Unverified Commit f497f564 authored by Lysandre Debut's avatar Lysandre Debut Committed by GitHub
Browse files

Update all references to canonical models (#29001)

* Script & Manual edition

* Update
parent 1e402b95
......@@ -254,7 +254,7 @@ Hugging Faceプロフィールに移動すると、新しく作成したモデ
* 手動で`README.md`ファイルを作成およびアップロードする。
* モデルリポジトリ内の**Edit model card**ボタンをクリックする。
モデルカードに含めるべき情報の例については、DistilBert [モデルカード](https://huggingface.co/distilbert-base-uncased)をご覧ください。`README.md`ファイルで制御できる他のオプション、例えばモデルの炭素フットプリントやウィジェットの例などについての詳細は、[こちらのドキュメンテーション](https://huggingface.co/docs/hub/models-cards)を参照してください。
モデルカードに含めるべき情報の例については、DistilBert [モデルカード](https://huggingface.co/distilbert/distilbert-base-uncased)をご覧ください。`README.md`ファイルで制御できる他のオプション、例えばモデルの炭素フットプリントやウィジェットの例などについての詳細は、[こちらのドキュメンテーション](https://huggingface.co/docs/hub/models-cards)を参照してください。
......
......@@ -18,7 +18,7 @@ rendered properly in your Markdown viewer.
[[open-in-colab]]
🤗 Transformers にはいくつかの多言語モデルがあり、それらの推論の使用方法は単一言語モデルとは異なります。ただし、多言語モデルの使用方法がすべて異なるわけではありません。 [bert-base-multilingual-uncased](https://huggingface.co/bert-base-multilingual-uncased) などの一部のモデルは、単一言語モデルと同様に使用できます。 このガイドでは、推論のために使用方法が異なる多言語モデルをどのように使うかを示します。
🤗 Transformers にはいくつかの多言語モデルがあり、それらの推論の使用方法は単一言語モデルとは異なります。ただし、多言語モデルの使用方法がすべて異なるわけではありません。 [google-bert/bert-base-multilingual-uncased](https://huggingface.co/google-bert/bert-base-multilingual-uncased) などの一部のモデルは、単一言語モデルと同様に使用できます。 このガイドでは、推論のために使用方法が異なる多言語モデルをどのように使うかを示します。
## XLM
......@@ -28,24 +28,24 @@ XLM には10の異なるチェックポイントがあり、そのうちの1つ
次の XLM モデルは、言語の埋め込みを使用して、推論で使用される言語を指定します。
- `xlm-mlm-ende-1024` (マスク化された言語モデリング、英語-ドイツ語)
- `xlm-mlm-enfr-1024` (マスク化された言語モデリング、英語-フランス語)
- `xlm-mlm-enro-1024` (マスク化された言語モデリング、英語-ルーマニア語)
- `xlm-mlm-xnli15-1024` (マスク化された言語モデリング、XNLI 言語)
- `xlm-mlm-tlm-xnli15-1024` (マスク化された言語モデリング + 翻訳 + XNLI 言語)
- `xlm-clm-enfr-1024` (因果言語モデリング、英語-フランス語)
- `xlm-clm-ende-1024` (因果言語モデリング、英語-ドイツ語)
- `FacebookAI/xlm-mlm-ende-1024` (マスク化された言語モデリング、英語-ドイツ語)
- `FacebookAI/xlm-mlm-enfr-1024` (マスク化された言語モデリング、英語-フランス語)
- `FacebookAI/xlm-mlm-enro-1024` (マスク化された言語モデリング、英語-ルーマニア語)
- `FacebookAI/xlm-mlm-xnli15-1024` (マスク化された言語モデリング、XNLI 言語)
- `FacebookAI/xlm-mlm-tlm-xnli15-1024` (マスク化された言語モデリング + 翻訳 + XNLI 言語)
- `FacebookAI/xlm-clm-enfr-1024` (因果言語モデリング、英語-フランス語)
- `FacebookAI/xlm-clm-ende-1024` (因果言語モデリング、英語-ドイツ語)
言語の埋め込みは、モデルに渡される `input_ids` と同じ形状のテンソルとして表されます。 これらのテンソルの値は、使用される言語に依存し、トークナイザーの `lang2id` および `id2lang` 属性によって識別されます。
この例では、`xlm-clm-enfr-1024` チェックポイントをロードします (因果言語モデリング、英語-フランス語)。
この例では、`FacebookAI/xlm-clm-enfr-1024` チェックポイントをロードします (因果言語モデリング、英語-フランス語)。
```py
>>> import torch
>>> from transformers import XLMTokenizer, XLMWithLMHeadModel
>>> tokenizer = XLMTokenizer.from_pretrained("xlm-clm-enfr-1024")
>>> model = XLMWithLMHeadModel.from_pretrained("xlm-clm-enfr-1024")
>>> tokenizer = XLMTokenizer.from_pretrained("FacebookAI/xlm-clm-enfr-1024")
>>> model = XLMWithLMHeadModel.from_pretrained("FacebookAI/xlm-clm-enfr-1024")
```
トークナイザーの `lang2id` 属性は、このモデルの言語とその ID を表示します。
......@@ -83,8 +83,8 @@ XLM には10の異なるチェックポイントがあり、そのうちの1つ
次の XLM モデルは、推論中に言語の埋め込みを必要としません。
- `xlm-mlm-17-1280` (マスク化された言語モデリング、17の言語)
- `xlm-mlm-100-1280` (マスク化された言語モデリング、100の言語)
- `FacebookAI/xlm-mlm-17-1280` (マスク化された言語モデリング、17の言語)
- `FacebookAI/xlm-mlm-100-1280` (マスク化された言語モデリング、100の言語)
これらのモデルは、以前の XLM チェックポイントとは異なり、一般的な文の表現に使用されます。
......@@ -92,8 +92,8 @@ XLM には10の異なるチェックポイントがあり、そのうちの1つ
以下の BERT モデルは、多言語タスクに使用できます。
- `bert-base-multilingual-uncased` (マスク化された言語モデリング + 次の文の予測、102の言語)
- `bert-base-multilingual-cased` (マスク化された言語モデリング + 次の文の予測、104の言語)
- `google-bert/bert-base-multilingual-uncased` (マスク化された言語モデリング + 次の文の予測、102の言語)
- `google-bert/bert-base-multilingual-cased` (マスク化された言語モデリング + 次の文の予測、104の言語)
これらのモデルは、推論中に言語の埋め込みを必要としません。 文脈から言語を識別し、それに応じて推測する必要があります。
......@@ -101,8 +101,8 @@ XLM には10の異なるチェックポイントがあり、そのうちの1つ
次の XLM-RoBERTa モデルは、多言語タスクに使用できます。
- `xlm-roberta-base` (マスク化された言語モデリング、100の言語)
- `xlm-roberta-large` (マスク化された言語モデリング、100の言語)
- `FacebookAI/xlm-roberta-base` (マスク化された言語モデリング、100の言語)
- `FacebookAI/xlm-roberta-large` (マスク化された言語モデリング、100の言語)
XLM-RoBERTa は、100の言語で新しく作成およびクリーニングされた2.5 TB の CommonCrawl データでトレーニングされました。 これは、分類、シーケンスのラベル付け、質問応答などのダウンストリームタスクで、mBERT や XLM などの以前にリリースされた多言語モデルを大幅に改善します。
......
......@@ -140,7 +140,7 @@ NVLinkを使用すると、トレーニングが約23%速く完了すること
# DDP w/ NVLink
rm -r /tmp/test-clm; CUDA_VISIBLE_DEVICES=0,1 torchrun \
--nproc_per_node 2 examples/pytorch/language-modeling/run_clm.py --model_name_or_path gpt2 \
--nproc_per_node 2 examples/pytorch/language-modeling/run_clm.py --model_name_or_path openai-community/gpt2 \
--dataset_name wikitext --dataset_config_name wikitext-2-raw-v1 --do_train \
--output_dir /tmp/test-clm --per_device_train_batch_size 4 --max_steps 200
......@@ -149,7 +149,7 @@ rm -r /tmp/test-clm; CUDA_VISIBLE_DEVICES=0,1 torchrun \
# DDP w/o NVLink
rm -r /tmp/test-clm; CUDA_VISIBLE_DEVICES=0,1 NCCL_P2P_DISABLE=1 torchrun \
--nproc_per_node 2 examples/pytorch/language-modeling/run_clm.py --model_name_or_path gpt2 \
--nproc_per_node 2 examples/pytorch/language-modeling/run_clm.py --model_name_or_path openai-community/gpt2 \
--dataset_name wikitext --dataset_config_name wikitext-2-raw-v1 --do_train
--output_dir /tmp/test-clm --per_device_train_batch_size 4 --max_steps 200
......
......@@ -49,7 +49,7 @@ TrainerでIPEXの自動混合精度を有効にするには、ユーザーはト
- CPU上でBF16自動混合精度を使用してIPEXでトレーニングを行う場合:
<pre> python run_qa.py \
--model_name_or_path bert-base-uncased \
--model_name_or_path google-bert/bert-base-uncased \
--dataset_name squad \
--do_train \
--do_eval \
......
......@@ -100,7 +100,7 @@ IPEXは、Float32およびBFloat16の両方でCPUトレーニングのパフォ
export MASTER_ADDR=127.0.0.1
mpirun -n 2 -genv OMP_NUM_THREADS=23 \
python3 run_qa.py \
--model_name_or_path bert-large-uncased \
--model_name_or_path google-bert/bert-large-uncased \
--dataset_name squad \
--do_train \
--do_eval \
......@@ -134,7 +134,7 @@ node0では、各ノードのIPアドレスを含む構成ファイルを作成
mpirun -f hostfile -n 4 -ppn 2 \
-genv OMP_NUM_THREADS=23 \
python3 run_qa.py \
--model_name_or_path bert-large-uncased \
--model_name_or_path google-bert/bert-large-uncased \
--dataset_name squad \
--do_train \
--do_eval \
......
......@@ -136,7 +136,7 @@ DPとDDPの他にも違いがありますが、この議論には関係ありま
# DP
rm -r /tmp/test-clm; CUDA_VISIBLE_DEVICES=0,1 \
python examples/pytorch/language-modeling/run_clm.py \
--model_name_or_path gpt2 --dataset_name wikitext --dataset_config_name wikitext-2-raw-v1 \
--model_name_or_path openai-community/gpt2 --dataset_name wikitext --dataset_config_name wikitext-2-raw-v1 \
--do_train --output_dir /tmp/test-clm --per_device_train_batch_size 4 --max_steps 200
{'train_runtime': 110.5948, 'train_samples_per_second': 1.808, 'epoch': 0.69}
......@@ -144,7 +144,7 @@ python examples/pytorch/language-modeling/run_clm.py \
# DDP w/ NVlink
rm -r /tmp/test-clm; CUDA_VISIBLE_DEVICES=0,1 \
torchrun --nproc_per_node 2 examples/pytorch/language-modeling/run_clm.py \
--model_name_or_path gpt2 --dataset_name wikitext --dataset_config_name wikitext-2-raw-v1 \
--model_name_or_path openai-community/gpt2 --dataset_name wikitext --dataset_config_name wikitext-2-raw-v1 \
--do_train --output_dir /tmp/test-clm --per_device_train_batch_size 4 --max_steps 200
{'train_runtime': 101.9003, 'train_samples_per_second': 1.963, 'epoch': 0.69}
......@@ -152,7 +152,7 @@ torchrun --nproc_per_node 2 examples/pytorch/language-modeling/run_clm.py \
# DDP w/o NVlink
rm -r /tmp/test-clm; NCCL_P2P_DISABLE=1 CUDA_VISIBLE_DEVICES=0,1 \
torchrun --nproc_per_node 2 examples/pytorch/language-modeling/run_clm.py \
--model_name_or_path gpt2 --dataset_name wikitext --dataset_config_name wikitext-2-raw-v1 \
--model_name_or_path openai-community/gpt2 --dataset_name wikitext --dataset_config_name wikitext-2-raw-v1 \
--do_train --output_dir /tmp/test-clm --per_device_train_batch_size 4 --max_steps 200
{'train_runtime': 131.4367, 'train_samples_per_second': 1.522, 'epoch': 0.69}
......
......@@ -193,7 +193,7 @@ AdamWオプティマイザの代替手段について詳しく見てみましょ
1. [`Trainer`]で使用可能な`adafactor`
2. Trainerで使用可能な`adamw_bnb_8bit`は、デモンストレーション用に以下でサードパーティの統合が提供されています。
比較のため、3Bパラメータモデル(例:「t5-3b」)の場合:
比較のため、3Bパラメータモデル(例:「google-t5/t5-3b」)の場合:
* 標準のAdamWオプティマイザは、各パラメータに8バイトを使用するため、24GBのGPUメモリが必要です(8 * 3 => 24GB)。
* Adafactorオプティマイザは12GB以上必要です。各パラメータにわずか4バイト以上を使用するため、4 * 3と少し余分になります。
* 8ビットのBNB量子化オプティマイザは、すべてのオプティマイザの状態が量子化されている場合、わずか6GBしか使用しません。
......
......@@ -56,7 +56,7 @@ GPT-2を使用してこのプロセスをデモンストレーションしてみ
from transformers import GPT2LMHeadModel, GPT2TokenizerFast
device = "cuda"
model_id = "gpt2-large"
model_id = "openai-community/gpt2-large"
model = GPT2LMHeadModel.from_pretrained(model_id).to(device)
tokenizer = GPT2TokenizerFast.from_pretrained(model_id)
```
......
......@@ -165,7 +165,7 @@ def data():
yield f"My example {i}"
pipe = pipeline(model="gpt2", device=0)
pipe = pipeline(model="openai-community/gpt2", device=0)
generated_characters = 0
for out in pipe(data()):
generated_characters += len(out[0]["generated_text"])
......
......@@ -36,7 +36,7 @@ async def homepage(request):
async def server_loop(q):
pipe = pipeline(model="bert-base-uncased")
pipe = pipeline(model="google-bert/bert-base-uncased")
while True:
(string, response_q) = await q.get()
out = pipe(string)
......
......@@ -59,7 +59,7 @@ pip install datasets
```python
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-cased")
```
次に、テキストをトークナイザに渡します:
......
......@@ -83,7 +83,7 @@ pip install tensorflow
>>> classifier = pipeline("sentiment-analysis")
```
[`pipeline`]は、感情分析のためのデフォルトの[事前学習済みモデル](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english)とトークナイザをダウンロードしてキャッシュし、使用できるようになります。
[`pipeline`]は、感情分析のためのデフォルトの[事前学習済みモデル](https://huggingface.co/distilbert/distilbert-base-uncased-finetuned-sst-2-english)とトークナイザをダウンロードしてキャッシュし、使用できるようになります。
これで、`classifier`を対象のテキストに使用できます:
```python
......@@ -411,7 +411,7 @@ tensor([[0.0021, 0.0018, 0.0115, 0.2121, 0.7725],
```python
>>> from transformers import AutoConfig
>>> my_config = AutoConfig.from_pretrained("distilbert-base-uncased", n_heads=12)
>>> my_config = AutoConfig.from_pretrained("distilbert/distilbert-base-uncased", n_heads=12)
```
<frameworkcontent>
......@@ -452,7 +452,7 @@ tensor([[0.0021, 0.0018, 0.0115, 0.2121, 0.7725],
```py
>>> from transformers import AutoModelForSequenceClassification
>>> model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased")
>>> model = AutoModelForSequenceClassification.from_pretrained("distilbert/distilbert-base-uncased")
```
2. [`TrainingArguments`]には、変更できるモデルのハイパーパラメータが含まれており、学習率、バッチサイズ、トレーニングエポック数などが変更できます。指定しない場合、デフォルト値が使用されます:
......@@ -474,7 +474,7 @@ tensor([[0.0021, 0.0018, 0.0115, 0.2121, 0.7725],
```py
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert/distilbert-base-uncased")
```
4. データセットをロードする:
......@@ -547,7 +547,7 @@ tensor([[0.0021, 0.0018, 0.0115, 0.2121, 0.7725],
```py
>>> from transformers import TFAutoModelForSequenceClassification
>>> model = TFAutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased")
>>> model = TFAutoModelForSequenceClassification.from_pretrained("distilbert/distilbert-base-uncased")
```
2. トークナイザ、画像プロセッサ、特徴量抽出器、またはプロセッサのような前処理クラスをロードします:
......@@ -555,7 +555,7 @@ tensor([[0.0021, 0.0018, 0.0115, 0.2121, 0.7725],
```py
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert/distilbert-base-uncased")
```
3. データセットをトークナイズするための関数を作成します:
......
......@@ -92,12 +92,12 @@ pip install -r requirements.txt
<frameworkcontent>
<pt>
この例のスクリプトは、🤗 [Datasets](https://huggingface.co/docs/datasets/) ライブラリからデータセットをダウンロードし、前処理を行います。次に、[Trainer](https://huggingface.co/docs/transformers/main_classes/trainer) を使用して要約をサポートするアーキテクチャ上でデータセットをファインチューニングします。以下の例では、[CNN/DailyMail](https://huggingface.co/datasets/cnn_dailymail) データセット上で [T5-small](https://huggingface.co/t5-small) をファインチューニングする方法が示されています。T5 モデルは、そのトレーニング方法に起因して追加の `source_prefix` 引数が必要です。このプロンプトにより、T5 はこれが要約タスクであることを知ることができます。
この例のスクリプトは、🤗 [Datasets](https://huggingface.co/docs/datasets/) ライブラリからデータセットをダウンロードし、前処理を行います。次に、[Trainer](https://huggingface.co/docs/transformers/main_classes/trainer) を使用して要約をサポートするアーキテクチャ上でデータセットをファインチューニングします。以下の例では、[CNN/DailyMail](https://huggingface.co/datasets/cnn_dailymail) データセット上で [T5-small](https://huggingface.co/google-t5/t5-small) をファインチューニングする方法が示されています。T5 モデルは、そのトレーニング方法に起因して追加の `source_prefix` 引数が必要です。このプロンプトにより、T5 はこれが要約タスクであることを知ることができます。
```bash
python examples/pytorch/summarization/run_summarization.py \
--model_name_or_path t5-small \
--model_name_or_path google-t5/t5-small \
--do_train \
--do_eval \
--dataset_name cnn_dailymail \
......@@ -112,12 +112,12 @@ python examples/pytorch/summarization/run_summarization.py \
</pt>
<tf>
この例のスクリプトは、🤗 [Datasets](https://huggingface.co/docs/datasets/) ライブラリからデータセットをダウンロードして前処理します。その後、スクリプトは要約をサポートするアーキテクチャ上で Keras を使用してデータセットをファインチューニングします。以下の例では、[T5-small](https://huggingface.co/t5-small)[CNN/DailyMail](https://huggingface.co/datasets/cnn_dailymail) データセットでファインチューニングする方法を示しています。T5 モデルは、そのトレーニング方法に起因して追加の `source_prefix` 引数が必要です。このプロンプトは、T5 にこれが要約タスクであることを知らせます。
この例のスクリプトは、🤗 [Datasets](https://huggingface.co/docs/datasets/) ライブラリからデータセットをダウンロードして前処理します。その後、スクリプトは要約をサポートするアーキテクチャ上で Keras を使用してデータセットをファインチューニングします。以下の例では、[T5-small](https://huggingface.co/google-t5/t5-small)[CNN/DailyMail](https://huggingface.co/datasets/cnn_dailymail) データセットでファインチューニングする方法を示しています。T5 モデルは、そのトレーニング方法に起因して追加の `source_prefix` 引数が必要です。このプロンプトは、T5 にこれが要約タスクであることを知らせます。
```bash
python examples/tensorflow/summarization/run_summarization.py \
--model_name_or_path t5-small \
--model_name_or_path google-t5/t5-small \
--dataset_name cnn_dailymail \
--dataset_config "3.0.0" \
--output_dir /tmp/tst-summarization \
......@@ -143,7 +143,7 @@ python examples/tensorflow/summarization/run_summarization.py \
torchrun \
--nproc_per_node 8 pytorch/summarization/run_summarization.py \
--fp16 \
--model_name_or_path t5-small \
--model_name_or_path google-t5/t5-small \
--do_train \
--do_eval \
--dataset_name cnn_dailymail \
......@@ -167,7 +167,7 @@ Tensor Processing Units (TPUs)は、パフォーマンスを加速させるた
```bash
python xla_spawn.py --num_cores 8 \
summarization/run_summarization.py \
--model_name_or_path t5-small \
--model_name_or_path google-t5/t5-small \
--do_train \
--do_eval \
--dataset_name cnn_dailymail \
......@@ -186,7 +186,7 @@ python xla_spawn.py --num_cores 8 \
```bash
python run_summarization.py \
--tpu name_of_tpu_resource \
--model_name_or_path t5-small \
--model_name_or_path google-t5/t5-small \
--dataset_name cnn_dailymail \
--dataset_config "3.0.0" \
--output_dir /tmp/tst-summarization \
......@@ -226,7 +226,7 @@ Now you are ready to launch the training:
```bash
accelerate launch run_summarization_no_trainer.py \
--model_name_or_path t5-small \
--model_name_or_path google-t5/t5-small \
--dataset_name cnn_dailymail \
--dataset_config "3.0.0" \
--source_prefix "summarize: " \
......@@ -245,7 +245,7 @@ accelerate launch run_summarization_no_trainer.py \
```bash
python examples/pytorch/summarization/run_summarization.py \
--model_name_or_path t5-small \
--model_name_or_path google-t5/t5-small \
--do_train \
--do_eval \
--train_file path_to_csv_or_jsonlines_file \
......@@ -270,7 +270,7 @@ python examples/pytorch/summarization/run_summarization.py \
```bash
python examples/pytorch/summarization/run_summarization.py \
--model_name_or_path t5-small \
--model_name_or_path google-t5/t5-small \
--max_train_samples 50 \
--max_eval_samples 50 \
--max_predict_samples 50 \
......@@ -300,7 +300,7 @@ examples/pytorch/summarization/run_summarization.py -h
```bash
python examples/pytorch/summarization/run_summarization.py
--model_name_or_path t5-small \
--model_name_or_path google-t5/t5-small \
--do_train \
--do_eval \
--dataset_name cnn_dailymail \
......@@ -318,7 +318,7 @@ python examples/pytorch/summarization/run_summarization.py
```bash
python examples/pytorch/summarization/run_summarization.py
--model_name_or_path t5-small \
--model_name_or_path google-t5/t5-small \
--do_train \
--do_eval \
--dataset_name cnn_dailymail \
......@@ -350,7 +350,7 @@ huggingface-cli login
```bash
python examples/pytorch/summarization/run_summarization.py
--model_name_or_path t5-small \
--model_name_or_path google-t5/t5-small \
--do_train \
--do_eval \
--dataset_name cnn_dailymail \
......
......@@ -57,10 +57,10 @@ pip install optimum[exporters]
optimum-cli export onnx --help
```
🤗 Hubからモデルのチェックポイントをエクスポートするには、例えば `distilbert-base-uncased-distilled-squad` を使いたい場合、以下のコマンドを実行してください:
🤗 Hubからモデルのチェックポイントをエクスポートするには、例えば `distilbert/distilbert-base-uncased-distilled-squad` を使いたい場合、以下のコマンドを実行してください:
```bash
optimum-cli export onnx --model distilbert-base-uncased-distilled-squad distilbert_base_uncased_squad_onnx/
optimum-cli export onnx --model distilbert/distilbert-base-uncased-distilled-squad distilbert_base_uncased_squad_onnx/
```
進行状況を示し、結果の `model.onnx` が保存される場所を表示するログは、以下のように表示されるはずです:
......@@ -147,7 +147,7 @@ pip install transformers[onnx]
`transformers.onnx`パッケージをPythonモジュールとして使用して、事前に用意された設定を使用してチェックポイントをエクスポートする方法は以下の通りです:
```bash
python -m transformers.onnx --model=distilbert-base-uncased onnx/
python -m transformers.onnx --model=distilbert/distilbert-base-uncased onnx/
```
この方法は、`--model`引数で定義されたチェックポイントのONNXグラフをエクスポートします。🤗 Hubのいずれかのチェックポイントまたはローカルに保存されたチェックポイントを渡すことができます。エクスポートされた`model.onnx`ファイルは、ONNX標準をサポートする多くのアクセラレータで実行できます。例えば、ONNX Runtimeを使用してモデルを読み込んで実行する方法は以下の通りです:
......@@ -157,7 +157,7 @@ python -m transformers.onnx --model=distilbert-base-uncased onnx/
>>> from transformers import AutoTokenizer
>>> from onnxruntime import InferenceSession
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert/distilbert-base-uncased")
>>> session = InferenceSession("onnx/model.onnx")
>>> # ONNX Runtime expects NumPy arrays as input
>>> inputs = tokenizer("Using DistilBERT with ONNX Runtime!", return_tensors="np")
......
......@@ -281,7 +281,7 @@ score: 0.9327, start: 30, end: 54, answer: huggingface/transformers
>>> from transformers import pipeline
>>> text = "translate English to French: Hugging Face is a community-based open-source platform for machine learning."
>>> translator = pipeline(task="translation", model="t5-small")
>>> translator = pipeline(task="translation", model="google-t5/t5-small")
>>> translator(text)
[{'translation_text': "Hugging Face est une tribune communautaire de l'apprentissage des machines."}]
```
......
......@@ -32,7 +32,7 @@ rendered properly in your Markdown viewer.
このガイドでは、次の方法を説明します。
1. [ELI5](https:/)[r/askscience](https://www.reddit.com/r/askscience/) サブセットで [DistilGPT2](https://huggingface.co/distilgpt2) を微調整します。 /huggingface.co/datasets/eli5) データセット。
1. [ELI5](https:/)[r/askscience](https://www.reddit.com/r/askscience/) サブセットで [DistilGPT2](https://huggingface.co/distilbert/distilgpt2) を微調整します。 /huggingface.co/datasets/eli5) データセット。
2. 微調整したモデルを推論に使用します。
<Tip>
......@@ -112,7 +112,7 @@ pip install transformers datasets evaluate
```py
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("distilgpt2")
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert/distilgpt2")
```
上の例からわかるように、`text`フィールドは実際には`answers`内にネストされています。つまり、次のことが必要になります。
......@@ -234,7 +234,7 @@ Apply the `group_texts` function over the entire dataset:
```py
>>> from transformers import AutoModelForCausalLM, TrainingArguments, Trainer
>>> model = AutoModelForCausalLM.from_pretrained("distilgpt2")
>>> model = AutoModelForCausalLM.from_pretrained("distilbert/distilgpt2")
```
この時点で残っている手順は次の 3 つだけです。
......@@ -298,7 +298,7 @@ TensorFlow でモデルを微調整するには、オプティマイザー関数
```py
>>> from transformers import TFAutoModelForCausalLM
>>> model = TFAutoModelForCausalLM.from_pretrained("distilgpt2")
>>> model = TFAutoModelForCausalLM.from_pretrained("distilbert/distilgpt2")
```
[`~transformers.TFPreTrainedModel.prepare_tf_dataset`] を使用して、データセットを `tf.data.Dataset` 形式に変換します。
......
......@@ -26,7 +26,7 @@ rendered properly in your Markdown viewer.
このガイドでは、次の方法を説明します。
1. [ELI5](https://huggingface.co/distilroberta-base)[r/askscience](https://www.reddit.com/r/askscience/) サブセットで [DistilRoBERTa](https://huggingface.co/distilroberta-base) を微調整します。 ://huggingface.co/datasets/eli5) データセット。
1. [ELI5](https://huggingface.co/distilbert/distilroberta-base)[r/askscience](https://www.reddit.com/r/askscience/) サブセットで [DistilRoBERTa](https://huggingface.co/distilbert/distilroberta-base) を微調整します。 ://huggingface.co/datasets/eli5) データセット。
2. 微調整したモデルを推論に使用します。
<Tip>
......@@ -101,7 +101,7 @@ pip install transformers datasets evaluate
```py
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("distilroberta-base")
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert/distilroberta-base")
```
上の例からわかるように、`text`フィールドは実際には`answers`内にネストされています。これは、次のことを行う必要があることを意味します
......@@ -219,7 +219,7 @@ pip install transformers datasets evaluate
```py
>>> from transformers import AutoModelForMaskedLM
>>> model = AutoModelForMaskedLM.from_pretrained("distilroberta-base")
>>> model = AutoModelForMaskedLM.from_pretrained("distilbert/distilroberta-base")
```
この時点で残っている手順は次の 3 つだけです。
......@@ -287,7 +287,7 @@ TensorFlow でモデルを微調整するには、オプティマイザー関数
```py
>>> from transformers import TFAutoModelForMaskedLM
>>> model = TFAutoModelForMaskedLM.from_pretrained("distilroberta-base")
>>> model = TFAutoModelForMaskedLM.from_pretrained("distilbert/distilroberta-base")
```
[`~transformers.TFPreTrainedModel.prepare_tf_dataset`] を使用して、データセットを `tf.data.Dataset` 形式に変換します。
......
......@@ -22,7 +22,7 @@ rendered properly in your Markdown viewer.
このガイドでは、次の方法を説明します。
1. [SWAG](https://huggingface.co/datasets/swag) データセットの「通常」構成で [BERT](https://huggingface.co/bert-base-uncased) を微調整して、最適なデータセットを選択します複数の選択肢と何らかのコンテキストを考慮して回答します。
1. [SWAG](https://huggingface.co/datasets/swag) データセットの「通常」構成で [BERT](https://huggingface.co/google-bert/bert-base-uncased) を微調整して、最適なデータセットを選択します複数の選択肢と何らかのコンテキストを考慮して回答します。
2. 微調整したモデルを推論に使用します。
<Tip>
......@@ -90,7 +90,7 @@ pip install transformers datasets evaluate
```py
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
```
作成する前処理関数は次のことを行う必要があります。
......@@ -254,7 +254,7 @@ tokenized_swag = swag.map(preprocess_function, batched=True)
```py
>>> from transformers import AutoModelForMultipleChoice, TrainingArguments, Trainer
>>> model = AutoModelForMultipleChoice.from_pretrained("bert-base-uncased")
>>> model = AutoModelForMultipleChoice.from_pretrained("google-bert/bert-base-uncased")
```
この時点で残っている手順は次の 3 つだけです。
......@@ -318,7 +318,7 @@ TensorFlow でモデルを微調整するには、オプティマイザー関数
```py
>>> from transformers import TFAutoModelForMultipleChoice
>>> model = TFAutoModelForMultipleChoice.from_pretrained("bert-base-uncased")
>>> model = TFAutoModelForMultipleChoice.from_pretrained("google-bert/bert-base-uncased")
```
[`~transformers.TFPreTrainedModel.prepare_tf_dataset`] を使用して、データセットを `tf.data.Dataset` 形式に変換します。
......
......@@ -76,7 +76,7 @@ Falcon、LLaMA などの大規模言語モデルは、事前にトレーニン
>>> torch.manual_seed(0) # doctest: +IGNORE_RESULT
>>> generator = pipeline('text-generation', model = 'gpt2')
>>> generator = pipeline('text-generation', model = 'openai-community/gpt2')
>>> prompt = "Hello, I'm a language model"
>>> generator(prompt, max_length = 30)
......
......@@ -27,7 +27,7 @@ rendered properly in your Markdown viewer.
このガイドでは、次の方法を説明します。
1. 抽出的質問応答用に [SQuAD](https://huggingface.co/datasets/squad) データセット上の [DistilBERT](https://huggingface.co/distilbert-base-uncased) を微調整します。
1. 抽出的質問応答用に [SQuAD](https://huggingface.co/datasets/squad) データセット上の [DistilBERT](https://huggingface.co/distilbert/distilbert-base-uncased) を微調整します。
2. 微調整したモデルを推論に使用します。
<Tip>
......@@ -102,7 +102,7 @@ pip install transformers datasets evaluate
```py
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert/distilbert-base-uncased")
```
質問応答タスクに特有の、注意すべき前処理手順がいくつかあります。
......@@ -208,7 +208,7 @@ pip install transformers datasets evaluate
```py
>>> from transformers import AutoModelForQuestionAnswering, TrainingArguments, Trainer
>>> model = AutoModelForQuestionAnswering.from_pretrained("distilbert-base-uncased")
>>> model = AutoModelForQuestionAnswering.from_pretrained("distilbert/distilbert-base-uncased")
```
この時点で残っている手順は次の 3 つだけです。
......@@ -276,7 +276,7 @@ TensorFlow でモデルを微調整するには、オプティマイザー関数
```py
>>> from transformers import TFAutoModelForQuestionAnswering
>>> model = TFAutoModelForQuestionAnswering("distilbert-base-uncased")
>>> model = TFAutoModelForQuestionAnswering("distilbert/distilbert-base-uncased")
```
[`~transformers.TFPreTrainedModel.prepare_tf_dataset`] を使用して、データセットを `tf.data.Dataset` 形式に変換します。
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment