@@ -20,7 +20,7 @@ Con tantas arquitecturas diferentes de Transformer puede ser retador crear una p
<Tip>
Recuerda, la arquitectura se refiere al esqueleto del modelo y los checkpoints son los pesos para una arquitectura dada. Por ejemplo, [BERT](https://huggingface.co/bert-base-uncased) es una arquitectura, mientras que `bert-base-uncased` es un checkpoint. Modelo es un término general que puede significar una arquitectura o un checkpoint.
Recuerda, la arquitectura se refiere al esqueleto del modelo y los checkpoints son los pesos para una arquitectura dada. Por ejemplo, [BERT](https://huggingface.co/google-bert/bert-base-uncased) es una arquitectura, mientras que `google-bert/bert-base-uncased` es un checkpoint. Modelo es un término general que puede significar una arquitectura o un checkpoint.
</Tip>
...
...
@@ -40,7 +40,7 @@ Carga un tokenizador con [`AutoTokenizer.from_pretrained`]:
Generalmente recomendamos utilizar las clases `AutoTokenizer` y `AutoModelFor` para cargar instancias pre-entrenadas de modelos. Ésto asegurará que cargues la arquitectura correcta en cada ocasión. En el siguiente [tutorial](preprocessing), aprende a usar tu tokenizador recién cargado, el extractor de características y el procesador para preprocesar un dataset para fine-tuning.
...
...
@@ -107,7 +107,7 @@ Finalmente, la clase `TFAutoModelFor` te permite cargar tu modelo pre-entrenado
Generalmente recomendamos utilizar las clases `AutoTokenizer` y `TFAutoModelFor` para cargar instancias de modelos pre-entrenados. Ésto asegurará que cargues la arquitectura correcta cada vez. En el siguiente [tutorial](preprocessing), aprende a usar tu tokenizador recién cargado, el extractor de características y el procesador para preprocesar un dataset para fine-tuning.
@@ -43,8 +43,8 @@ Esta página agrupa los recursos de 🤗 Transformers desarrollados por la comun
|[Ajustar a Roberta para el análisis de sentimientos](https://github.com/DhavalTaunk08/NLP_scripts/blob/master/sentiment_analysis_using_roberta.ipynb) | Cómo ajustar un modelo de Roberta para el análisis de sentimientos | [Dhaval Taunk](https://github.com/DhavalTaunk08) | [](https://colab.research.google.com/github/DhavalTaunk08/NLP_scripts/blob/master/sentiment_analysis_using_roberta.ipynb)|
|[Evaluación de modelos de generación de preguntas](https://github.com/flexudy-pipe/qugeev) | ¿Qué tan precisas son las respuestas a las preguntas generadas por tu modelo de transformador seq2seq? | [Pascal Zoleko](https://github.com/zolekode) | [](https://colab.research.google.com/drive/1bpsSqCQU-iw_5nNoRm_crPq6FRuJthq_?usp=sharing)|
|[Clasificar texto con DistilBERT y Tensorflow](https://github.com/peterbayerle/huggingface_notebook/blob/main/distilbert_tf.ipynb) | Cómo ajustar DistilBERT para la clasificación de texto en TensorFlow | [Peter Bayerle](https://github.com/peterbayerle) | [](https://colab.research.google.com/github/peterbayerle/huggingface_notebook/blob/main/distilbert_tf.ipynb)|
|[Aprovechar BERT para el resumen de codificador y decodificador en CNN/Dailymail](https://github.com/patrickvonplaten/notebooks/blob/master/BERT2BERT_for_CNN_Dailymail.ipynb) | Cómo iniciar en caliente un *EncoderDecoderModel* con un punto de control *bert-base-uncased* para resumir en CNN/Dailymail | [Patrick von Platen](https://github.com/patrickvonplaten) | [](https://colab.research.google.com/github/patrickvonplaten/notebooks/blob/master/BERT2BERT_for_CNN_Dailymail.ipynb)|
|[Aprovechar RoBERTa para el resumen de codificador-decodificador en BBC XSum](https://github.com/patrickvonplaten/notebooks/blob/master/RoBERTaShared_for_BBC_XSum.ipynb) | Cómo iniciar en caliente un *EncoderDecoderModel* compartido con un punto de control *roberta-base* para resumir en BBC/XSum | [Patrick von Platen](https://github.com/patrickvonplaten) | [](https://colab.research.google.com/github/patrickvonplaten/notebooks/blob/master/RoBERTaShared_for_BBC_XSum.ipynb)|
|[Aprovechar BERT para el resumen de codificador y decodificador en CNN/Dailymail](https://github.com/patrickvonplaten/notebooks/blob/master/BERT2BERT_for_CNN_Dailymail.ipynb) | Cómo iniciar en caliente un *EncoderDecoderModel* con un punto de control *google-bert/bert-base-uncased* para resumir en CNN/Dailymail | [Patrick von Platen](https://github.com/patrickvonplaten) | [](https://colab.research.google.com/github/patrickvonplaten/notebooks/blob/master/BERT2BERT_for_CNN_Dailymail.ipynb)|
|[Aprovechar RoBERTa para el resumen de codificador-decodificador en BBC XSum](https://github.com/patrickvonplaten/notebooks/blob/master/RoBERTaShared_for_BBC_XSum.ipynb) | Cómo iniciar en caliente un *EncoderDecoderModel* compartido con un punto de control *FacebookAI/roberta-base* para resumir en BBC/XSum | [Patrick von Platen](https://github.com/patrickvonplaten) | [](https://colab.research.google.com/github/patrickvonplaten/notebooks/blob/master/RoBERTaShared_for_BBC_XSum.ipynb)|
|[Ajustar TAPAS en Sequential Question Answering (SQA)](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/TAPAS/Fine_tuning_TapasForQuestionAnswering_on_SQA.ipynb) | Cómo ajustar *TapasForQuestionAnswering* con un punto de control *tapas-base* en el conjunto de datos del Sequential Question Answering (SQA) | [Niels Rogge](https://github.com/nielsrogge) | [](https://colab.research.google.com/github/NielsRogge/Transformers-Tutorials/blob/master/TAPAS/Fine_tuning_TapasForQuestionAnswering_on_SQA.ipynb)|
|[Evaluar TAPAS en Table Fact Checking (TabFact)](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/TAPAS/Evaluating_TAPAS_on_the_Tabfact_test_set.ipynb) | Cómo evaluar un *TapasForSequenceClassification* ajustado con un punto de control *tapas-base-finetuned-tabfact* usando una combinación de 🤗 conjuntos de datos y 🤗 bibliotecas de transformadores | [Niels Rogge](https://github.com/nielsrogge) | [](https://colab.research.google.com/github/NielsRogge/Transformers-Tutorials/blob/master/TAPAS/Evaluating_TAPAS_on_the_Tabfact_test_set.ipynb)|
|[Ajustar de mBART para traducción](https://colab.research.google.com/github/vasudevgupta7/huggingface-tutorials/blob/main/translation_training.ipynb) | Cómo ajustar mBART utilizando Seq2SeqTrainer para la traducción del hindi al inglés | [Vasudev Gupta](https://github.com/vasudevgupta7) | [](https://colab.research.google.com/github/vasudevgupta7/huggingface-tutorials/blob/main/translation_training.ipynb)|
Cuando estés satisfecho con la configuración de tu modelo, puedes guardarlo con la función [`~PretrainedConfig.save_pretrained`]. Tu configuración se guardará en un archivo JSON dentro del directorio que le especifiques como parámetro.
...
...
@@ -128,13 +128,13 @@ Esto crea un modelo con valores aleatorios, en lugar de crearlo con los pesos de
Puedes crear un modelo preentrenado con [`~PreTrainedModel.from_pretrained`]:
Cuando cargues tus pesos del preentrenamiento, el modelo por defecto se carga automáticamente si nos lo proporciona 🤗 Transformers. Sin embargo, siempre puedes reemplazar (todos o algunos de) los atributos del modelo por defecto por los tuyos:
Cuando cargues tus pesos del preentrenamiento, el modelo por defecto se carga automáticamente si este nos lo proporciona 🤗 Transformers. Sin embargo, siempre puedes reemplazar (todos o algunos de) los atributos del modelo por defecto por los tuyos:
Puedes reutilizar este punto de guardado o *checkpoint* para otra tarea fácilmente cambiando a una cabeza de un modelo diferente. Para una tarea de respuesta a preguntas, puedes usar la cabeza del modelo [`DistilBertForQuestionAnswering`]. La cabeza de respuesta a preguntas es similar a la de clasificación de secuencias, excepto porque consta de una capa lineal delante de la salida de los *hidden states*.
...
...
@@ -186,7 +186,7 @@ Puedes reutilizar este punto de guardado o *checkpoint* para otra tarea fácilme
Puedes reutilizar este punto de guardado o *checkpoint* para otra tarea fácilmente cambiando a una cabeza de un modelo diferente. Para una tarea de respuesta a preguntas, puedes usar la cabeza del modelo [`TFDistilBertForQuestionAnswering`]. La cabeza de respuesta a preguntas es similar a la de clasificación de secuencias, excepto porque consta de una capa lineal delante de la salida de los *hidden states*.
...
...
@@ -205,7 +205,7 @@ Puedes reutilizar este punto de guardado o *checkpoint* para otra tarea fácilme
>>>sequence_b="This is a rather long sequence. It is at least longer than the sequence A."
...
...
@@ -145,7 +145,7 @@ El proceso de seleccionar y transformar datos crudos en un conjunto de caracter
### feed forward chunking
En cada bloque de atención residual en los transformadores, la capa de autoatención suele ir seguida de 2 capas de avance. El tamaño de embedding intermedio de las capas de avance suele ser mayor que el tamaño oculto del modelo (por ejemplo, para `bert-base-uncased`).
En cada bloque de atención residual en los transformadores, la capa de autoatención suele ir seguida de 2 capas de avance. El tamaño de embedding intermedio de las capas de avance suele ser mayor que el tamaño oculto del modelo (por ejemplo, para `google-bert/bert-base-uncased`).
Para una entrada de tamaño `[batch_size, sequence_length]`, la memoria requerida para almacenar los embeddings intermedios de avance `[batch_size, sequence_length, config.intermediate_size]` puede representar una gran fracción del uso de memoria. Los autores de [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) observaron que, dado que el cálculo es independiente de la dimensión `sequence_length`, es matemáticamente equivalente calcular los embeddings de salida de ambas capas de avance `[batch_size, config.hidden_size]_0, ..., [batch_size, config.hidden_size]_n` individualmente y concatenarlos después a `[batch_size, sequence_length, config.hidden_size]` con `n = sequence_length`, lo que intercambia el aumento del tiempo de cálculo por una reducción en el uso de memoria, pero produce un resultado matemáticamente **equivalente**.
...
...
@@ -188,7 +188,7 @@ Cada tokenizador funciona de manera diferente, pero el mecanismo subyacente sigu
@@ -220,4 +220,4 @@ Para asegurarnos que los usuarios entiendan las capacidades de tu modelo, sus li
* Elaborando y subiendo manualmente el archivo`README.md`.
* Dando click en el botón **Edit model card** dentro del repositorio.
Toma un momento para ver la [tarjeta de modelo](https://huggingface.co/distilbert-base-uncased) de DistilBert para que tengas un buen ejemplo del tipo de información que debería incluir. Consulta [la documentación](https://huggingface.co/docs/hub/models-cards) para más detalles acerca de otras opciones que puedes controlar dentro del archivo `README.md` como la huella de carbono del modelo o ejemplos de widgets. Consulta la documentación [aquí](https://huggingface.co/docs/hub/models-cards).
Toma un momento para ver la [tarjeta de modelo](https://huggingface.co/distilbert/distilbert-base-uncased) de DistilBert para que tengas un buen ejemplo del tipo de información que debería incluir. Consulta [la documentación](https://huggingface.co/docs/hub/models-cards) para más detalles acerca de otras opciones que puedes controlar dentro del archivo `README.md` como la huella de carbono del modelo o ejemplos de widgets. Consulta la documentación [aquí](https://huggingface.co/docs/hub/models-cards).
@@ -18,7 +18,7 @@ rendered properly in your Markdown viewer.
[[open-in-colab]]
Existen varios modelos multilingües en 🤗 Transformers y su uso para inferencia difiere de los modelos monolingües. Sin embargo, no *todos* los usos de los modelos multilingües son diferentes. Algunos modelos, como [bert-base-multilingual-uncased](https://huggingface.co/bert-base-multilingual-uncased), pueden utilizarse igual que un modelo monolingüe. Esta guía te enseñará cómo utilizar modelos multilingües cuyo uso difiere en la inferencia.
Existen varios modelos multilingües en 🤗 Transformers y su uso para inferencia difiere de los modelos monolingües. Sin embargo, no *todos* los usos de los modelos multilingües son diferentes. Algunos modelos, como [google-bert/bert-base-multilingual-uncased](https://huggingface.co/google-bert/bert-base-multilingual-uncased), pueden utilizarse igual que un modelo monolingüe. Esta guía te enseñará cómo utilizar modelos multilingües cuyo uso difiere en la inferencia.
## XLM
...
...
@@ -28,24 +28,24 @@ XLM tiene diez checkpoints diferentes de los cuales solo uno es monolingüe. Los
Los siguientes modelos XLM usan language embeddings para especificar el lenguaje utilizado en la inferencia:
-`xlm-mlm-ende-1024` (Masked language modeling, English-German)
-`xlm-mlm-enfr-1024` (Masked language modeling, English-French)
-`xlm-mlm-enro-1024` (Masked language modeling, English-Romanian)
-`xlm-mlm-xnli15-1024` (Masked language modeling, XNLI languages)
-`xlm-mlm-tlm-xnli15-1024` (Masked language modeling + translation, XNLI languages)
-`xlm-clm-enfr-1024` (Causal language modeling, English-French)
-`xlm-clm-ende-1024` (Causal language modeling, English-German)
-`FacebookAI/xlm-mlm-ende-1024` (Masked language modeling, English-German)
-`FacebookAI/xlm-mlm-enfr-1024` (Masked language modeling, English-French)
-`FacebookAI/xlm-mlm-enro-1024` (Masked language modeling, English-Romanian)
-`FacebookAI/xlm-mlm-xnli15-1024` (Masked language modeling, XNLI languages)
-`FacebookAI/xlm-mlm-tlm-xnli15-1024` (Masked language modeling + translation, XNLI languages)
-`FacebookAI/xlm-clm-enfr-1024` (Causal language modeling, English-French)
-`FacebookAI/xlm-clm-ende-1024` (Causal language modeling, English-German)
Los language embeddings son representados como un tensor de la mismas dimensiones que los `input_ids` pasados al modelo. Los valores de estos tensores dependen del idioma utilizado y se identifican mediante los atributos `lang2id` y `id2lang` del tokenizador.
En este ejemplo, carga el checkpoint `xlm-clm-enfr-1024` (Causal language modeling, English-French):
En este ejemplo, carga el checkpoint `FacebookAI/xlm-clm-enfr-1024` (Causal language modeling, English-French):
El atributo `lang2id` del tokenizador muestra los idiomas de este modelo y sus ids:
...
...
@@ -83,8 +83,8 @@ El script [run_generation.py](https://github.com/huggingface/transformers/tree/m
Los siguientes modelos XLM no requieren language embeddings durante la inferencia:
-`xlm-mlm-17-1280` (modelado de lenguaje enmascarado, 17 idiomas)
-`xlm-mlm-100-1280` (modelado de lenguaje enmascarado, 100 idiomas)
-`FacebookAI/xlm-mlm-17-1280` (modelado de lenguaje enmascarado, 17 idiomas)
-`FacebookAI/xlm-mlm-100-1280` (modelado de lenguaje enmascarado, 100 idiomas)
Estos modelos se utilizan para representaciones genéricas de frases a diferencia de los anteriores checkpoints XLM.
...
...
@@ -92,8 +92,8 @@ Estos modelos se utilizan para representaciones genéricas de frases a diferenci
Los siguientes modelos de BERT pueden utilizarse para tareas multilingües:
-`bert-base-multilingual-uncased` (modelado de lenguaje enmascarado + predicción de la siguiente oración, 102 idiomas)
-`bert-base-multilingual-cased` (modelado de lenguaje enmascarado + predicción de la siguiente oración, 104 idiomas)
-`google-bert/bert-base-multilingual-uncased` (modelado de lenguaje enmascarado + predicción de la siguiente oración, 102 idiomas)
-`google-bert/bert-base-multilingual-cased` (modelado de lenguaje enmascarado + predicción de la siguiente oración, 104 idiomas)
Estos modelos no requieren language embeddings durante la inferencia. Deben identificar la lengua a partir del
contexto e inferir en consecuencia.
...
...
@@ -102,8 +102,8 @@ contexto e inferir en consecuencia.
Los siguientes modelos de XLM-RoBERTa pueden utilizarse para tareas multilingües:
-`xlm-roberta-base` (modelado de lenguaje enmascarado, 100 idiomas)
-`xlm-roberta-large` (Modelado de lenguaje enmascarado, 100 idiomas)
-`FacebookAI/xlm-roberta-base` (modelado de lenguaje enmascarado, 100 idiomas)
-`FacebookAI/xlm-roberta-large` (Modelado de lenguaje enmascarado, 100 idiomas)
XLM-RoBERTa se entrenó con 2,5 TB de datos CommonCrawl recién creados y depurados en 100 idiomas. Proporciona fuertes ventajas sobre los modelos multilingües publicados anteriormente como mBERT o XLM en tareas posteriores como la clasificación, el etiquetado de secuencias y la respuesta a preguntas.
El script de ejemplo descarga y preprocesa un conjunto de datos de la biblioteca 🤗 [Datasets](https://huggingface.co/docs/datasets/). Luego, el script ajusta un conjunto de datos con [Trainer](https://huggingface.co/docs/transformers/main_classes/trainer) en una arquitectura que soporta la tarea de resumen. El siguiente ejemplo muestra cómo ajustar un [T5-small](https://huggingface.co/t5-small) en el conjunto de datos [CNN/DailyMail](https://huggingface.co/datasets/cnn_dailymail). El modelo T5 requiere un argumento adicional `source_prefix` debido a cómo fue entrenado. Este aviso le permite a T5 saber que se trata de una tarea de resumir.
El script de ejemplo descarga y preprocesa un conjunto de datos de la biblioteca 🤗 [Datasets](https://huggingface.co/docs/datasets/). Luego, el script ajusta un conjunto de datos con [Trainer](https://huggingface.co/docs/transformers/main_classes/trainer) en una arquitectura que soporta la tarea de resumen. El siguiente ejemplo muestra cómo ajustar un [T5-small](https://huggingface.co/google-t5/t5-small) en el conjunto de datos [CNN/DailyMail](https://huggingface.co/datasets/cnn_dailymail). El modelo T5 requiere un argumento adicional `source_prefix` debido a cómo fue entrenado. Este aviso le permite a T5 saber que se trata de una tarea de resumir.
El script de ejemplo descarga y preprocesa un conjunto de datos de la biblioteca 🤗 [Datasets](https://huggingface.co/docs/datasets/). Luego, el script ajusta un conjunto de datos utilizando Keras en una arquitectura que soporta la tarea de resumir. El siguiente ejemplo muestra cómo ajustar un [T5-small](https://huggingface.co/t5-small) en el conjunto de datos [CNN/DailyMail](https://huggingface.co/datasets/cnn_dailymail). El modelo T5 requiere un argumento adicional `source_prefix` debido a cómo fue entrenado. Este aviso le permite a T5 saber que se trata de una tarea de resumir.
El script de ejemplo descarga y preprocesa un conjunto de datos de la biblioteca 🤗 [Datasets](https://huggingface.co/docs/datasets/). Luego, el script ajusta un conjunto de datos utilizando Keras en una arquitectura que soporta la tarea de resumir. El siguiente ejemplo muestra cómo ajustar un [T5-small](https://huggingface.co/google-t5/t5-small) en el conjunto de datos [CNN/DailyMail](https://huggingface.co/datasets/cnn_dailymail). El modelo T5 requiere un argumento adicional `source_prefix` debido a cómo fue entrenado. Este aviso le permite a T5 saber que se trata de una tarea de resumir.
@@ -26,11 +26,11 @@ El modelado de lenguaje causal predice el siguiente token en una secuencia de to
El modelado de lenguaje por enmascaramiento predice un token enmascarado en una secuencia, y el modelo puede considerar los tokens bidireccionalmente.
Esta guía te mostrará cómo realizar fine-tuning [DistilGPT2](https://huggingface.co/distilgpt2) para modelos de lenguaje causales y [DistilRoBERTa](https://huggingface.co/distilroberta-base) para modelos de lenguaje por enmascaramiento en el [r/askscience](https://www.reddit.com/r/askscience/) subdataset [ELI5](https://huggingface.co/datasets/eli5).
Esta guía te mostrará cómo realizar fine-tuning [DistilGPT2](https://huggingface.co/distilbert/distilgpt2) para modelos de lenguaje causales y [DistilRoBERTa](https://huggingface.co/distilbert/distilroberta-base) para modelos de lenguaje por enmascaramiento en el [r/askscience](https://www.reddit.com/r/askscience/) subdataset [ELI5](https://huggingface.co/datasets/eli5).
<Tip>
Puedes realizar fine-tuning a otras arquitecturas para modelos de lenguaje como [GPT-Neo](https://huggingface.co/EleutherAI/gpt-neo-125M), [GPT-J](https://huggingface.co/EleutherAI/gpt-j-6B) y [BERT](https://huggingface.co/bert-base-uncased) siguiendo los mismos pasos presentados en esta guía!
Puedes realizar fine-tuning a otras arquitecturas para modelos de lenguaje como [GPT-Neo](https://huggingface.co/EleutherAI/gpt-neo-125M), [GPT-J](https://huggingface.co/EleutherAI/gpt-j-6B) y [BERT](https://huggingface.co/google-bert/bert-base-uncased) siguiendo los mismos pasos presentados en esta guía!
Mira la [página de tarea](https://huggingface.co/tasks/text-generation) para generación de texto y la [página de tarea](https://huggingface.co/tasks/fill-mask) para modelos de lenguajes por enmascaramiento para obtener más información sobre los modelos, datasets, y métricas asociadas.
...
...
@@ -81,7 +81,7 @@ Para modelados de lenguaje causales carga el tokenizador DistilGPT2 para procesa
Extrae el subcampo `text` desde su estructura anidado con el método [`flatten`](https://huggingface.co/docs/datasets/process#flatten):
...
...
@@ -203,7 +203,7 @@ Para modelados de lenguajes por enmascaramiento usa el mismo [`DataCollatorForLa
## Modelado de lenguaje causal
El modelado de lenguaje causal es frecuentemente utilizado para generación de texto. Esta sección te muestra cómo realizar fine-tuning a [DistilGPT2](https://huggingface.co/distilgpt2) para generar nuevo texto.
El modelado de lenguaje causal es frecuentemente utilizado para generación de texto. Esta sección te muestra cómo realizar fine-tuning a [DistilGPT2](https://huggingface.co/distilbert/distilgpt2) para generar nuevo texto.
### Entrenamiento
...
...
@@ -214,7 +214,7 @@ Carga DistilGPT2 con [`AutoModelForCausalLM`]:
Configura el modelo para entrenamiento con [`compile`](https://keras.io/api/models/model_training_apis/#compile-method):
...
...
@@ -309,7 +309,7 @@ Llama a [`fit`](https://keras.io/api/models/model_training_apis/#fit-method) par
## Modelado de lenguaje por enmascaramiento
El modelado de lenguaje por enmascaramiento es también conocido como una tarea de rellenar la máscara, pues predice un token enmascarado dada una secuencia. Los modelos de lenguaje por enmascaramiento requieren una buena comprensión del contexto de una secuencia entera, en lugar de solo el contexto a la izquierda. Esta sección te enseña como realizar el fine-tuning de [DistilRoBERTa](https://huggingface.co/distilroberta-base) para predecir una palabra enmascarada.
El modelado de lenguaje por enmascaramiento es también conocido como una tarea de rellenar la máscara, pues predice un token enmascarado dada una secuencia. Los modelos de lenguaje por enmascaramiento requieren una buena comprensión del contexto de una secuencia entera, en lugar de solo el contexto a la izquierda. Esta sección te enseña como realizar el fine-tuning de [DistilRoBERTa](https://huggingface.co/distilbert/distilroberta-base) para predecir una palabra enmascarada.
### Entrenamiento
...
...
@@ -320,7 +320,7 @@ Carga DistilRoBERTa con [`AutoModelForMaskedlM`]:
@@ -19,7 +19,7 @@ rendered properly in your Markdown viewer.
La tarea de selección múltiple es parecida a la de responder preguntas, con la excepción de que se dan varias opciones de respuesta junto con el contexto. El modelo se entrena para escoger la respuesta correcta
entre varias opciones a partir del contexto dado.
Esta guía te mostrará como hacerle fine-tuning a [BERT](https://huggingface.co/bert-base-uncased) en la configuración `regular` del dataset [SWAG](https://huggingface.co/datasets/swag), de forma
Esta guía te mostrará como hacerle fine-tuning a [BERT](https://huggingface.co/google-bert/bert-base-uncased) en la configuración `regular` del dataset [SWAG](https://huggingface.co/datasets/swag), de forma
que seleccione la mejor respuesta a partir de varias opciones y algún contexto.
## Cargar el dataset SWAG
...
...
@@ -58,7 +58,7 @@ Carga el tokenizer de BERT para procesar el comienzo de cada oración y los cuat
@@ -23,7 +23,7 @@ La respuesta a preguntas devuelve una respuesta a partir de una pregunta dada. E
- Extractiva: extraer la respuesta a partir del contexto dado.
- Abstractiva: generar una respuesta que responda correctamente la pregunta a partir del contexto dado.
Esta guía te mostrará como hacer fine-tuning de [DistilBERT](https://huggingface.co/distilbert-base-uncased) en el dataset [SQuAD](https://huggingface.co/datasets/squad) para responder preguntas de forma extractiva.
Esta guía te mostrará como hacer fine-tuning de [DistilBERT](https://huggingface.co/distilbert/distilbert-base-uncased) en el dataset [SQuAD](https://huggingface.co/datasets/squad) para responder preguntas de forma extractiva.
<Tip>
...
...
@@ -64,7 +64,7 @@ Carga el tokenizer de DistilBERT para procesar los campos `question` (pregunta)
@@ -23,7 +23,7 @@ La generación de resúmenes (summarization, en inglés) crea una versión más
- Extractiva: Extrae la información más relevante de un documento.
- Abstractiva: Genera un texto nuevo que captura la información más importante.
Esta guía te mostrará cómo puedes hacer fine-tuning del modelo [T5](https://huggingface.co/t5-small) sobre el subset de proyectos de ley del estado de California, dentro del dataset [BillSum](https://huggingface.co/datasets/billsum) para hacer generación de resúmenes abstractiva.
Esta guía te mostrará cómo puedes hacer fine-tuning del modelo [T5](https://huggingface.co/google-t5/t5-small) sobre el subset de proyectos de ley del estado de California, dentro del dataset [BillSum](https://huggingface.co/datasets/billsum) para hacer generación de resúmenes abstractiva.
<Tip>
...
...
@@ -65,7 +65,7 @@ Carga el tokenizador T5 para procesar `text` y `summary`:
A continuación, compila y aplica fine-tuning a tu modelo con [`fit`](https://keras.io/api/models/model_training_apis/) como lo harías con cualquier otro modelo de Keras:
...
...
@@ -275,7 +275,7 @@ Carga tu modelo con el número de labels previstas:
@@ -20,7 +20,7 @@ Avec autant d'architectures Transformer différentes, il peut être difficile d'
<Tip>
Rappel, l'architecture fait référence au squelette du modèle et l'ensemble de poids contient les poids pour une architecture donnée. Par exemple, [BERT](https://huggingface.co/bert-base-uncased) est une architecture, tandis que `bert-base-uncased` est un ensemble de poids. Le terme modèle est général et peut signifier soit architecture soit ensemble de poids.
Rappel, l'architecture fait référence au squelette du modèle et l'ensemble de poids contient les poids pour une architecture donnée. Par exemple, [BERT](https://huggingface.co/google-bert/bert-base-uncased) est une architecture, tandis que `google-bert/bert-base-uncased` est un ensemble de poids. Le terme modèle est général et peut signifier soit architecture soit ensemble de poids.
</Tip>
...
...
@@ -41,7 +41,7 @@ Chargez un tokenizer avec [`AutoTokenizer.from_pretrained`]:
En général, nous recommandons d'utiliser les classes `AutoTokenizer` et `TFAutoModelFor` pour charger des instances pré-entraînées de tokenizers et modèles respectivement. Cela vous permettra de charger la bonne architecture à chaque fois. Dans le prochain [tutoriel](preprocessing), vous apprenez à utiliser un tokenizer, processeur d'image, extracteur de caractéristiques et processeur pour pré-traiter un jeu de données pour le fine-tuning.