings_to_model_forward
(
WAV_2_VEC_2_INPUTS_DOCSTRING
)
@
replace_return_docstrings
(
output_type
=
BaseModelOutput
,
config_class
=
_CONFIG_FOR_DOC
)
@
add_code_sample_docstrings
(
processor_class
=
_PROCESSOR_FOR_DOC
,
checkpoint
=
_CHECKPOINT_FOR_DOC
,
output_type
=
Wav2Vec2BaseModelOutput
,
config_class
=
_CONFIG_FOR_DOC
,
modality
=
"audio"
,
)
def
forward
(
self
,
input_values
,
...
...
@@ -1128,30 +1136,6 @@ class Wav2Vec2Model(Wav2Vec2PreTrainedModel):
output_hidden_states
=
None
,
return_dict
=
None
,
):
"""
Returns:
Example::
>>> from transformers import Wav2Vec2Processor, Wav2Vec2Model
>>> from datasets import load_dataset
>>> import soundfile as sf
>>> processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
>>> model = Wav2Vec2Model.from_pretrained("facebook/wav2vec2-base-960h")
>>> def map_to_array(batch):
>>> speech, _ = sf.read(batch["file"])
>>> batch["speech"] = speech
>>> return batch
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> ds = ds.map(map_to_array)
>>> input_values = processor(ds["speech"][0], return_tensors="pt").input_values # Batch size 1
>>> hidden_states = model(input_values).last_hidden_state
"""
output_attentions
=
output_attentions
if
output_attentions
is
not
None
else
self
.
config
.
output_attentions
output_hidden_states
=
(
output_hidden_states
if
output_hidden_states
is
not
None
else
self
.
config
.
output_hidden_states
...
...
@@ -1502,7 +1486,12 @@ class Wav2Vec2ForCTC(Wav2Vec2PreTrainedModel):
self
.
wav2vec2
.
feature_extractor
.
_freeze_parameters
()
@
add_start_docstrings_to_model_forward
(
WAV_2_VEC_2_INPUTS_DOCSTRING
)
@
replace_return_docstrings
(
output_type
=
CausalLMOutput
,
config_class
=
_CONFIG_FOR_DOC
)
@
add_code_sample_docstrings
(
processor_class
=
_PROCESSOR_FOR_DOC
,
checkpoint
=
_CHECKPOINT_FOR_DOC
,
output_type
=
CausalLMOutput
,
config_class
=
_CONFIG_FOR_DOC
,
)
def
forward
(
self
,
input_values
,
...
...
@@ -1518,41 +1507,6 @@ class Wav2Vec2ForCTC(Wav2Vec2PreTrainedModel):
the sequence length of the output logits. Indices are selected in ``[-100, 0, ..., config.vocab_size -
1]``. All labels set to ``-100`` are ignored (masked), the loss is only computed for labels in ``[0, ...,
config.vocab_size - 1]``.
Returns:
Example::
>>> import torch
>>> from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
>>> from datasets import load_dataset
>>> import soundfile as sf
>>> processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
>>> model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
>>> def map_to_array(batch):
>>> speech, _ = sf.read(batch["file"])
>>> batch["speech"] = speech
>>> return batch
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> ds = ds.map(map_to_array)
>>> input_values = processor(ds["speech"][0], return_tensors="pt").input_values # Batch size 1
>>> logits = model(input_values).logits
>>> predicted_ids = torch.argmax(logits, dim=-1)
>>> transcription = processor.decode(predicted_ids[0])
>>> # compute loss
>>> target_transcription = "A MAN SAID TO THE UNIVERSE SIR I EXIST"
>>> # wrap processor as target processor to encode labels
>>> with processor.as_target_processor():
>>> labels = processor(target_transcription, return_tensors="pt").input_ids
>>> loss = model(input_values, labels=labels).loss
"""
return_dict
=
return_dict
if
return_dict
is
not
None
else
self
.
config
.
use_return_dict
...
...
@@ -1647,7 +1601,13 @@ class Wav2Vec2ForSequenceClassification(Wav2Vec2PreTrainedModel):
param
.
requires_grad
=
False
@
add_start_docstrings_to_model_forward
(
WAV_2_VEC_2_INPUTS_DOCSTRING
)
@
replace_return_docstrings
(
output_type
=
SequenceClassifierOutput
,
config_class
=
_CONFIG_FOR_DOC
)
@
add_code_sample_docstrings
(
processor_class
=
"Wav2Vec2FeatureExtractor"
,
checkpoint
=
"superb/wav2vec2-base-superb-ks"
,
output_type
=
SequenceClassifierOutput
,
config_class
=
_CONFIG_FOR_DOC
,
modality
=
"audio"
,
)
def
forward
(
self
,
input_values
,
...
...
@@ -1662,29 +1622,6 @@ class Wav2Vec2ForSequenceClassification(Wav2Vec2PreTrainedModel):
Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ...,
config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss),
If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
Returns:
Example::
>>> import torch
>>> from transformers import Wav2Vec2FeatureExtractor, Wav2Vec2ForSequenceClassification
>>> from datasets import load_dataset
>>> processor = Wav2Vec2FeatureExtractor.from_pretrained("superb/wav2vec2-base-superb-ks")
>>> model = Wav2Vec2ForSequenceClassification.from_pretrained("superb/wav2vec2-base-superb-ks")
>>> ds = load_dataset("anton-l/superb_dummy", "ks", split="test")
>>> input_values = processor(ds["speech"][4], return_tensors="pt").input_values # Batch size 1
>>> logits = model(input_values).logits
>>> predicted_class_ids = torch.argmax(logits, dim=-1)
>>> # compute loss
>>> target_label = "down"
>>> labels = torch.tensor([model.config.label2id[target_label]])
>>> loss = model(input_values, labels=labels).loss
"""
return_dict
=
return_dict
if
return_dict
is
not
None
else
self
.
config
.
use_return_dict
...
...
src/transformers/models/xlm/modeling_tf_xlm.py
View file @
f5af8736
...
...
@@ -703,7 +703,7 @@ class TFXLMModel(TFXLMPreTrainedModel):
@
add_start_docstrings_to_model_forward
(
XLM_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenize
r_class
=
_TOKENIZER_FOR_DOC
,
processo
r_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
_CHECKPOINT_FOR_DOC
,
output_type
=
TFBaseModelOutput
,
config_class
=
_CONFIG_FOR_DOC
,
...
...
@@ -856,7 +856,7 @@ class TFXLMWithLMHeadModel(TFXLMPreTrainedModel):
@
add_start_docstrings_to_model_forward
(
XLM_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenize
r_class
=
_TOKENIZER_FOR_DOC
,
processo
r_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
_CHECKPOINT_FOR_DOC
,
output_type
=
TFXLMWithLMHeadModelOutput
,
config_class
=
_CONFIG_FOR_DOC
,
...
...
@@ -946,7 +946,7 @@ class TFXLMForSequenceClassification(TFXLMPreTrainedModel, TFSequenceClassificat
@
add_start_docstrings_to_model_forward
(
XLM_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenize
r_class
=
_TOKENIZER_FOR_DOC
,
processo
r_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
_CHECKPOINT_FOR_DOC
,
output_type
=
TFSequenceClassifierOutput
,
config_class
=
_CONFIG_FOR_DOC
,
...
...
@@ -1072,7 +1072,7 @@ class TFXLMForMultipleChoice(TFXLMPreTrainedModel, TFMultipleChoiceLoss):
@
add_start_docstrings_to_model_forward
(
XLM_INPUTS_DOCSTRING
.
format
(
"batch_size, num_choices, sequence_length"
))
@
add_code_sample_docstrings
(
tokenize
r_class
=
_TOKENIZER_FOR_DOC
,
processo
r_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
_CHECKPOINT_FOR_DOC
,
output_type
=
TFMultipleChoiceModelOutput
,
config_class
=
_CONFIG_FOR_DOC
,
...
...
@@ -1222,7 +1222,7 @@ class TFXLMForTokenClassification(TFXLMPreTrainedModel, TFTokenClassificationLos
@
add_start_docstrings_to_model_forward
(
XLM_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenize
r_class
=
_TOKENIZER_FOR_DOC
,
processo
r_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
_CHECKPOINT_FOR_DOC
,
output_type
=
TFTokenClassifierOutput
,
config_class
=
_CONFIG_FOR_DOC
,
...
...
@@ -1327,7 +1327,7 @@ class TFXLMForQuestionAnsweringSimple(TFXLMPreTrainedModel, TFQuestionAnsweringL
@
add_start_docstrings_to_model_forward
(
XLM_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenize
r_class
=
_TOKENIZER_FOR_DOC
,
processo
r_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
_CHECKPOINT_FOR_DOC
,
output_type
=
TFQuestionAnsweringModelOutput
,
config_class
=
_CONFIG_FOR_DOC
,
...
...
src/transformers/models/xlm/modeling_xlm.py
View file @
f5af8736
...
...
@@ -488,7 +488,7 @@ class XLMModel(XLMPreTrainedModel):
@
add_start_docstrings_to_model_forward
(
XLM_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenize
r_class
=
_TOKENIZER_FOR_DOC
,
processo
r_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
_CHECKPOINT_FOR_DOC
,
output_type
=
BaseModelOutput
,
config_class
=
_CONFIG_FOR_DOC
,
...
...
@@ -710,7 +710,7 @@ class XLMWithLMHeadModel(XLMPreTrainedModel):
@
add_start_docstrings_to_model_forward
(
XLM_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenize
r_class
=
_TOKENIZER_FOR_DOC
,
processo
r_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
_CHECKPOINT_FOR_DOC
,
output_type
=
MaskedLMOutput
,
config_class
=
_CONFIG_FOR_DOC
,
...
...
@@ -789,7 +789,7 @@ class XLMForSequenceClassification(XLMPreTrainedModel):
@
add_start_docstrings_to_model_forward
(
XLM_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenize
r_class
=
_TOKENIZER_FOR_DOC
,
processo
r_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
_CHECKPOINT_FOR_DOC
,
output_type
=
SequenceClassifierOutput
,
config_class
=
_CONFIG_FOR_DOC
,
...
...
@@ -889,7 +889,7 @@ class XLMForQuestionAnsweringSimple(XLMPreTrainedModel):
@
add_start_docstrings_to_model_forward
(
XLM_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenize
r_class
=
_TOKENIZER_FOR_DOC
,
processo
r_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
_CHECKPOINT_FOR_DOC
,
output_type
=
QuestionAnsweringModelOutput
,
config_class
=
_CONFIG_FOR_DOC
,
...
...
@@ -1112,7 +1112,7 @@ class XLMForTokenClassification(XLMPreTrainedModel):
@
add_start_docstrings_to_model_forward
(
XLM_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenize
r_class
=
_TOKENIZER_FOR_DOC
,
processo
r_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
_CHECKPOINT_FOR_DOC
,
output_type
=
TokenClassifierOutput
,
config_class
=
_CONFIG_FOR_DOC
,
...
...
@@ -1205,7 +1205,7 @@ class XLMForMultipleChoice(XLMPreTrainedModel):
@
add_start_docstrings_to_model_forward
(
XLM_INPUTS_DOCSTRING
.
format
(
"batch_size, num_choices, sequence_length"
))
@
add_code_sample_docstrings
(
tokenize
r_class
=
_TOKENIZER_FOR_DOC
,
processo
r_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
_CHECKPOINT_FOR_DOC
,
output_type
=
MultipleChoiceModelOutput
,
config_class
=
_CONFIG_FOR_DOC
,
...
...
src/transformers/models/xlnet/modeling_tf_xlnet.py
View file @
f5af8736
...
...
@@ -1160,7 +1160,7 @@ class TFXLNetModel(TFXLNetPreTrainedModel):
@
add_start_docstrings_to_model_forward
(
XLNET_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenize
r_class
=
_TOKENIZER_FOR_DOC
,
processo
r_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
_CHECKPOINT_FOR_DOC
,
output_type
=
TFXLNetModelOutput
,
config_class
=
_CONFIG_FOR_DOC
,
...
...
@@ -1429,7 +1429,7 @@ class TFXLNetForSequenceClassification(TFXLNetPreTrainedModel, TFSequenceClassif
@
add_start_docstrings_to_model_forward
(
XLNET_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenize
r_class
=
_TOKENIZER_FOR_DOC
,
processo
r_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
_CHECKPOINT_FOR_DOC
,
output_type
=
TFXLNetForSequenceClassificationOutput
,
config_class
=
_CONFIG_FOR_DOC
,
...
...
@@ -1555,7 +1555,7 @@ class TFXLNetForMultipleChoice(TFXLNetPreTrainedModel, TFMultipleChoiceLoss):
@
add_start_docstrings_to_model_forward
(
XLNET_INPUTS_DOCSTRING
.
format
(
"batch_size, num_choices, sequence_length"
))
@
add_code_sample_docstrings
(
tokenize
r_class
=
_TOKENIZER_FOR_DOC
,
processo
r_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
_CHECKPOINT_FOR_DOC
,
output_type
=
TFXLNetForMultipleChoiceOutput
,
config_class
=
_CONFIG_FOR_DOC
,
...
...
@@ -1704,7 +1704,7 @@ class TFXLNetForTokenClassification(TFXLNetPreTrainedModel, TFTokenClassificatio
@
add_start_docstrings_to_model_forward
(
XLNET_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenize
r_class
=
_TOKENIZER_FOR_DOC
,
processo
r_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
_CHECKPOINT_FOR_DOC
,
output_type
=
TFXLNetForTokenClassificationOutput
,
config_class
=
_CONFIG_FOR_DOC
,
...
...
@@ -1811,7 +1811,7 @@ class TFXLNetForQuestionAnsweringSimple(TFXLNetPreTrainedModel, TFQuestionAnswer
@
add_start_docstrings_to_model_forward
(
XLNET_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenize
r_class
=
_TOKENIZER_FOR_DOC
,
processo
r_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
_CHECKPOINT_FOR_DOC
,
output_type
=
TFXLNetForQuestionAnsweringSimpleOutput
,
config_class
=
_CONFIG_FOR_DOC
,
...
...
src/transformers/models/xlnet/modeling_xlnet.py
View file @
f5af8736
...
...
@@ -1069,7 +1069,7 @@ class XLNetModel(XLNetPreTrainedModel):
@
add_start_docstrings_to_model_forward
(
XLNET_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenize
r_class
=
_TOKENIZER_FOR_DOC
,
processo
r_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
_CHECKPOINT_FOR_DOC
,
output_type
=
XLNetModelOutput
,
config_class
=
_CONFIG_FOR_DOC
,
...
...
@@ -1497,7 +1497,7 @@ class XLNetForSequenceClassification(XLNetPreTrainedModel):
@
add_start_docstrings_to_model_forward
(
XLNET_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenize
r_class
=
_TOKENIZER_FOR_DOC
,
processo
r_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
_CHECKPOINT_FOR_DOC
,
output_type
=
XLNetForSequenceClassificationOutput
,
config_class
=
_CONFIG_FOR_DOC
,
...
...
@@ -1604,7 +1604,7 @@ class XLNetForTokenClassification(XLNetPreTrainedModel):
@
add_start_docstrings_to_model_forward
(
XLNET_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenize
r_class
=
_TOKENIZER_FOR_DOC
,
processo
r_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
_CHECKPOINT_FOR_DOC
,
output_type
=
XLNetForTokenClassificationOutput
,
config_class
=
_CONFIG_FOR_DOC
,
...
...
@@ -1701,7 +1701,7 @@ class XLNetForMultipleChoice(XLNetPreTrainedModel):
@
add_start_docstrings_to_model_forward
(
XLNET_INPUTS_DOCSTRING
.
format
(
"batch_size, num_choices, sequence_length"
))
@
add_code_sample_docstrings
(
tokenize
r_class
=
_TOKENIZER_FOR_DOC
,
processo
r_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
_CHECKPOINT_FOR_DOC
,
output_type
=
XLNetForMultipleChoiceOutput
,
config_class
=
_CONFIG_FOR_DOC
,
...
...
@@ -1804,7 +1804,7 @@ class XLNetForQuestionAnsweringSimple(XLNetPreTrainedModel):
@
add_start_docstrings_to_model_forward
(
XLNET_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenize
r_class
=
_TOKENIZER_FOR_DOC
,
processo
r_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
_CHECKPOINT_FOR_DOC
,
output_type
=
XLNetForQuestionAnsweringSimpleOutput
,
config_class
=
_CONFIG_FOR_DOC
,
...
...
templates/adding_a_new_model/cookiecutter-template-{{cookiecutter.modelname}}/modeling_tf_{{cookiecutter.lowercase_modelname}}.py
View file @
f5af8736
...
...
@@ -945,7 +945,7 @@ class TF{{cookiecutter.camelcase_modelname}}Model(TF{{cookiecutter.camelcase_mod
@
add_start_docstrings_to_model_forward
({{
cookiecutter
.
uppercase_modelname
}}
_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenize
r_class
=
_TOKENIZER_FOR_DOC
,
processo
r_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
_CHECKPOINT_FOR_DOC
,
output_type
=
TFBaseModelOutputWithPoolingAndCrossAttentions
,
config_class
=
_CONFIG_FOR_DOC
,
...
...
@@ -1068,7 +1068,7 @@ class TF{{cookiecutter.camelcase_modelname}}ForMaskedLM(TF{{cookiecutter.camelca
@
add_start_docstrings_to_model_forward
({{
cookiecutter
.
uppercase_modelname
}}
_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenize
r_class
=
_TOKENIZER_FOR_DOC
,
processo
r_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
_CHECKPOINT_FOR_DOC
,
output_type
=
TFMaskedLMOutput
,
config_class
=
_CONFIG_FOR_DOC
,
...
...
@@ -1177,7 +1177,7 @@ class TF{{cookiecutter.camelcase_modelname}}ForCausalLM(TF{{cookiecutter.camelca
}
@
add_code_sample_docstrings
(
tokenize
r_class
=
_TOKENIZER_FOR_DOC
,
processo
r_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
_CHECKPOINT_FOR_DOC
,
output_type
=
TFCausalLMOutputWithCrossAttentions
,
config_class
=
_CONFIG_FOR_DOC
,
...
...
@@ -1344,7 +1344,7 @@ class TF{{cookiecutter.camelcase_modelname}}ForSequenceClassification(TF{{cookie
@
add_start_docstrings_to_model_forward
({{
cookiecutter
.
uppercase_modelname
}}
_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenize
r_class
=
_TOKENIZER_FOR_DOC
,
processo
r_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
_CHECKPOINT_FOR_DOC
,
output_type
=
TFSequenceClassifierOutput
,
config_class
=
_CONFIG_FOR_DOC
,
...
...
@@ -1450,7 +1450,7 @@ class TF{{cookiecutter.camelcase_modelname}}ForMultipleChoice(TF{{cookiecutter.c
@
add_start_docstrings_to_model_forward
({{
cookiecutter
.
uppercase_modelname
}}
_INPUTS_DOCSTRING
.
format
(
"batch_size, num_choices, sequence_length"
))
@
add_code_sample_docstrings
(
tokenize
r_class
=
_TOKENIZER_FOR_DOC
,
processo
r_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
_CHECKPOINT_FOR_DOC
,
output_type
=
TFMultipleChoiceModelOutput
,
config_class
=
_CONFIG_FOR_DOC
,
...
...
@@ -1593,7 +1593,7 @@ class TF{{cookiecutter.camelcase_modelname}}ForTokenClassification(TF{{cookiecut
@
add_start_docstrings_to_model_forward
({{
cookiecutter
.
uppercase_modelname
}}
_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenize
r_class
=
_TOKENIZER_FOR_DOC
,
processo
r_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
_CHECKPOINT_FOR_DOC
,
output_type
=
TFTokenClassifierOutput
,
config_class
=
_CONFIG_FOR_DOC
,
...
...
@@ -1689,7 +1689,7 @@ class TF{{cookiecutter.camelcase_modelname}}ForQuestionAnswering(TF{{cookiecutte
@
add_start_docstrings_to_model_forward
({{
cookiecutter
.
uppercase_modelname
}}
_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenize
r_class
=
_TOKENIZER_FOR_DOC
,
processo
r_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
_CHECKPOINT_FOR_DOC
,
output_type
=
TFQuestionAnsweringModelOutput
,
config_class
=
_CONFIG_FOR_DOC
,
...
...
@@ -2941,7 +2941,7 @@ class TF{{cookiecutter.camelcase_modelname}}Model(TF{{cookiecutter.camelcase_mod
@
add_start_docstrings_to_model_forward
({{
cookiecutter
.
uppercase_modelname
}}
_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenize
r_class
=
_TOKENIZER_FOR_DOC
,
processo
r_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
_CHECKPOINT_FOR_DOC
,
output_type
=
TFSeq2SeqModelOutput
,
config_class
=
_CONFIG_FOR_DOC
,
...
...
templates/adding_a_new_model/cookiecutter-template-{{cookiecutter.modelname}}/modeling_{{cookiecutter.lowercase_modelname}}.py
View file @
f5af8736
...
...
@@ -795,7 +795,7 @@ class {{cookiecutter.camelcase_modelname}}Model({{cookiecutter.camelcase_modelna
@
add_start_docstrings_to_model_forward
({{
cookiecutter
.
uppercase_modelname
}}
_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenize
r_class
=
_TOKENIZER_FOR_DOC
,
processo
r_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
_CHECKPOINT_FOR_DOC
,
output_type
=
BaseModelOutputWithPastAndCrossAttentions
,
config_class
=
_CONFIG_FOR_DOC
,
...
...
@@ -953,7 +953,7 @@ class {{cookiecutter.camelcase_modelname}}ForMaskedLM({{cookiecutter.camelcase_m
@
add_start_docstrings_to_model_forward
({{
cookiecutter
.
uppercase_modelname
}}
_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenize
r_class
=
_TOKENIZER_FOR_DOC
,
processo
r_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
_CHECKPOINT_FOR_DOC
,
output_type
=
MaskedLMOutput
,
config_class
=
_CONFIG_FOR_DOC
,
...
...
@@ -1221,7 +1221,7 @@ class {{cookiecutter.camelcase_modelname}}ForSequenceClassification({{cookiecutt
@
add_start_docstrings_to_model_forward
({{
cookiecutter
.
uppercase_modelname
}}
_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenize
r_class
=
_TOKENIZER_FOR_DOC
,
processo
r_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
_CHECKPOINT_FOR_DOC
,
output_type
=
SequenceClassifierOutput
,
config_class
=
_CONFIG_FOR_DOC
,
...
...
@@ -1301,7 +1301,7 @@ class {{cookiecutter.camelcase_modelname}}ForMultipleChoice({{cookiecutter.camel
@
add_start_docstrings_to_model_forward
({{
cookiecutter
.
uppercase_modelname
}}
_INPUTS_DOCSTRING
.
format
(
"batch_size, num_choices, sequence_length"
))
@
add_code_sample_docstrings
(
tokenize
r_class
=
_TOKENIZER_FOR_DOC
,
processo
r_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
_CHECKPOINT_FOR_DOC
,
output_type
=
MultipleChoiceModelOutput
,
config_class
=
_CONFIG_FOR_DOC
,
...
...
@@ -1391,7 +1391,7 @@ class {{cookiecutter.camelcase_modelname}}ForTokenClassification({{cookiecutter.
@
add_start_docstrings_to_model_forward
({{
cookiecutter
.
uppercase_modelname
}}
_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenize
r_class
=
_TOKENIZER_FOR_DOC
,
processo
r_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
_CHECKPOINT_FOR_DOC
,
output_type
=
TokenClassifierOutput
,
config_class
=
_CONFIG_FOR_DOC
,
...
...
@@ -1478,7 +1478,7 @@ class {{cookiecutter.camelcase_modelname}}ForQuestionAnswering({{cookiecutter.ca
@
add_start_docstrings_to_model_forward
({{
cookiecutter
.
uppercase_modelname
}}
_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenize
r_class
=
_TOKENIZER_FOR_DOC
,
processo
r_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
_CHECKPOINT_FOR_DOC
,
output_type
=
QuestionAnsweringModelOutput
,
config_class
=
_CONFIG_FOR_DOC
,
...
...
@@ -2646,7 +2646,7 @@ class {{cookiecutter.camelcase_modelname}}Model({{cookiecutter.camelcase_modelna
@
add_start_docstrings_to_model_forward
({{
cookiecutter
.
uppercase_modelname
}}
_INPUTS_DOCSTRING
)
@
add_code_sample_docstrings
(
tokenize
r_class
=
_TOKENIZER_FOR_DOC
,
processo
r_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
_CHECKPOINT_FOR_DOC
,
output_type
=
Seq2SeqModelOutput
,
config_class
=
_CONFIG_FOR_DOC
,
...
...
@@ -2921,7 +2921,7 @@ class {{cookiecutter.camelcase_modelname}}ForSequenceClassification({{cookiecutt
@
add_start_docstrings_to_model_forward
({{
cookiecutter
.
uppercase_modelname
}}
_INPUTS_DOCSTRING
)
@
add_code_sample_docstrings
(
tokenize
r_class
=
_TOKENIZER_FOR_DOC
,
processo
r_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
_CHECKPOINT_FOR_DOC
,
output_type
=
Seq2SeqSequenceClassifierOutput
,
config_class
=
_CONFIG_FOR_DOC
,
...
...
@@ -3022,7 +3022,7 @@ class {{cookiecutter.camelcase_modelname}}ForQuestionAnswering({{cookiecutter.ca
@
add_start_docstrings_to_model_forward
({{
cookiecutter
.
uppercase_modelname
}}
_INPUTS_DOCSTRING
)
@
add_code_sample_docstrings
(
tokenize
r_class
=
_TOKENIZER_FOR_DOC
,
processo
r_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
_CHECKPOINT_FOR_DOC
,
output_type
=
Seq2SeqQuestionAnsweringModelOutput
,
config_class
=
_CONFIG_FOR_DOC
,
...
...
Prev
1
2
3
4
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment