Unverified Commit f3d2f7a6 authored by NielsRogge's avatar NielsRogge Committed by GitHub
Browse files

Add MarkupLM (#19198)



* First draft

* Make basic test work

* Fix most tokenizer tests

* More improvements

* Make more tests pass

* Fix more tests

* Fix some code quality

* Improve truncation

* Implement feature extractor

* Improve feature extractor and add tests

* Improve feature extractor tests

* Fix pair_input test partly

* Add fast tokenizer

* Improve implementation

* Fix rebase

* Fix rebase

* Fix most of the tokenizer tests.

* propose solution for fast

* add: integration test for fasttokenizer, warning for decode, fix template in slow tokenizer

* add: modify markuplmconverter

* add: some modify on converter and tokenizerfast

* Fix style, copies

* Make fixup

* Update tokenization_markuplm.py

* Update test_tokenization_markuplm.py

* Update markuplm related

* Improve processor, add integration test

* Add processor test file

* Improve processor

* Improve processor tests

* Fix more processor tests

* Fix processor tests

* Update docstrings

* Add Copied from statements

* Add more Copied from statements

* Add code examples

* Improve code examples

* Add model to doc tests

* Adding dependency check

* Add dummy file

* Add requires_backends

* Add model to toctree

* Fix more things, disable dependency check for now

* Apply more suggestions

* Add soft dependency

* Add annotators to tests

* Fix style

* Remove from_slow=True

* Remove print statements

* Add sanity check

* Fix processor test

* Fix processor tests, add more docs

* Add doc tests for mdx file

* Add more tips

* Apply suggestions
Co-authored-by: default avatarNiels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
Co-authored-by: default avatarlockon-n <45759388+lockon-n@users.noreply.github.com>
Co-authored-by: default avatarSaulLu <lucilesaul.com@gmail.com>
Co-authored-by: default avatarlockon-n <dd098309@126.com>
parent 49d62b01
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fast tokenization class for MarkupLM. It overwrites 2 methods of the slow tokenizer class, namely _batch_encode_plus
and _encode_plus, in which the Rust tokenizer is used.
"""
import json
from functools import lru_cache
from typing import Dict, List, Optional, Tuple, Union
from tokenizers import pre_tokenizers, processors
from ...file_utils import PaddingStrategy, TensorType, add_end_docstrings
from ...tokenization_utils_base import (
ENCODE_KWARGS_DOCSTRING,
BatchEncoding,
EncodedInput,
PreTokenizedInput,
TextInput,
TextInputPair,
TruncationStrategy,
)
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_markuplm import MARKUPLM_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING, MarkupLMTokenizer
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {
"microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/vocab.json",
"microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/vocab.json",
},
"merges_file": {
"microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/merges.txt",
"microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/merges.txt",
},
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
"microsoft/markuplm-base": 512,
"microsoft/markuplm-large": 512,
}
@lru_cache()
def bytes_to_unicode():
"""
Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control
characters the bpe code barfs on. The reversible bpe codes work on unicode strings. This means you need a large #
of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset
you end up needing around 5K for decent coverage. This is a significant percentage of your normal, say, 32K bpe
vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
"""
bs = (
list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1))
)
cs = bs[:]
n = 0
for b in range(2**8):
if b not in bs:
bs.append(b)
cs.append(2**8 + n)
n += 1
cs = [chr(n) for n in cs]
return dict(zip(bs, cs))
def get_pairs(word):
"""
Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length
strings).
"""
pairs = set()
prev_char = word[0]
for char in word[1:]:
pairs.add((prev_char, char))
prev_char = char
return pairs
class MarkupLMTokenizerFast(PreTrainedTokenizerFast):
r"""
Construct a MarkupLM tokenizer. Based on byte-level Byte-Pair-Encoding (BPE).
[`MarkupLMTokenizerFast`] can be used to turn HTML strings into to token-level `input_ids`, `attention_mask`,
`token_type_ids`, `xpath_tags_seq` and `xpath_tags_seq`. This tokenizer inherits from [`PreTrainedTokenizer`] which
contains most of the main methods.
Users should refer to this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
Path to the vocabulary file.
merges_file (`str`):
Path to the merges file.
errors (`str`, *optional*, defaults to `"replace"`):
Paradigm to follow when decoding bytes to UTF-8. See
[bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
bos_token (`str`, *optional*, defaults to `"<s>"`):
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the beginning of
sequence. The token used is the `cls_token`.
</Tip>
eos_token (`str`, *optional*, defaults to `"</s>"`):
The end of sequence token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
The token used is the `sep_token`.
</Tip>
sep_token (`str`, *optional*, defaults to `"</s>"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
cls_token (`str`, *optional*, defaults to `"<s>"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
mask_token (`str`, *optional*, defaults to `"<mask>"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
add_prefix_space (`bool`, *optional*, defaults to `False`):
Whether or not to add an initial space to the input. This allows to treat the leading word just as any
other word. (RoBERTa tokenizer detect beginning of words by the preceding space).
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
slow_tokenizer_class = MarkupLMTokenizer
def __init__(
self,
vocab_file,
merges_file,
tags_dict,
tokenizer_file=None,
errors="replace",
bos_token="<s>",
eos_token="</s>",
sep_token="</s>",
cls_token="<s>",
unk_token="<unk>",
pad_token="<pad>",
mask_token="<mask>",
add_prefix_space=False,
max_depth=50,
max_width=1000,
pad_width=1001,
pad_token_label=-100,
only_label_first_subword=True,
trim_offsets=False,
**kwargs
):
super().__init__(
vocab_file=vocab_file,
merges_file=merges_file,
tags_dict=tags_dict,
tokenizer_file=tokenizer_file,
errors=errors,
bos_token=bos_token,
eos_token=eos_token,
unk_token=unk_token,
sep_token=sep_token,
cls_token=cls_token,
pad_token=pad_token,
mask_token=mask_token,
add_prefix_space=add_prefix_space,
trim_offsets=trim_offsets,
max_depth=max_depth,
max_width=max_width,
pad_width=pad_width,
pad_token_label=pad_token_label,
only_label_first_subword=only_label_first_subword,
**kwargs,
)
if trim_offsets:
# Not implemented yet, because we need to chain two post processors which is not possible yet
# We need to wait for https://github.com/huggingface/tokenizers/pull/1005
# With `trim_offsets=False` we don't need to do add `processors.ByteLevel(trim_offsets=False)`
# because it's not doing anything
raise NotImplementedError(
"`trim_offsets=True` is not implemented for MarkupLMTokenizerFast. Please set it to False."
)
self.tags_dict = tags_dict
pre_tok_state = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__())
if pre_tok_state.get("add_prefix_space", add_prefix_space) != add_prefix_space:
pre_tok_class = getattr(pre_tokenizers, pre_tok_state.pop("type"))
pre_tok_state["add_prefix_space"] = add_prefix_space
self.backend_tokenizer.pre_tokenizer = pre_tok_class(**pre_tok_state)
self.add_prefix_space = add_prefix_space
tokenizer_component = "post_processor"
tokenizer_component_instance = getattr(self.backend_tokenizer, tokenizer_component, None)
if tokenizer_component_instance:
state = json.loads(tokenizer_component_instance.__getstate__())
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
state["sep"] = tuple(state["sep"])
if "cls" in state:
state["cls"] = tuple(state["cls"])
changes_to_apply = False
if state.get("add_prefix_space", add_prefix_space) != add_prefix_space:
state["add_prefix_space"] = add_prefix_space
changes_to_apply = True
if changes_to_apply:
component_class = getattr(processors, state.pop("type"))
new_value = component_class(**state)
setattr(self.backend_tokenizer, tokenizer_component, new_value)
# additional properties
self.max_depth = max_depth
self.max_width = max_width
self.pad_width = pad_width
self.unk_tag_id = len(self.tags_dict)
self.pad_tag_id = self.unk_tag_id + 1
self.pad_xpath_tags_seq = [self.pad_tag_id] * self.max_depth
self.pad_xpath_subs_seq = [self.pad_width] * self.max_depth
self.pad_token_label = pad_token_label
self.only_label_first_subword = only_label_first_subword
def get_xpath_seq(self, xpath):
"""
Given the xpath expression of one particular node (like "/html/body/div/li[1]/div/span[2]"), return a list of
tag IDs and corresponding subscripts, taking into account max depth.
"""
xpath_tags_list = []
xpath_subs_list = []
xpath_units = xpath.split("/")
for unit in xpath_units:
if not unit.strip():
continue
name_subs = unit.strip().split("[")
tag_name = name_subs[0]
sub = 0 if len(name_subs) == 1 else int(name_subs[1][:-1])
xpath_tags_list.append(self.tags_dict.get(tag_name, self.unk_tag_id))
xpath_subs_list.append(min(self.max_width, sub))
xpath_tags_list = xpath_tags_list[: self.max_depth]
xpath_subs_list = xpath_tags_list[: self.max_depth]
xpath_tags_list += [self.pad_tag_id] * (self.max_depth - len(xpath_tags_list))
xpath_subs_list += [self.pad_width] * (self.max_depth - len(xpath_subs_list))
return xpath_tags_list, xpath_subs_list
@add_end_docstrings(ENCODE_KWARGS_DOCSTRING, MARKUPLM_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
def __call__(
self,
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]],
text_pair: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None,
xpaths: Union[List[List[int]], List[List[List[int]]]] = None,
node_labels: Optional[Union[List[int], List[List[int]]]] = None,
add_special_tokens: bool = True,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = False,
max_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
**kwargs
) -> BatchEncoding:
"""
Main method to tokenize and prepare for the model one or several sequence(s) or one or several pair(s) of
sequences with nodes, xpaths and optional labels.
Args:
text (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string, a list of strings
(words of a single example or questions of a batch of examples) or a list of list of strings (batch of
words).
text_pair (`List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence should be a list of strings
(pretokenized string).
xpaths (`List[List[int]]`, `List[List[List[int]]]`):
Node-level xpaths. Each bounding box should be normalized to be on a 0-1000 scale.
node_labels (`List[int]`, `List[List[int]]`, *optional*):
Node-level integer labels (for token classification tasks).
"""
# Input type checking for clearer error
def _is_valid_text_input(t):
if isinstance(t, str):
# Strings are fine
return True
elif isinstance(t, (list, tuple)):
# List are fine as long as they are...
if len(t) == 0:
# ... empty
return True
elif isinstance(t[0], str):
# ... list of strings
return True
elif isinstance(t[0], (list, tuple)):
# ... list with an empty list or with a list of strings
return len(t[0]) == 0 or isinstance(t[0][0], str)
else:
return False
else:
return False
if text_pair is not None:
# in case text + text_pair are provided, text = questions, text_pair = nodes
if not _is_valid_text_input(text):
raise ValueError("text input must of type `str` (single example) or `List[str]` (batch of examples). ")
if not isinstance(text_pair, (list, tuple)):
raise ValueError(
"Nodes must be of type `List[str]` (single pretokenized example), "
"or `List[List[str]]` (batch of pretokenized examples)."
)
else:
# in case only text is provided => must be nodes
if not isinstance(text, (list, tuple)):
raise ValueError(
"Nodes must be of type `List[str]` (single pretokenized example), "
"or `List[List[str]]` (batch of pretokenized examples)."
)
if text_pair is not None:
is_batched = isinstance(text, (list, tuple))
else:
is_batched = isinstance(text, (list, tuple)) and text and isinstance(text[0], (list, tuple))
nodes = text if text_pair is None else text_pair
assert xpaths is not None, "You must provide corresponding xpaths"
if is_batched:
assert len(nodes) == len(xpaths), "You must provide nodes and xpaths for an equal amount of examples"
for nodes_example, xpaths_example in zip(nodes, xpaths):
assert len(nodes_example) == len(xpaths_example), "You must provide as many nodes as there are xpaths"
else:
assert len(nodes) == len(xpaths), "You must provide as many nodes as there are xpaths"
if is_batched:
if text_pair is not None and len(text) != len(text_pair):
raise ValueError(
f"batch length of `text`: {len(text)} does not match batch length of `text_pair`:"
f" {len(text_pair)}."
)
batch_text_or_text_pairs = list(zip(text, text_pair)) if text_pair is not None else text
is_pair = bool(text_pair is not None)
return self.batch_encode_plus(
batch_text_or_text_pairs=batch_text_or_text_pairs,
is_pair=is_pair,
xpaths=xpaths,
node_labels=node_labels,
add_special_tokens=add_special_tokens,
padding=padding,
truncation=truncation,
max_length=max_length,
stride=stride,
pad_to_multiple_of=pad_to_multiple_of,
return_tensors=return_tensors,
return_token_type_ids=return_token_type_ids,
return_attention_mask=return_attention_mask,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_offsets_mapping=return_offsets_mapping,
return_length=return_length,
verbose=verbose,
**kwargs,
)
else:
return self.encode_plus(
text=text,
text_pair=text_pair,
xpaths=xpaths,
node_labels=node_labels,
add_special_tokens=add_special_tokens,
padding=padding,
truncation=truncation,
max_length=max_length,
stride=stride,
pad_to_multiple_of=pad_to_multiple_of,
return_tensors=return_tensors,
return_token_type_ids=return_token_type_ids,
return_attention_mask=return_attention_mask,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_offsets_mapping=return_offsets_mapping,
return_length=return_length,
verbose=verbose,
**kwargs,
)
@add_end_docstrings(ENCODE_KWARGS_DOCSTRING, MARKUPLM_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
def batch_encode_plus(
self,
batch_text_or_text_pairs: Union[
List[TextInput],
List[TextInputPair],
List[PreTokenizedInput],
],
is_pair: bool = None,
xpaths: Optional[List[List[List[int]]]] = None,
node_labels: Optional[Union[List[int], List[List[int]]]] = None,
add_special_tokens: bool = True,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = False,
max_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
**kwargs
) -> BatchEncoding:
# Backward compatibility for 'truncation_strategy', 'pad_to_max_length'
padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies(
padding=padding,
truncation=truncation,
max_length=max_length,
pad_to_multiple_of=pad_to_multiple_of,
verbose=verbose,
**kwargs,
)
return self._batch_encode_plus(
batch_text_or_text_pairs=batch_text_or_text_pairs,
is_pair=is_pair,
xpaths=xpaths,
node_labels=node_labels,
add_special_tokens=add_special_tokens,
padding_strategy=padding_strategy,
truncation_strategy=truncation_strategy,
max_length=max_length,
stride=stride,
pad_to_multiple_of=pad_to_multiple_of,
return_tensors=return_tensors,
return_token_type_ids=return_token_type_ids,
return_attention_mask=return_attention_mask,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_offsets_mapping=return_offsets_mapping,
return_length=return_length,
verbose=verbose,
**kwargs,
)
def tokenize(self, text: str, pair: Optional[str] = None, add_special_tokens: bool = False, **kwargs) -> List[str]:
batched_input = [(text, pair)] if pair else [text]
encodings = self._tokenizer.encode_batch(
batched_input, add_special_tokens=add_special_tokens, is_pretokenized=False, **kwargs
)
return encodings[0].tokens
@add_end_docstrings(ENCODE_KWARGS_DOCSTRING, MARKUPLM_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
def encode_plus(
self,
text: Union[TextInput, PreTokenizedInput],
text_pair: Optional[PreTokenizedInput] = None,
xpaths: Optional[List[List[int]]] = None,
node_labels: Optional[List[int]] = None,
add_special_tokens: bool = True,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = False,
max_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
**kwargs
) -> BatchEncoding:
"""
Tokenize and prepare for the model a sequence or a pair of sequences. .. warning:: This method is deprecated,
`__call__` should be used instead.
Args:
text (`str`, `List[str]`, `List[List[str]]`):
The first sequence to be encoded. This can be a string, a list of strings or a list of list of strings.
text_pair (`List[str]` or `List[int]`, *optional*):
Optional second sequence to be encoded. This can be a list of strings (words of a single example) or a
list of list of strings (words of a batch of examples).
"""
# Backward compatibility for 'truncation_strategy', 'pad_to_max_length'
padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies(
padding=padding,
truncation=truncation,
max_length=max_length,
pad_to_multiple_of=pad_to_multiple_of,
verbose=verbose,
**kwargs,
)
return self._encode_plus(
text=text,
xpaths=xpaths,
text_pair=text_pair,
node_labels=node_labels,
add_special_tokens=add_special_tokens,
padding_strategy=padding_strategy,
truncation_strategy=truncation_strategy,
max_length=max_length,
stride=stride,
pad_to_multiple_of=pad_to_multiple_of,
return_tensors=return_tensors,
return_token_type_ids=return_token_type_ids,
return_attention_mask=return_attention_mask,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_offsets_mapping=return_offsets_mapping,
return_length=return_length,
verbose=verbose,
**kwargs,
)
def _batch_encode_plus(
self,
batch_text_or_text_pairs: Union[
List[TextInput],
List[TextInputPair],
List[PreTokenizedInput],
],
is_pair: bool = None,
xpaths: Optional[List[List[List[int]]]] = None,
node_labels: Optional[List[List[int]]] = None,
add_special_tokens: bool = True,
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
max_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
return_tensors: Optional[str] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
) -> BatchEncoding:
if not isinstance(batch_text_or_text_pairs, list):
raise TypeError(f"batch_text_or_text_pairs has to be a list (got {type(batch_text_or_text_pairs)})")
# Set the truncation and padding strategy and restore the initial configuration
self.set_truncation_and_padding(
padding_strategy=padding_strategy,
truncation_strategy=truncation_strategy,
max_length=max_length,
stride=stride,
pad_to_multiple_of=pad_to_multiple_of,
)
if is_pair:
batch_text_or_text_pairs = [([text], text_pair) for text, text_pair in batch_text_or_text_pairs]
encodings = self._tokenizer.encode_batch(
batch_text_or_text_pairs,
add_special_tokens=add_special_tokens,
is_pretokenized=True, # we set this to True as MarkupLM always expects pretokenized inputs
)
# Convert encoding to dict
# `Tokens` is a tuple of (List[Dict[str, List[List[int]]]] or List[Dict[str, 2D-Tensor]],
# List[EncodingFast]) with nested dimensions corresponding to batch, overflows, sequence length
tokens_and_encodings = [
self._convert_encoding(
encoding=encoding,
return_token_type_ids=return_token_type_ids,
return_attention_mask=return_attention_mask,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_offsets_mapping=True
if node_labels is not None
else return_offsets_mapping, # we use offsets to create the labels
return_length=return_length,
verbose=verbose,
)
for encoding in encodings
]
# Convert the output to have dict[list] from list[dict] and remove the additional overflows dimension
# From (variable) shape (batch, overflows, sequence length) to ~ (batch * overflows, sequence length)
# (we say ~ because the number of overflow varies with the example in the batch)
#
# To match each overflowing sample with the original sample in the batch
# we add an overflow_to_sample_mapping array (see below)
sanitized_tokens = {}
for key in tokens_and_encodings[0][0].keys():
stack = [e for item, _ in tokens_and_encodings for e in item[key]]
sanitized_tokens[key] = stack
sanitized_encodings = [e for _, item in tokens_and_encodings for e in item]
# If returning overflowing tokens, we need to return a mapping
# from the batch idx to the original sample
if return_overflowing_tokens:
overflow_to_sample_mapping = []
for i, (toks, _) in enumerate(tokens_and_encodings):
overflow_to_sample_mapping += [i] * len(toks["input_ids"])
sanitized_tokens["overflow_to_sample_mapping"] = overflow_to_sample_mapping
for input_ids in sanitized_tokens["input_ids"]:
self._eventual_warn_about_too_long_sequence(input_ids, max_length, verbose)
# create the token-level xpaths tags and subscripts
xpath_tags_seq = []
xpath_subs_seq = []
for batch_index in range(len(sanitized_tokens["input_ids"])):
if return_overflowing_tokens:
original_index = sanitized_tokens["overflow_to_sample_mapping"][batch_index]
else:
original_index = batch_index
xpath_tags_seq_example = []
xpath_subs_seq_example = []
for id, sequence_id, word_id in zip(
sanitized_tokens["input_ids"][batch_index],
sanitized_encodings[batch_index].sequence_ids,
sanitized_encodings[batch_index].word_ids,
):
if word_id is not None:
if is_pair and sequence_id == 0:
xpath_tags_seq_example.append(self.pad_xpath_tags_seq)
xpath_subs_seq_example.append(self.pad_xpath_subs_seq)
else:
xpath_tags_list, xpath_subs_list = self.get_xpath_seq(xpaths[original_index][word_id])
xpath_tags_seq_example.extend([xpath_tags_list])
xpath_subs_seq_example.extend([xpath_subs_list])
else:
if id in [self.cls_token_id, self.sep_token_id, self.pad_token_id]:
xpath_tags_seq_example.append(self.pad_xpath_tags_seq)
xpath_subs_seq_example.append(self.pad_xpath_subs_seq)
else:
raise ValueError("Id not recognized")
xpath_tags_seq.append(xpath_tags_seq_example)
xpath_subs_seq.append(xpath_subs_seq_example)
sanitized_tokens["xpath_tags_seq"] = xpath_tags_seq
sanitized_tokens["xpath_subs_seq"] = xpath_subs_seq
# optionally, create the labels
if node_labels is not None:
labels = []
for batch_index in range(len(sanitized_tokens["input_ids"])):
if return_overflowing_tokens:
original_index = sanitized_tokens["overflow_to_sample_mapping"][batch_index]
else:
original_index = batch_index
labels_example = []
for id, offset, word_id in zip(
sanitized_tokens["input_ids"][batch_index],
sanitized_tokens["offset_mapping"][batch_index],
sanitized_encodings[batch_index].word_ids,
):
if word_id is not None:
if self.only_label_first_subword:
if offset[0] == 0:
# Use the real label id for the first token of the word, and padding ids for the remaining tokens
labels_example.append(node_labels[original_index][word_id])
else:
labels_example.append(self.pad_token_label)
else:
labels_example.append(node_labels[original_index][word_id])
else:
labels_example.append(self.pad_token_label)
labels.append(labels_example)
sanitized_tokens["labels"] = labels
# finally, remove offsets if the user didn't want them
if not return_offsets_mapping:
del sanitized_tokens["offset_mapping"]
return BatchEncoding(sanitized_tokens, sanitized_encodings, tensor_type=return_tensors)
def _encode_plus(
self,
text: Union[TextInput, PreTokenizedInput],
text_pair: Optional[PreTokenizedInput] = None,
xpaths: Optional[List[List[int]]] = None,
node_labels: Optional[List[int]] = None,
add_special_tokens: bool = True,
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
max_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
return_tensors: Optional[bool] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
**kwargs
) -> BatchEncoding:
# make it a batched input
# 2 options:
# 1) only text, in case text must be a list of str
# 2) text + text_pair, in which case text = str and text_pair a list of str
batched_input = [(text, text_pair)] if text_pair else [text]
batched_xpaths = [xpaths]
batched_node_labels = [node_labels] if node_labels is not None else None
batched_output = self._batch_encode_plus(
batched_input,
is_pair=bool(text_pair is not None),
xpaths=batched_xpaths,
node_labels=batched_node_labels,
add_special_tokens=add_special_tokens,
padding_strategy=padding_strategy,
truncation_strategy=truncation_strategy,
max_length=max_length,
stride=stride,
pad_to_multiple_of=pad_to_multiple_of,
return_tensors=return_tensors,
return_token_type_ids=return_token_type_ids,
return_attention_mask=return_attention_mask,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_offsets_mapping=return_offsets_mapping,
return_length=return_length,
verbose=verbose,
**kwargs,
)
# Return tensor is None, then we can remove the leading batch axis
# Overflowing tokens are returned as a batch of output so we keep them in this case
if return_tensors is None and not return_overflowing_tokens:
batched_output = BatchEncoding(
{
key: value[0] if len(value) > 0 and isinstance(value[0], list) else value
for key, value in batched_output.items()
},
batched_output.encodings,
)
self._eventual_warn_about_too_long_sequence(batched_output["input_ids"], max_length, verbose)
return batched_output
def _pad(
self,
encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
max_length: Optional[int] = None,
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
pad_to_multiple_of: Optional[int] = None,
return_attention_mask: Optional[bool] = None,
) -> dict:
"""
Args:
Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
encoded_inputs:
Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
max_length: maximum length of the returned list and optionally padding length (see below).
Will truncate by taking into account the special tokens.
padding_strategy: PaddingStrategy to use for padding.
- PaddingStrategy.LONGEST Pad to the longest sequence in the batch
- PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
- PaddingStrategy.DO_NOT_PAD: Do not pad
The tokenizer padding sides are defined in self.padding_side:
- 'left': pads on the left of the sequences
- 'right': pads on the right of the sequences
pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
>= 7.5 (Volta).
return_attention_mask:
(optional) Set to False to avoid returning attention mask (default: set to model specifics)
"""
# Load from model defaults
if return_attention_mask is None:
return_attention_mask = "attention_mask" in self.model_input_names
required_input = encoded_inputs[self.model_input_names[0]]
if padding_strategy == PaddingStrategy.LONGEST:
max_length = len(required_input)
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
# Initialize attention mask if not present.
if return_attention_mask and "attention_mask" not in encoded_inputs:
encoded_inputs["attention_mask"] = [1] * len(required_input)
if needs_to_be_padded:
difference = max_length - len(required_input)
if self.padding_side == "right":
if return_attention_mask:
encoded_inputs["attention_mask"] = encoded_inputs["attention_mask"] + [0] * difference
if "token_type_ids" in encoded_inputs:
encoded_inputs["token_type_ids"] = (
encoded_inputs["token_type_ids"] + [self.pad_token_type_id] * difference
)
if "xpath_tags_seq" in encoded_inputs:
encoded_inputs["xpath_tags_seq"] = (
encoded_inputs["xpath_tags_seq"] + [self.pad_xpath_tags_seq] * difference
)
if "xpath_subs_seq" in encoded_inputs:
encoded_inputs["xpath_subs_seq"] = (
encoded_inputs["xpath_subs_seq"] + [self.pad_xpath_subs_seq] * difference
)
if "labels" in encoded_inputs:
encoded_inputs["labels"] = encoded_inputs["labels"] + [self.pad_token_label] * difference
if "special_tokens_mask" in encoded_inputs:
encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"] + [1] * difference
encoded_inputs[self.model_input_names[0]] = required_input + [self.pad_token_id] * difference
elif self.padding_side == "left":
if return_attention_mask:
encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"]
if "token_type_ids" in encoded_inputs:
encoded_inputs["token_type_ids"] = [self.pad_token_type_id] * difference + encoded_inputs[
"token_type_ids"
]
if "xpath_tags_seq" in encoded_inputs:
encoded_inputs["xpath_tags_seq"] = [self.pad_xpath_tags_seq] * difference + encoded_inputs[
"xpath_tags_seq"
]
if "xpath_subs_seq" in encoded_inputs:
encoded_inputs["xpath_subs_seq"] = [self.pad_xpath_subs_seq] * difference + encoded_inputs[
"xpath_subs_seq"
]
if "labels" in encoded_inputs:
encoded_inputs["labels"] = [self.pad_token_label] * difference + encoded_inputs["labels"]
if "special_tokens_mask" in encoded_inputs:
encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"]
encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
else:
raise ValueError("Invalid padding strategy:" + str(self.padding_side))
return encoded_inputs
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A RoBERTa sequence has the following format:
- single sequence: `<s> X </s>`
- pair of sequences: `<s> A </s></s> B </s>`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
if token_ids_1 is None:
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
cls = [self.cls_token_id]
sep = [self.sep_token_id]
return cls + token_ids_0 + sep + token_ids_1 + sep
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. RoBERTa does not
make use of token type ids, therefore a list of zeros is returned.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of zeros.
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep + token_ids_1 + sep) * [0]
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
files = self._tokenizer.model.save(save_directory, name=filename_prefix)
return tuple(files)
......@@ -46,6 +46,7 @@ from .utils import (
is_accelerate_available,
is_apex_available,
is_bitsandbytes_available,
is_bs4_available,
is_detectron2_available,
is_faiss_available,
is_flax_available,
......@@ -239,6 +240,13 @@ def custom_tokenizers(test_case):
return unittest.skipUnless(_run_custom_tokenizers, "test of custom tokenizers")(test_case)
def require_bs4(test_case):
"""
Decorator marking a test that requires BeautifulSoup4. These tests are skipped when BeautifulSoup4 isn't installed.
"""
return unittest.skipUnless(is_bs4_available(), "test requires BeautifulSoup4")(test_case)
def require_git_lfs(test_case):
"""
Decorator marking a test that requires git-lfs.
......
......@@ -89,6 +89,7 @@ from .import_utils import (
is_accelerate_available,
is_apex_available,
is_bitsandbytes_available,
is_bs4_available,
is_coloredlogs_available,
is_datasets_available,
is_detectron2_available,
......
......@@ -3020,6 +3020,44 @@ class MarianMTModel(metaclass=DummyObject):
requires_backends(self, ["torch"])
MARKUPLM_PRETRAINED_MODEL_ARCHIVE_LIST = None
class MarkupLMForQuestionAnswering(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MarkupLMForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MarkupLMForTokenClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MarkupLMModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MarkupLMPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None
......
......@@ -234,6 +234,13 @@ class LxmertTokenizerFast(metaclass=DummyObject):
requires_backends(self, ["tokenizers"])
class MarkupLMTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
class MBartTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
......
......@@ -386,6 +386,10 @@ def is_torch_fx_available():
return _torch_fx_available
def is_bs4_available():
return importlib.util.find_spec("bs4") is not None
def is_torch_onnx_dict_inputs_support_available():
return _torch_onnx_dict_inputs_support_available
......@@ -748,6 +752,12 @@ If you really do want to use TensorFlow, please follow the instructions on the
installation page https://www.tensorflow.org/install that match your environment.
"""
# docstyle-ignore
BS4_IMPORT_ERROR = """
{0} requires the Beautiful Soup library but it was not found in your environment. You can install it with pip:
`pip install beautifulsoup4`
"""
# docstyle-ignore
SKLEARN_IMPORT_ERROR = """
......@@ -889,6 +899,7 @@ CCL_IMPORT_ERROR = """
BACKENDS_MAPPING = OrderedDict(
[
("bs4", (is_bs4_available, BS4_IMPORT_ERROR)),
("datasets", (is_datasets_available, DATASETS_IMPORT_ERROR)),
("detectron2", (is_detectron2_available, DETECTRON2_IMPORT_ERROR)),
("faiss", (is_faiss_available, FAISS_IMPORT_ERROR)),
......
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers.testing_utils import require_bs4
from transformers.utils import is_bs4_available
from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin
if is_bs4_available():
from transformers import MarkupLMFeatureExtractor
class MarkupLMFeatureExtractionTester(unittest.TestCase):
def __init__(self, parent):
self.parent = parent
def prepare_feat_extract_dict(self):
return {}
def get_html_strings():
html_string_1 = """<HTML>
<HEAD>
<TITLE>sample document</TITLE>
</HEAD>
<BODY BGCOLOR="FFFFFF">
<HR>
<a href="http://google.com">Goog</a>
<H1>This is one header</H1>
<H2>This is a another Header</H2>
<P>Travel from
<P>
<B>SFO to JFK</B>
<BR>
<B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B>
<HR>
<div style="color:#0000FF">
<h3>Traveler <b> name </b> is
<p> John Doe </p>
</div>"""
html_string_2 = """
<!DOCTYPE html>
<html>
<body>
<h1>My First Heading</h1>
<p>My first paragraph.</p>
</body>
</html>
"""
return [html_string_1, html_string_2]
@require_bs4
class MarkupLMFeatureExtractionTest(FeatureExtractionSavingTestMixin, unittest.TestCase):
feature_extraction_class = MarkupLMFeatureExtractor if is_bs4_available() else None
def setUp(self):
self.feature_extract_tester = MarkupLMFeatureExtractionTester(self)
@property
def feat_extract_dict(self):
return self.feature_extract_tester.prepare_feat_extract_dict()
def test_call(self):
# Initialize feature_extractor
feature_extractor = self.feature_extraction_class()
# Test not batched input
html_string = get_html_strings()[0]
encoding = feature_extractor(html_string)
# fmt: off
expected_nodes = [['sample document', 'Goog', 'This is one header', 'This is a another Header', 'Travel from', 'SFO to JFK', 'on May 2, 2015 at 2:00 pm. For details go to confirm.com', 'Traveler', 'name', 'is', 'John Doe']]
expected_xpaths = [['/html/head/title', '/html/body/a', '/html/body/h1', '/html/body/h2', '/html/body/p', '/html/body/p/p/b[1]', '/html/body/p/p/b[2]/i', '/html/body/p/p/div/h3', '/html/body/p/p/div/h3/b', '/html/body/p/p/div/h3', '/html/body/p/p/div/h3/p']]
# fmt: on
self.assertEqual(encoding.nodes, expected_nodes)
self.assertEqual(encoding.xpaths, expected_xpaths)
# Test batched
html_strings = get_html_strings()
encoding = feature_extractor(html_strings)
# fmt: off
expected_nodes = expected_nodes + [['My First Heading', 'My first paragraph.']]
expected_xpaths = expected_xpaths + [['/html/body/h1', '/html/body/p']]
self.assertEqual(len(encoding.nodes), 2)
self.assertEqual(len(encoding.xpaths), 2)
self.assertEqual(encoding.nodes, expected_nodes)
self.assertEqual(encoding.xpaths, expected_xpaths)
# coding=utf-8
# Copyright 2022 The Hugging Face Team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers import MarkupLMConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
if is_torch_available():
import torch
from transformers import (
MarkupLMForQuestionAnswering,
MarkupLMForSequenceClassification,
MarkupLMForTokenClassification,
MarkupLMModel,
)
# TODO check dependencies
from transformers import MarkupLMFeatureExtractor, MarkupLMProcessor, MarkupLMTokenizer
class MarkupLMModelTester:
"""You can also import this e.g from .test_modeling_markuplm import MarkupLMModelTester"""
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=5,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
scope=None,
max_xpath_tag_unit_embeddings=20,
max_xpath_subs_unit_embeddings=30,
tag_pad_id=2,
subs_pad_id=2,
max_depth=10,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.scope = scope
self.max_xpath_tag_unit_embeddings = max_xpath_tag_unit_embeddings
self.max_xpath_subs_unit_embeddings = max_xpath_subs_unit_embeddings
self.tag_pad_id = tag_pad_id
self.subs_pad_id = subs_pad_id
self.max_depth = max_depth
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
xpath_tags_seq = ids_tensor(
[self.batch_size, self.seq_length, self.max_depth], self.max_xpath_tag_unit_embeddings
)
xpath_subs_seq = ids_tensor(
[self.batch_size, self.seq_length, self.max_depth], self.max_xpath_subs_unit_embeddings
)
input_mask = None
if self.use_input_mask:
input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
sequence_labels = None
token_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
config = self.get_config()
return (
config,
input_ids,
xpath_tags_seq,
xpath_subs_seq,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
)
def get_config(self):
return MarkupLMConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
initializer_range=self.initializer_range,
max_xpath_tag_unit_embeddings=self.max_xpath_tag_unit_embeddings,
max_xpath_subs_unit_embeddings=self.max_xpath_subs_unit_embeddings,
tag_pad_id=self.tag_pad_id,
subs_pad_id=self.subs_pad_id,
max_depth=self.max_depth,
)
def create_and_check_model(
self,
config,
input_ids,
xpath_tags_seq,
xpath_subs_seq,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
):
model = MarkupLMModel(config=config)
model.to(torch_device)
model.eval()
print("Configs:", model.config.tag_pad_id, model.config.subs_pad_id)
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
result = model(input_ids, token_type_ids=token_type_ids)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
def create_and_check_for_sequence_classification(
self,
config,
input_ids,
xpath_tags_seq,
xpath_subs_seq,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
):
config.num_labels = self.num_labels
model = MarkupLMForSequenceClassification(config)
model.to(torch_device)
model.eval()
result = model(
input_ids,
xpath_tags_seq=xpath_tags_seq,
xpath_subs_seq=xpath_subs_seq,
attention_mask=input_mask,
token_type_ids=token_type_ids,
labels=sequence_labels,
)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
def create_and_check_for_token_classification(
self,
config,
input_ids,
xpath_tags_seq,
xpath_subs_seq,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
):
config.num_labels = self.num_labels
model = MarkupLMForTokenClassification(config=config)
model.to(torch_device)
model.eval()
result = model(
input_ids,
xpath_tags_seq=xpath_tags_seq,
xpath_subs_seq=xpath_subs_seq,
attention_mask=input_mask,
token_type_ids=token_type_ids,
labels=token_labels,
)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
def create_and_check_for_question_answering(
self,
config,
input_ids,
xpath_tags_seq,
xpath_subs_seq,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
):
model = MarkupLMForQuestionAnswering(config=config)
model.to(torch_device)
model.eval()
result = model(
input_ids,
xpath_tags_seq=xpath_tags_seq,
xpath_subs_seq=xpath_subs_seq,
attention_mask=input_mask,
token_type_ids=token_type_ids,
start_positions=sequence_labels,
end_positions=sequence_labels,
)
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
xpath_tags_seq,
xpath_subs_seq,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
) = config_and_inputs
inputs_dict = {
"input_ids": input_ids,
"xpath_tags_seq": xpath_tags_seq,
"xpath_subs_seq": xpath_subs_seq,
"token_type_ids": token_type_ids,
"attention_mask": input_mask,
}
return config, inputs_dict
@require_torch
class MarkupLMModelTest(ModelTesterMixin, unittest.TestCase):
all_model_classes = (
(
MarkupLMModel,
MarkupLMForSequenceClassification,
MarkupLMForTokenClassification,
MarkupLMForQuestionAnswering,
)
if is_torch_available()
else None
)
def setUp(self):
self.model_tester = MarkupLMModelTester(self)
self.config_tester = ConfigTester(self, config_class=MarkupLMConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_for_sequence_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs)
def test_for_token_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*config_and_inputs)
def test_for_question_answering(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*config_and_inputs)
def prepare_html_string():
html_string = """
<!DOCTYPE html>
<html>
<head>
<title>Page Title</title>
</head>
<body>
<h1>This is a Heading</h1>
<p>This is a paragraph.</p>
</body>
</html>
"""
return html_string
@require_torch
class MarkupLMModelIntegrationTest(unittest.TestCase):
@cached_property
def default_processor(self):
# TODO use from_pretrained here
feature_extractor = MarkupLMFeatureExtractor()
tokenizer = MarkupLMTokenizer.from_pretrained("microsoft/markuplm-base")
return MarkupLMProcessor(feature_extractor, tokenizer)
@slow
def test_forward_pass_no_head(self):
model = MarkupLMModel.from_pretrained("microsoft/markuplm-base").to(torch_device)
processor = self.default_processor
inputs = processor(prepare_html_string(), return_tensors="pt")
inputs = inputs.to(torch_device)
# forward pass
with torch.no_grad():
outputs = model(**inputs)
# verify the last hidden states
expected_shape = torch.Size([1, 14, 768])
self.assertEqual(outputs.last_hidden_state.shape, expected_shape)
expected_slice = torch.tensor(
[[0.0267, -0.1289, 0.4930], [-0.2376, -0.0342, 0.2381], [-0.0329, -0.3785, 0.0263]]
).to(torch_device)
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3], expected_slice, atol=1e-4))
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import shutil
import tempfile
import unittest
from typing import List
from transformers import (
MarkupLMProcessor,
MarkupLMTokenizer,
PreTrainedTokenizer,
PreTrainedTokenizerBase,
PreTrainedTokenizerFast,
)
from transformers.models.markuplm.tokenization_markuplm import VOCAB_FILES_NAMES
from transformers.testing_utils import require_bs4, require_tokenizers, require_torch, slow
from transformers.utils import FEATURE_EXTRACTOR_NAME, cached_property, is_bs4_available, is_tokenizers_available
if is_bs4_available():
from transformers import MarkupLMFeatureExtractor
if is_tokenizers_available():
from transformers import MarkupLMTokenizerFast
@require_bs4
@require_tokenizers
class MarkupLMProcessorTest(unittest.TestCase):
tokenizer_class = MarkupLMTokenizer
rust_tokenizer_class = MarkupLMTokenizerFast
def setUp(self):
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
# fmt: off
vocab = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "\u0120hello", "\u0120world", "<unk>",] # noqa
# fmt: on
self.tmpdirname = tempfile.mkdtemp()
vocab_tokens = dict(zip(vocab, range(len(vocab))))
merges = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""]
self.tags_dict = {"a": 0, "abbr": 1, "acronym": 2, "address": 3}
self.special_tokens_map = {"unk_token": "<unk>"}
self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"])
self.tokenizer_config_file = os.path.join(self.tmpdirname, "tokenizer_config.json")
with open(self.vocab_file, "w", encoding="utf-8") as fp:
fp.write(json.dumps(vocab_tokens) + "\n")
with open(self.merges_file, "w", encoding="utf-8") as fp:
fp.write("\n".join(merges))
with open(self.tokenizer_config_file, "w", encoding="utf-8") as fp:
fp.write(json.dumps({"tags_dict": self.tags_dict}))
feature_extractor_map = {"feature_extractor_type": "MarkupLMFeatureExtractor"}
self.feature_extraction_file = os.path.join(self.tmpdirname, FEATURE_EXTRACTOR_NAME)
with open(self.feature_extraction_file, "w", encoding="utf-8") as fp:
fp.write(json.dumps(feature_extractor_map) + "\n")
def get_tokenizer(self, **kwargs) -> PreTrainedTokenizer:
return self.tokenizer_class.from_pretrained(self.tmpdirname, **kwargs)
def get_rust_tokenizer(self, **kwargs) -> PreTrainedTokenizerFast:
return self.rust_tokenizer_class.from_pretrained(self.tmpdirname, **kwargs)
def get_tokenizers(self, **kwargs) -> List[PreTrainedTokenizerBase]:
return [self.get_tokenizer(**kwargs), self.get_rust_tokenizer(**kwargs)]
def get_feature_extractor(self, **kwargs):
return MarkupLMFeatureExtractor.from_pretrained(self.tmpdirname, **kwargs)
def tearDown(self):
shutil.rmtree(self.tmpdirname)
def test_save_load_pretrained_default(self):
feature_extractor = self.get_feature_extractor()
tokenizers = self.get_tokenizers()
for tokenizer in tokenizers:
processor = MarkupLMProcessor(feature_extractor=feature_extractor, tokenizer=tokenizer)
processor.save_pretrained(self.tmpdirname)
processor = MarkupLMProcessor.from_pretrained(self.tmpdirname)
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer.get_vocab())
self.assertIsInstance(processor.tokenizer, (MarkupLMTokenizer, MarkupLMTokenizerFast))
self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor.to_json_string())
self.assertIsInstance(processor.feature_extractor, MarkupLMFeatureExtractor)
def test_save_load_pretrained_additional_features(self):
processor = MarkupLMProcessor(feature_extractor=self.get_feature_extractor(), tokenizer=self.get_tokenizer())
processor.save_pretrained(self.tmpdirname)
# slow tokenizer
tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)")
feature_extractor_add_kwargs = self.get_feature_extractor(do_resize=False, size=30)
processor = MarkupLMProcessor.from_pretrained(
self.tmpdirname, use_fast=False, bos_token="(BOS)", eos_token="(EOS)", do_resize=False, size=30
)
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab())
self.assertIsInstance(processor.tokenizer, MarkupLMTokenizer)
self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor_add_kwargs.to_json_string())
self.assertIsInstance(processor.feature_extractor, MarkupLMFeatureExtractor)
# fast tokenizer
tokenizer_add_kwargs = self.get_rust_tokenizer(bos_token="(BOS)", eos_token="(EOS)")
feature_extractor_add_kwargs = self.get_feature_extractor(do_resize=False, size=30)
processor = MarkupLMProcessor.from_pretrained(
self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_resize=False, size=30
)
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab())
self.assertIsInstance(processor.tokenizer, MarkupLMTokenizerFast)
self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor_add_kwargs.to_json_string())
self.assertIsInstance(processor.feature_extractor, MarkupLMFeatureExtractor)
# different use cases tests
@require_bs4
@require_torch
class MarkupLMProcessorIntegrationTests(unittest.TestCase):
@cached_property
def get_html_strings(self):
html_string_1 = """
<!DOCTYPE html>
<html>
<head>
<title>Hello world</title>
</head>
<body>
<h1>Welcome</h1>
<p>Here is my website.</p>
</body>
</html>"""
html_string_2 = """
<!DOCTYPE html>
<html>
<body>
<h2>HTML Images</h2>
<p>HTML images are defined with the img tag:</p>
<img src="w3schools.jpg" alt="W3Schools.com" width="104" height="142">
</body>
</html>
"""
return [html_string_1, html_string_2]
@cached_property
def get_tokenizers(self):
slow_tokenizer = MarkupLMTokenizer.from_pretrained("microsoft/markuplm-base")
fast_tokenizer = MarkupLMTokenizerFast.from_pretrained("microsoft/markuplm-base", from_slow=True)
return [slow_tokenizer, fast_tokenizer]
@slow
def test_processor_case_1(self):
# case 1: web page classification (training, inference) + token classification (inference)
feature_extractor = MarkupLMFeatureExtractor()
tokenizers = self.get_tokenizers
html_strings = self.get_html_strings
for tokenizer in tokenizers:
processor = MarkupLMProcessor(feature_extractor=feature_extractor, tokenizer=tokenizer)
# not batched
inputs = processor(html_strings[0], return_tensors="pt")
# verify keys
expected_keys = ["attention_mask", "input_ids", "token_type_ids", "xpath_subs_seq", "xpath_tags_seq"]
actual_keys = sorted(list(inputs.keys()))
self.assertListEqual(actual_keys, expected_keys)
# verify input_ids
expected = [0, 31414, 232, 25194, 11773, 16, 127, 998, 4, 2]
self.assertSequenceEqual(inputs.input_ids.squeeze().tolist(), expected)
# batched
inputs = processor(html_strings, padding=True, return_tensors="pt")
# verify keys
expected_keys = ["attention_mask", "input_ids", "token_type_ids", "xpath_subs_seq", "xpath_tags_seq"]
actual_keys = sorted(list(inputs.keys()))
self.assertListEqual(actual_keys, expected_keys)
# verify input_ids
expected = [0, 48085, 2209, 48085, 3156, 32, 6533, 19, 5, 48599, 6694, 35, 2]
self.assertSequenceEqual(inputs.input_ids[1].tolist(), expected)
@slow
def test_processor_case_2(self):
# case 2: web page classification (training, inference) + token classification (inference), parse_html=False
feature_extractor = MarkupLMFeatureExtractor()
tokenizers = self.get_tokenizers
for tokenizer in tokenizers:
processor = MarkupLMProcessor(feature_extractor=feature_extractor, tokenizer=tokenizer)
processor.parse_html = False
# not batched
nodes = ["hello", "world", "how", "are"]
xpaths = ["/html/body/div/li[1]/div/span", "/html/body/div/li[1]/div/span", "html/body", "html/body/div"]
inputs = processor(nodes=nodes, xpaths=xpaths, return_tensors="pt")
# verify keys
expected_keys = ["attention_mask", "input_ids", "token_type_ids", "xpath_subs_seq", "xpath_tags_seq"]
actual_keys = list(inputs.keys())
for key in expected_keys:
self.assertIn(key, actual_keys)
# verify input_ids
expected_decoding = "<s>helloworldhoware</s>"
decoding = processor.decode(inputs.input_ids.squeeze().tolist())
self.assertSequenceEqual(decoding, expected_decoding)
# batched
nodes = [["hello", "world"], ["my", "name", "is"]]
xpaths = [
["/html/body/div/li[1]/div/span", "/html/body/div/li[1]/div/span"],
["html/body", "html/body/div", "html/body"],
]
inputs = processor(nodes=nodes, xpaths=xpaths, padding=True, return_tensors="pt")
# verify keys
expected_keys = ["attention_mask", "input_ids", "token_type_ids", "xpath_subs_seq", "xpath_tags_seq"]
actual_keys = sorted(list(inputs.keys()))
self.assertListEqual(actual_keys, expected_keys)
# verify input_ids
expected_decoding = "<s>helloworld</s><pad>"
decoding = processor.decode(inputs.input_ids[0].tolist())
self.assertSequenceEqual(decoding, expected_decoding)
@slow
def test_processor_case_3(self):
# case 3: token classification (training), parse_html=False
feature_extractor = MarkupLMFeatureExtractor()
tokenizers = self.get_tokenizers
for tokenizer in tokenizers:
processor = MarkupLMProcessor(feature_extractor=feature_extractor, tokenizer=tokenizer)
processor.parse_html = False
# not batched
nodes = ["hello", "world", "how", "are"]
xpaths = ["/html/body/div/li[1]/div/span", "/html/body/div/li[1]/div/span", "html/body", "html/body/div"]
node_labels = [1, 2, 2, 1]
inputs = processor(nodes=nodes, xpaths=xpaths, node_labels=node_labels, return_tensors="pt")
# verify keys
expected_keys = [
"attention_mask",
"input_ids",
"labels",
"token_type_ids",
"xpath_subs_seq",
"xpath_tags_seq",
]
actual_keys = sorted(list(inputs.keys()))
self.assertListEqual(actual_keys, expected_keys)
# verify input_ids
expected_ids = [0, 42891, 8331, 9178, 1322, 2]
self.assertSequenceEqual(inputs.input_ids[0].tolist(), expected_ids)
# verify labels
expected_labels = [-100, 1, 2, 2, 1, -100]
self.assertListEqual(inputs.labels.squeeze().tolist(), expected_labels)
# batched
nodes = [["hello", "world"], ["my", "name", "is"]]
xpaths = [
["/html/body/div/li[1]/div/span", "/html/body/div/li[1]/div/span"],
["html/body", "html/body/div", "html/body"],
]
node_labels = [[1, 2], [6, 3, 10]]
inputs = processor(
nodes=nodes,
xpaths=xpaths,
node_labels=node_labels,
padding="max_length",
max_length=20,
truncation=True,
return_tensors="pt",
)
# verify keys
expected_keys = [
"attention_mask",
"input_ids",
"labels",
"token_type_ids",
"xpath_subs_seq",
"xpath_tags_seq",
]
actual_keys = sorted(list(inputs.keys()))
self.assertListEqual(actual_keys, expected_keys)
# verify input_ids
expected_ids = [0, 4783, 13650, 354, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
self.assertSequenceEqual(inputs.input_ids[1].tolist(), expected_ids)
# verify xpath_tags_seq
# fmt: off
expected_xpaths_tags_seq = [[216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216], [109, 25, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216], [109, 25, 50, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216], [109, 25, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216], [216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216], [216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216], [216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216], [216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216], [216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216], [216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216], [216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216], [216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216], [216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216], [216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216], [216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216], [216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216], [216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216], [216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216], [216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216], [216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216]] # noqa:
# fmt: on
self.assertSequenceEqual(inputs.xpath_tags_seq[1].tolist(), expected_xpaths_tags_seq)
# verify labels
# fmt: off
expected_labels = [-100, 6, 3, 10, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100]
# fmt: on
self.assertListEqual(inputs.labels[1].tolist(), expected_labels)
@slow
def test_processor_case_4(self):
# case 4: question answering (inference), parse_html=True
feature_extractor = MarkupLMFeatureExtractor()
tokenizers = self.get_tokenizers
html_strings = self.get_html_strings
for tokenizer in tokenizers:
processor = MarkupLMProcessor(feature_extractor=feature_extractor, tokenizer=tokenizer)
# not batched
question = "What's his name?"
inputs = processor(html_strings[0], questions=question, return_tensors="pt")
# verify keys
expected_keys = ["attention_mask", "input_ids", "token_type_ids", "xpath_subs_seq", "xpath_tags_seq"]
actual_keys = sorted(list(inputs.keys()))
self.assertListEqual(actual_keys, expected_keys)
# verify input_ids
# fmt: off
expected_decoding = "<s>What's his name?</s>Hello worldWelcomeHere is my website.</s>" # noqa: E231
# fmt: on
decoding = processor.decode(inputs.input_ids.squeeze().tolist())
self.assertSequenceEqual(decoding, expected_decoding)
# batched
questions = ["How old is he?", "what's the time"]
inputs = processor(
html_strings,
questions=questions,
padding="max_length",
max_length=20,
truncation=True,
return_tensors="pt",
)
# verify keys
expected_keys = ["attention_mask", "input_ids", "token_type_ids", "xpath_subs_seq", "xpath_tags_seq"]
actual_keys = sorted(list(inputs.keys()))
self.assertListEqual(actual_keys, expected_keys)
# verify input_ids
expected_decoding = (
"<s>what's the time</s>HTML ImagesHTML images are defined with the img tag:</s><pad><pad>"
)
decoding = processor.decode(inputs.input_ids[1].tolist())
self.assertSequenceEqual(decoding, expected_decoding)
# verify xpath_subs_seq
# fmt: off
expected_xpath_subs_seq = [[1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001], [1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001], [1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001], [1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001], [1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001], [1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001], [109, 25, 99, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001], [109, 25, 99, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001], [109, 25, 148, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001], [109, 25, 148, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001], [109, 25, 148, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001], [109, 25, 148, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001], [109, 25, 148, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001], [109, 25, 148, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001], [109, 25, 148, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001], [109, 25, 148, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001], [109, 25, 148, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001], [1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001], [1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001], [1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001]] # noqa: E231
# fmt: on
self.assertListEqual(inputs.xpath_subs_seq[1].tolist(), expected_xpath_subs_seq)
@slow
def test_processor_case_5(self):
# case 5: question answering (inference), parse_html=False
feature_extractor = MarkupLMFeatureExtractor(parse_html=False)
tokenizers = self.get_tokenizers
for tokenizer in tokenizers:
processor = MarkupLMProcessor(feature_extractor=feature_extractor, tokenizer=tokenizer)
processor.parse_html = False
# not batched
question = "What's his name?"
nodes = ["hello", "world", "how", "are"]
xpaths = ["/html/body/div/li[1]/div/span", "/html/body/div/li[1]/div/span", "html/body", "html/body/div"]
inputs = processor(nodes=nodes, xpaths=xpaths, questions=question, return_tensors="pt")
# verify keys
expected_keys = ["attention_mask", "input_ids", "token_type_ids", "xpath_subs_seq", "xpath_tags_seq"]
actual_keys = sorted(list(inputs.keys()))
self.assertListEqual(actual_keys, expected_keys)
# verify input_ids
expected_decoding = "<s>What's his name?</s>helloworldhoware</s>"
decoding = processor.decode(inputs.input_ids.squeeze().tolist())
self.assertSequenceEqual(decoding, expected_decoding)
# batched
questions = ["How old is he?", "what's the time"]
nodes = [["hello", "world"], ["my", "name", "is"]]
xpaths = [
["/html/body/div/li[1]/div/span", "/html/body/div/li[1]/div/span"],
["html/body", "html/body/div", "html/body"],
]
inputs = processor(nodes=nodes, xpaths=xpaths, questions=questions, padding=True, return_tensors="pt")
# verify keys
expected_keys = ["attention_mask", "input_ids", "token_type_ids", "xpath_subs_seq", "xpath_tags_seq"]
actual_keys = sorted(list(inputs.keys()))
self.assertListEqual(actual_keys, expected_keys)
# verify input_ids
expected_decoding = "<s>How old is he?</s>helloworld</s>"
decoding = processor.decode(inputs.input_ids[0].tolist())
self.assertSequenceEqual(decoding, expected_decoding)
expected_decoding = "<s>what's the time</s>mynameis</s>"
decoding = processor.decode(inputs.input_ids[1].tolist())
self.assertSequenceEqual(decoding, expected_decoding)
# verify xpath_subs_seq
# fmt: off
expected_xpath_subs_seq = [[1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001], [109, 25, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001], [109, 25, 50, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001], [109, 25, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001], [1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001]] # noqa: E231
# fmt: on
self.assertListEqual(inputs.xpath_subs_seq[1].tolist()[-5:], expected_xpath_subs_seq)
This source diff could not be displayed because it is too large. You can view the blob instead.
......@@ -3,6 +3,7 @@ docs/source/es/quicktour.mdx
docs/source/en/pipeline_tutorial.mdx
docs/source/en/autoclass_tutorial.mdx
docs/source/en/task_summary.mdx
docs/source/en/model_doc/markuplm.mdx
docs/source/en/model_doc/speech_to_text.mdx
docs/source/en/model_doc/t5.mdx
docs/source/en/model_doc/t5v1.1.mdx
......@@ -51,6 +52,7 @@ src/transformers/models/longformer/modeling_longformer.py
src/transformers/models/longformer/modeling_tf_longformer.py
src/transformers/models/longt5/modeling_longt5.py
src/transformers/models/marian/modeling_marian.py
src/transformers/models/markuplm/modeling_markuplm.py
src/transformers/models/mbart/modeling_mbart.py
src/transformers/models/mobilebert/modeling_mobilebert.py
src/transformers/models/mobilebert/modeling_tf_mobilebert.py
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment