Commit f31154cb authored by thomwolf's avatar thomwolf
Browse files

Merge branch 'xlnet'

parents 78462aad 1b35d05d
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Extract pre-computed feature vectors from a PyTorch BERT model."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import collections
import logging
import json
import re
import torch
from torch.utils.data import TensorDataset, DataLoader, SequentialSampler
from torch.utils.data.distributed import DistributedSampler
from pytorch_pretrained_bert.tokenization import BertTokenizer
from pytorch_pretrained_bert.modeling import BertModel
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt = '%m/%d/%Y %H:%M:%S',
level = logging.INFO)
logger = logging.getLogger(__name__)
class InputExample(object):
def __init__(self, unique_id, text_a, text_b):
self.unique_id = unique_id
self.text_a = text_a
self.text_b = text_b
class InputFeatures(object):
"""A single set of features of data."""
def __init__(self, unique_id, tokens, input_ids, input_mask, input_type_ids):
self.unique_id = unique_id
self.tokens = tokens
self.input_ids = input_ids
self.input_mask = input_mask
self.input_type_ids = input_type_ids
def convert_examples_to_features(examples, seq_length, tokenizer):
"""Loads a data file into a list of `InputFeature`s."""
features = []
for (ex_index, example) in enumerate(examples):
tokens_a = tokenizer.tokenize(example.text_a)
tokens_b = None
if example.text_b:
tokens_b = tokenizer.tokenize(example.text_b)
if tokens_b:
# Modifies `tokens_a` and `tokens_b` in place so that the total
# length is less than the specified length.
# Account for [CLS], [SEP], [SEP] with "- 3"
_truncate_seq_pair(tokens_a, tokens_b, seq_length - 3)
else:
# Account for [CLS] and [SEP] with "- 2"
if len(tokens_a) > seq_length - 2:
tokens_a = tokens_a[0:(seq_length - 2)]
# The convention in BERT is:
# (a) For sequence pairs:
# tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
# type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1
# (b) For single sequences:
# tokens: [CLS] the dog is hairy . [SEP]
# type_ids: 0 0 0 0 0 0 0
#
# Where "type_ids" are used to indicate whether this is the first
# sequence or the second sequence. The embedding vectors for `type=0` and
# `type=1` were learned during pre-training and are added to the wordpiece
# embedding vector (and position vector). This is not *strictly* necessary
# since the [SEP] token unambigiously separates the sequences, but it makes
# it easier for the model to learn the concept of sequences.
#
# For classification tasks, the first vector (corresponding to [CLS]) is
# used as as the "sentence vector". Note that this only makes sense because
# the entire model is fine-tuned.
tokens = []
input_type_ids = []
tokens.append("[CLS]")
input_type_ids.append(0)
for token in tokens_a:
tokens.append(token)
input_type_ids.append(0)
tokens.append("[SEP]")
input_type_ids.append(0)
if tokens_b:
for token in tokens_b:
tokens.append(token)
input_type_ids.append(1)
tokens.append("[SEP]")
input_type_ids.append(1)
input_ids = tokenizer.convert_tokens_to_ids(tokens)
# The mask has 1 for real tokens and 0 for padding tokens. Only real
# tokens are attended to.
input_mask = [1] * len(input_ids)
# Zero-pad up to the sequence length.
while len(input_ids) < seq_length:
input_ids.append(0)
input_mask.append(0)
input_type_ids.append(0)
assert len(input_ids) == seq_length
assert len(input_mask) == seq_length
assert len(input_type_ids) == seq_length
if ex_index < 5:
logger.info("*** Example ***")
logger.info("unique_id: %s" % (example.unique_id))
logger.info("tokens: %s" % " ".join([str(x) for x in tokens]))
logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
logger.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
logger.info(
"input_type_ids: %s" % " ".join([str(x) for x in input_type_ids]))
features.append(
InputFeatures(
unique_id=example.unique_id,
tokens=tokens,
input_ids=input_ids,
input_mask=input_mask,
input_type_ids=input_type_ids))
return features
def _truncate_seq_pair(tokens_a, tokens_b, max_length):
"""Truncates a sequence pair in place to the maximum length."""
# This is a simple heuristic which will always truncate the longer sequence
# one token at a time. This makes more sense than truncating an equal percent
# of tokens from each, since if one sequence is very short then each token
# that's truncated likely contains more information than a longer sequence.
while True:
total_length = len(tokens_a) + len(tokens_b)
if total_length <= max_length:
break
if len(tokens_a) > len(tokens_b):
tokens_a.pop()
else:
tokens_b.pop()
def read_examples(input_file):
"""Read a list of `InputExample`s from an input file."""
examples = []
unique_id = 0
with open(input_file, "r", encoding='utf-8') as reader:
while True:
line = reader.readline()
if not line:
break
line = line.strip()
text_a = None
text_b = None
m = re.match(r"^(.*) \|\|\| (.*)$", line)
if m is None:
text_a = line
else:
text_a = m.group(1)
text_b = m.group(2)
examples.append(
InputExample(unique_id=unique_id, text_a=text_a, text_b=text_b))
unique_id += 1
return examples
def main():
parser = argparse.ArgumentParser()
## Required parameters
parser.add_argument("--input_file", default=None, type=str, required=True)
parser.add_argument("--output_file", default=None, type=str, required=True)
parser.add_argument("--bert_model", default=None, type=str, required=True,
help="Bert pre-trained model selected in the list: bert-base-uncased, "
"bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese.")
## Other parameters
parser.add_argument("--do_lower_case", action='store_true', help="Set this flag if you are using an uncased model.")
parser.add_argument("--layers", default="-1,-2,-3,-4", type=str)
parser.add_argument("--max_seq_length", default=128, type=int,
help="The maximum total input sequence length after WordPiece tokenization. Sequences longer "
"than this will be truncated, and sequences shorter than this will be padded.")
parser.add_argument("--batch_size", default=32, type=int, help="Batch size for predictions.")
parser.add_argument("--local_rank",
type=int,
default=-1,
help = "local_rank for distributed training on gpus")
parser.add_argument("--no_cuda",
action='store_true',
help="Whether not to use CUDA when available")
args = parser.parse_args()
if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
n_gpu = torch.cuda.device_count()
else:
device = torch.device("cuda", args.local_rank)
n_gpu = 1
# Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.distributed.init_process_group(backend='nccl')
logger.info("device: {} n_gpu: {} distributed training: {}".format(device, n_gpu, bool(args.local_rank != -1)))
layer_indexes = [int(x) for x in args.layers.split(",")]
tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case)
examples = read_examples(args.input_file)
features = convert_examples_to_features(
examples=examples, seq_length=args.max_seq_length, tokenizer=tokenizer)
unique_id_to_feature = {}
for feature in features:
unique_id_to_feature[feature.unique_id] = feature
model = BertModel.from_pretrained(args.bert_model)
model.to(device)
if args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
output_device=args.local_rank)
elif n_gpu > 1:
model = torch.nn.DataParallel(model)
all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
all_input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long)
all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long)
eval_data = TensorDataset(all_input_ids, all_input_mask, all_example_index)
if args.local_rank == -1:
eval_sampler = SequentialSampler(eval_data)
else:
eval_sampler = DistributedSampler(eval_data)
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.batch_size)
model.eval()
with open(args.output_file, "w", encoding='utf-8') as writer:
for input_ids, input_mask, example_indices in eval_dataloader:
input_ids = input_ids.to(device)
input_mask = input_mask.to(device)
all_encoder_layers, _ = model(input_ids, token_type_ids=None, attention_mask=input_mask)
all_encoder_layers = all_encoder_layers
for b, example_index in enumerate(example_indices):
feature = features[example_index.item()]
unique_id = int(feature.unique_id)
# feature = unique_id_to_feature[unique_id]
output_json = collections.OrderedDict()
output_json["linex_index"] = unique_id
all_out_features = []
for (i, token) in enumerate(feature.tokens):
all_layers = []
for (j, layer_index) in enumerate(layer_indexes):
layer_output = all_encoder_layers[int(layer_index)].detach().cpu().numpy()
layer_output = layer_output[b]
layers = collections.OrderedDict()
layers["index"] = layer_index
layers["values"] = [
round(x.item(), 6) for x in layer_output[i]
]
all_layers.append(layers)
out_features = collections.OrderedDict()
out_features["token"] = token
out_features["layers"] = all_layers
all_out_features.append(out_features)
output_json["features"] = all_out_features
writer.write(json.dumps(output_json) + "\n")
if __name__ == "__main__":
main()
...@@ -13,10 +13,10 @@ from torch.utils.data import DataLoader, Dataset, RandomSampler ...@@ -13,10 +13,10 @@ from torch.utils.data import DataLoader, Dataset, RandomSampler
from torch.utils.data.distributed import DistributedSampler from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm from tqdm import tqdm
from pytorch_pretrained_bert import WEIGHTS_NAME, CONFIG_NAME from pytorch_transformers import WEIGHTS_NAME, CONFIG_NAME
from pytorch_pretrained_bert.modeling import BertForPreTraining from pytorch_transformers.modeling_bert import BertForPreTraining
from pytorch_pretrained_bert.tokenization import BertTokenizer from pytorch_transformers.tokenization_bert import BertTokenizer
from pytorch_pretrained_bert.optimization import BertAdam, WarmupLinearSchedule from pytorch_transformers.optimization import AdamW, WarmupLinearSchedule
InputFeatures = namedtuple("InputFeatures", "input_ids input_mask segment_ids lm_label_ids is_next") InputFeatures = namedtuple("InputFeatures", "input_ids input_mask segment_ids lm_label_ids is_next")
...@@ -273,7 +273,7 @@ def main(): ...@@ -273,7 +273,7 @@ def main():
warmup_linear = WarmupLinearSchedule(warmup=args.warmup_proportion, warmup_linear = WarmupLinearSchedule(warmup=args.warmup_proportion,
t_total=num_train_optimization_steps) t_total=num_train_optimization_steps)
else: else:
optimizer = BertAdam(optimizer_grouped_parameters, optimizer = AdamW(optimizer_grouped_parameters,
lr=args.learning_rate, lr=args.learning_rate,
warmup=args.warmup_proportion, warmup=args.warmup_proportion,
t_total=num_train_optimization_steps) t_total=num_train_optimization_steps)
......
...@@ -6,7 +6,7 @@ import shelve ...@@ -6,7 +6,7 @@ import shelve
from multiprocessing import Pool from multiprocessing import Pool
from random import random, randrange, randint, shuffle, choice from random import random, randrange, randint, shuffle, choice
from pytorch_pretrained_bert.tokenization import BertTokenizer from pytorch_transformers.tokenization_bert import BertTokenizer
import numpy as np import numpy as np
import json import json
import collections import collections
......
...@@ -29,10 +29,10 @@ from torch.utils.data import DataLoader, Dataset, RandomSampler ...@@ -29,10 +29,10 @@ from torch.utils.data import DataLoader, Dataset, RandomSampler
from torch.utils.data.distributed import DistributedSampler from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm, trange from tqdm import tqdm, trange
from pytorch_pretrained_bert import WEIGHTS_NAME, CONFIG_NAME from pytorch_transformers import WEIGHTS_NAME, CONFIG_NAME
from pytorch_pretrained_bert.modeling import BertForPreTraining from pytorch_transformers.modeling_bert import BertForPreTraining
from pytorch_pretrained_bert.tokenization import BertTokenizer from pytorch_transformers.tokenization_bert import BertTokenizer
from pytorch_pretrained_bert.optimization import BertAdam, WarmupLinearSchedule from pytorch_transformers.optimization import BertAdam, WarmupLinearSchedule
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S', datefmt='%m/%d/%Y %H:%M:%S',
......
#!/usr/bin/env python3 #!/usr/bin/env python3
# Copyright 2018 CMU and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Bertology: this script shows how you can explore the internals of the models in the library to:
- compute the entropy of the head attentions
- compute the importance of each head
- prune (remove) the low importance head.
Some parts of this script are adapted from the code of Michel et al. (http://arxiv.org/abs/1905.10650)
which is available at https://github.com/pmichel31415/are-16-heads-really-better-than-1
"""
import os import os
import argparse import argparse
import logging import logging
...@@ -12,43 +32,49 @@ from torch.utils.data import DataLoader, SequentialSampler, TensorDataset, Subse ...@@ -12,43 +32,49 @@ from torch.utils.data import DataLoader, SequentialSampler, TensorDataset, Subse
from torch.utils.data.distributed import DistributedSampler from torch.utils.data.distributed import DistributedSampler
from torch.nn import CrossEntropyLoss, MSELoss from torch.nn import CrossEntropyLoss, MSELoss
from pytorch_pretrained_bert import BertForSequenceClassification, BertTokenizer from pytorch_transformers import (WEIGHTS_NAME,
BertConfig, BertForSequenceClassification, BertTokenizer,
XLMConfig, XLMForSequenceClassification, XLMTokenizer,
XLNetConfig, XLNetForSequenceClassification, XLNetTokenizer)
from run_classifier_dataset_utils import processors, output_modes, convert_examples_to_features, compute_metrics from run_glue import set_seed, load_and_cache_examples, ALL_MODELS, MODEL_CLASSES
from utils_glue import (compute_metrics, convert_examples_to_features,
output_modes, processors)
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
def entropy(p): def entropy(p):
""" Compute the entropy of a probability distribution """
plogp = p * torch.log(p) plogp = p * torch.log(p)
plogp[p == 0] = 0 plogp[p == 0] = 0
return -plogp.sum(dim=-1) return -plogp.sum(dim=-1)
def print_1d_tensor(tensor, prefix=""):
if tensor.dtype != torch.long:
logger.info(prefix + "\t".join(f"{x:.5f}" for x in tensor.cpu().data))
else:
logger.info(prefix + "\t".join(f"{x:d}" for x in tensor.cpu().data))
def print_2d_tensor(tensor): def print_2d_tensor(tensor):
""" Print a 2D tensor """
logger.info("lv, h >\t" + "\t".join(f"{x + 1}" for x in range(len(tensor)))) logger.info("lv, h >\t" + "\t".join(f"{x + 1}" for x in range(len(tensor))))
for row in range(len(tensor)): for row in range(len(tensor)):
print_1d_tensor(tensor[row], prefix=f"layer {row + 1}:\t") if tensor.dtype != torch.long:
logger.info(f"layer {row + 1}:\t" + "\t".join(f"{x:.5f}" for x in tensor[row].cpu().data))
else:
logger.info(f"layer {row + 1}:\t" + "\t".join(f"{x:d}" for x in tensor[row].cpu().data))
def compute_heads_importance(args, model, eval_dataloader, compute_entropy=True, compute_importance=True, head_mask=None): def compute_heads_importance(args, model, eval_dataloader, compute_entropy=True, compute_importance=True, head_mask=None):
""" Example on how to use model outputs to compute: """ This method shows how to compute:
- head attention entropy (activated by setting output_attentions=True when we created the model - head attention entropy
- head importance scores according to http://arxiv.org/abs/1905.10650 - head importance scores according to http://arxiv.org/abs/1905.10650
(activated by setting keep_multihead_output=True when we created the model)
""" """
# Prepare our tensors # Prepare our tensors
n_layers, n_heads = model.bert.config.num_hidden_layers, model.bert.config.num_attention_heads n_layers, n_heads = model.bert.config.num_hidden_layers, model.bert.config.num_attention_heads
head_importance = torch.zeros(n_layers, n_heads).to(args.device) head_importance = torch.zeros(n_layers, n_heads).to(args.device)
attn_entropy = torch.zeros(n_layers, n_heads).to(args.device) attn_entropy = torch.zeros(n_layers, n_heads).to(args.device)
if head_mask is None:
head_mask = torch.ones(n_layers, n_heads).to(args.device)
head_mask.requires_grad_(requires_grad=True)
preds = None preds = None
labels = None labels = None
tot_tokens = 0.0 tot_tokens = 0.0
...@@ -58,29 +84,17 @@ def compute_heads_importance(args, model, eval_dataloader, compute_entropy=True, ...@@ -58,29 +84,17 @@ def compute_heads_importance(args, model, eval_dataloader, compute_entropy=True,
input_ids, input_mask, segment_ids, label_ids = batch input_ids, input_mask, segment_ids, label_ids = batch
# Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below)
all_attentions, logits = model(input_ids, token_type_ids=segment_ids, attention_mask=input_mask, head_mask=head_mask) outputs = model(input_ids, token_type_ids=segment_ids, attention_mask=input_mask, labels=label_ids, head_mask=head_mask)
loss, logits, all_attentions = outputs[0], outputs[1], outputs[-1] # Loss and logits are the first, attention the last
loss.backward() # Backpropagate to populate the gradients in the head mask
if compute_entropy: if compute_entropy:
# Update head attention entropy
for layer, attn in enumerate(all_attentions): for layer, attn in enumerate(all_attentions):
masked_entropy = entropy(attn.detach()) * input_mask.float().unsqueeze(1) masked_entropy = entropy(attn.detach()) * input_mask.float().unsqueeze(1)
attn_entropy[layer] += masked_entropy.sum(-1).sum(0).detach() attn_entropy[layer] += masked_entropy.sum(-1).sum(0).detach()
if compute_importance: if compute_importance:
# Update head importance scores with regards to our loss head_importance += head_mask.grad.abs().detach()
# First, backpropagate to populate the gradients
if args.output_mode == "classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, args.num_labels), label_ids.view(-1))
elif args.output_mode == "regression":
loss_fct = MSELoss()
loss = loss_fct(logits.view(-1), label_ids.view(-1))
loss.backward()
# Second, compute importance scores according to http://arxiv.org/abs/1905.10650
multihead_outputs = model.bert.get_multihead_outputs()
for layer, mh_layer_output in enumerate(multihead_outputs):
dot = torch.einsum("bhli,bhli->bhl", [mh_layer_output.grad, mh_layer_output])
head_importance[layer] += dot.abs().sum(-1).sum(0).detach()
# Also store our logits/labels if we want to compute metrics afterwards # Also store our logits/labels if we want to compute metrics afterwards
if preds is None: if preds is None:
...@@ -104,30 +118,137 @@ def compute_heads_importance(args, model, eval_dataloader, compute_entropy=True, ...@@ -104,30 +118,137 @@ def compute_heads_importance(args, model, eval_dataloader, compute_entropy=True,
if not args.dont_normalize_global_importance: if not args.dont_normalize_global_importance:
head_importance = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) head_importance = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min())
# Print/save matrices
np.save(os.path.join(args.output_dir, 'attn_entropy.npy'), attn_entropy.detach().cpu().numpy())
np.save(os.path.join(args.output_dir, 'head_importance.npy'), head_importance.detach().cpu().numpy())
logger.info("Attention entropies")
print_2d_tensor(attn_entropy)
logger.info("Head importance scores")
print_2d_tensor(head_importance)
logger.info("Head ranked by importance scores")
head_ranks = torch.zeros(head_importance.numel(), dtype=torch.long, device=args.device)
head_ranks[head_importance.view(-1).sort(descending=True)[1]] = torch.arange(head_importance.numel(), device=args.device)
head_ranks = head_ranks.view_as(head_importance)
print_2d_tensor(head_ranks)
return attn_entropy, head_importance, preds, labels return attn_entropy, head_importance, preds, labels
def run_model(): def mask_heads(args, model, eval_dataloader):
""" This method shows how to mask head (set some heads to zero), to test the effect on the network,
based on the head importance scores, as described in Michel et al. (http://arxiv.org/abs/1905.10650)
"""
_, head_importance, preds, labels = compute_heads_importance(args, model, eval_dataloader, compute_entropy=False)
preds = np.argmax(preds, axis=1) if args.output_mode == "classification" else np.squeeze(preds)
original_score = compute_metrics(args.task_name, preds, labels)[args.metric_name]
logger.info("Pruning: original score: %f, threshold: %f", original_score, original_score * args.masking_threshold)
new_head_mask = torch.ones_like(head_importance)
num_to_mask = max(1, int(new_head_mask.numel() * args.masking_amount))
current_score = original_score
while current_score >= original_score * args.masking_threshold:
head_mask = new_head_mask.clone() # save current head mask
# heads from least important to most - keep only not-masked heads
head_importance[head_mask == 0.0] = float('Inf')
current_heads_to_mask = head_importance.view(-1).sort()[1]
if len(current_heads_to_mask) <= num_to_mask:
break
# mask heads
current_heads_to_mask = current_heads_to_mask[:num_to_mask]
logger.info("Heads to mask: %s", str(current_heads_to_mask.tolist()))
new_head_mask = new_head_mask.view(-1)
new_head_mask[current_heads_to_mask] = 0.0
new_head_mask = new_head_mask.view_as(head_mask)
print_2d_tensor(new_head_mask)
# Compute metric and head importance again
_, head_importance, preds, labels = compute_heads_importance(args, model, eval_dataloader, compute_entropy=False, head_mask=new_head_mask)
preds = np.argmax(preds, axis=1) if args.output_mode == "classification" else np.squeeze(preds)
current_score = compute_metrics(args.task_name, preds, labels)[args.metric_name]
logger.info("Masking: current score: %f, remaning heads %d (%.1f percents)", current_score, new_head_mask.sum(), new_head_mask.sum()/new_head_mask.numel() * 100)
logger.info("Final head mask")
print_2d_tensor(head_mask)
np.save(os.path.join(args.output_dir, 'head_mask.npy'), head_mask.detach().cpu().numpy())
return head_mask
def prune_heads(args, model, eval_dataloader, head_mask):
""" This method shows how to prune head (remove heads weights) based on
the head importance scores as described in Michel et al. (http://arxiv.org/abs/1905.10650)
"""
# Try pruning and test time speedup
# Pruning is like masking but we actually remove the masked weights
before_time = datetime.now()
_, _, preds, labels = compute_heads_importance(args, model, eval_dataloader,
compute_entropy=False, compute_importance=False, head_mask=head_mask)
preds = np.argmax(preds, axis=1) if args.output_mode == "classification" else np.squeeze(preds)
score_masking = compute_metrics(args.task_name, preds, labels)[args.metric_name]
original_time = datetime.now() - before_time
original_num_params = sum(p.numel() for p in model.parameters())
heads_to_prune = dict((layer, (1 - head_mask[layer].long()).nonzero().tolist()) for layer in range(len(head_mask)))
assert sum(len(h) for h in heads_to_prune.values()) == (1 - head_mask.long()).sum().item()
model.prune_heads(heads_to_prune)
pruned_num_params = sum(p.numel() for p in model.parameters())
before_time = datetime.now()
_, _, preds, labels = compute_heads_importance(args, model, eval_dataloader,
compute_entropy=False, compute_importance=False, head_mask=None)
preds = np.argmax(preds, axis=1) if args.output_mode == "classification" else np.squeeze(preds)
score_pruning = compute_metrics(args.task_name, preds, labels)[args.metric_name]
new_time = datetime.now() - before_time
logger.info("Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)", original_num_params, pruned_num_params, pruned_num_params/original_num_params * 100)
logger.info("Pruning: score with masking: %f score with pruning: %f", score_masking, score_pruning)
logger.info("Pruning: speed ratio (new timing / original timing): %f percents", original_time/new_time * 100)
def main():
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser.add_argument('--model_name_or_path', type=str, default='bert-base-cased-finetuned-mrpc', help='pretrained model name or path to local checkpoint') parser.add_argument("--data_dir", default=None, type=str, required=True,
parser.add_argument("--task_name", type=str, default='mrpc', help="The name of the task to train.") help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
parser.add_argument("--data_dir", type=str, required=True, help="The input data dir. Should contain the .tsv files (or other data files) for the task.") parser.add_argument("--model_name", default=None, type=str, required=True,
parser.add_argument("--output_dir", type=str, required=True, help="The output directory where the model predictions and checkpoints will be written.") help="Bert/XLNet/XLM pre-trained model selected in the list: " + ", ".join(ALL_MODELS))
parser.add_argument("--data_subset", type=int, default=-1, help="If > 0: limit the data to a subset of data_subset instances.") parser.add_argument("--task_name", default=None, type=str, required=True,
parser.add_argument("--overwrite_output_dir", action='store_true', help="Whether to overwrite data in output directory") help="The name of the task to train selected in the list: " + ", ".join(processors.keys()))
parser.add_argument("--output_dir", default=None, type=str, required=True,
parser.add_argument("--dont_normalize_importance_by_layer", action='store_true', help="Don't normalize importance score by layers") help="The output directory where the model predictions and checkpoints will be written.")
parser.add_argument("--dont_normalize_global_importance", action='store_true', help="Don't normalize all importance scores between 0 and 1")
## Other parameters
parser.add_argument("--try_masking", action='store_true', help="Whether to try to mask head until a threshold of accuracy.") parser.add_argument("--config_name", default="", type=str,
parser.add_argument("--masking_threshold", default=0.9, type=float, help="masking threshold in term of metrics" help="Pretrained config name or path if not the same as model_name")
"(stop masking when metric < threshold * original metric value).") parser.add_argument("--tokenizer_name", default="", type=str,
parser.add_argument("--masking_amount", default=0.1, type=float, help="Amount to heads to masking at each masking step.") help="Pretrained tokenizer name or path if not the same as model_name")
parser.add_argument("--metric_name", default="acc", type=str, help="Metric to use for head masking.") parser.add_argument("--cache_dir", default="", type=str,
help="Where do you want to store the pre-trained models downloaded from s3")
parser.add_argument("--max_seq_length", default=128, type=int, help="The maximum total input sequence length after WordPiece tokenization. \n" parser.add_argument("--data_subset", type=int, default=-1,
"Sequences longer than this will be truncated, and sequences shorter \n" help="If > 0: limit the data to a subset of data_subset instances.")
"than this will be padded.") parser.add_argument("--overwrite_output_dir", action='store_true',
help="Whether to overwrite data in output directory")
parser.add_argument("--dont_normalize_importance_by_layer", action='store_true',
help="Don't normalize importance score by layers")
parser.add_argument("--dont_normalize_global_importance", action='store_true',
help="Don't normalize all importance scores between 0 and 1")
parser.add_argument("--try_masking", action='store_true',
help="Whether to try to mask head until a threshold of accuracy.")
parser.add_argument("--masking_threshold", default=0.9, type=float,
help="masking threshold in term of metrics (stop masking when metric < threshold * original metric value).")
parser.add_argument("--masking_amount", default=0.1, type=float,
help="Amount to heads to masking at each masking step.")
parser.add_argument("--metric_name", default="acc", type=str,
help="Metric to use for head masking.")
parser.add_argument("--max_seq_length", default=128, type=int,
help="The maximum total input sequence length after WordPiece tokenization. \n"
"Sequences longer than this will be truncated, sequences shorter padded.")
parser.add_argument("--batch_size", default=1, type=int, help="Batch size.") parser.add_argument("--batch_size", default=1, type=int, help="Batch size.")
parser.add_argument("--seed", type=int, default=42) parser.add_argument("--seed", type=int, default=42)
...@@ -147,164 +268,79 @@ def run_model(): ...@@ -147,164 +268,79 @@ def run_model():
# Setup devices and distributed training # Setup devices and distributed training
if args.local_rank == -1 or args.no_cuda: if args.local_rank == -1 or args.no_cuda:
args.device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") args.device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
n_gpu = torch.cuda.device_count() args.n_gpu = torch.cuda.device_count()
else: else:
torch.cuda.set_device(args.local_rank) torch.cuda.set_device(args.local_rank)
args.device = torch.device("cuda", args.local_rank) args.device = torch.device("cuda", args.local_rank)
n_gpu = 1 args.n_gpu = 1
torch.distributed.init_process_group(backend='nccl') # Initializes the distributed backend torch.distributed.init_process_group(backend='nccl') # Initializes the distributed backend
# Setup logging # Setup logging
logging.basicConfig(level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN) logging.basicConfig(level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
logger.info("device: {} n_gpu: {}, distributed: {}".format(args.device, n_gpu, bool(args.local_rank != -1))) logger.info("device: {} n_gpu: {}, distributed: {}".format(args.device, args.n_gpu, bool(args.local_rank != -1)))
# Set seeds # Set seeds
np.random.seed(args.seed) set_seed(args)
torch.random.manual_seed(args.seed)
if n_gpu > 0:
torch.cuda.manual_seed(args.seed)
# Prepare GLUE task # Prepare GLUE task
task_name = args.task_name.lower() args.task_name = args.task_name.lower()
processor = processors[task_name]() if args.task_name not in processors:
raise ValueError("Task not found: %s" % (args.task_name))
processor = processors[args.task_name]()
args.output_mode = output_modes[args.task_name]
label_list = processor.get_labels() label_list = processor.get_labels()
args.output_mode = output_modes[task_name] num_labels = len(label_list)
args.num_labels = len(label_list)
# Prepare output directory # Load pretrained model and tokenizer
if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and not args.overwrite_output_dir:
raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
os.makedirs(args.output_dir)
# Load model & tokenizer
if args.local_rank not in [-1, 0]: if args.local_rank not in [-1, 0]:
torch.distributed.barrier() # Make sure only one distributed process download model & vocab torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
tokenizer = BertTokenizer.from_pretrained(args.model_name_or_path)
args.model_type = ""
# Load a model with all BERTology options on: for key in MODEL_CLASSES:
# output_attentions => will output attention weights if key in args.model_name.lower():
# keep_multihead_output => will store gradient of attention head outputs for head importance computation args.model_type = key # take the first match in model types
# see: http://arxiv.org/abs/1905.10650 break
model = BertForSequenceClassification.from_pretrained(args.model_name_or_path, config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
num_labels=args.num_labels, config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name,
output_attentions=True, num_labels=num_labels, finetuning_task=args.task_name,
keep_multihead_output=True) output_attentions=True)
tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name)
model = model_class.from_pretrained(args.model_name, from_tf=bool('.ckpt' in args.model_name), config=config)
if args.local_rank == 0: if args.local_rank == 0:
torch.distributed.barrier() # Make sure only one distributed process download model & vocab torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
# Distributed and parallel training
model.to(args.device) model.to(args.device)
if args.local_rank != -1: if args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True) model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
model.eval() output_device=args.local_rank,
find_unused_parameters=True)
elif args.n_gpu > 1:
model = torch.nn.DataParallel(model)
# Prepare dataset for the GLUE task # Print/save training arguments
eval_examples = processor.get_dev_examples(args.data_dir) torch.save(args, os.path.join(args.output_dir, 'run_args.bin'))
cached_eval_features_file = os.path.join(args.data_dir, 'dev_{0}_{1}_{2}'.format( logger.info("Training/evaluation parameters %s", args)
list(filter(None, args.model_name_or_path.split('/'))).pop(), str(args.max_seq_length), str(task_name)))
try:
eval_features = torch.load(cached_eval_features_file)
except:
eval_features = convert_examples_to_features(eval_examples, label_list, args.max_seq_length, tokenizer, args.output_mode)
if args.local_rank in [-1, 0]:
logger.info("Saving eval features to cache file %s", cached_eval_features_file)
torch.save(eval_features, cached_eval_features_file)
all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
all_label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.long if args.output_mode == "classification" else torch.float)
eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
# Prepare dataset for the GLUE task
eval_data = load_and_cache_examples(args, args.task_name, tokenizer, evaluate=True)
if args.data_subset > 0: if args.data_subset > 0:
eval_data = Subset(eval_data, list(range(min(args.data_subset, len(eval_data))))) eval_data = Subset(eval_data, list(range(min(args.data_subset, len(eval_data)))))
eval_sampler = SequentialSampler(eval_data) if args.local_rank == -1 else DistributedSampler(eval_data) eval_sampler = SequentialSampler(eval_data) if args.local_rank == -1 else DistributedSampler(eval_data)
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.batch_size) eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.batch_size)
# Print/save training arguments
print(args)
torch.save(args, os.path.join(args.output_dir, 'run_args.bin'))
# Compute head entropy and importance score # Compute head entropy and importance score
attn_entropy, head_importance, _, _ = compute_heads_importance(args, model, eval_dataloader) compute_heads_importance(args, model, eval_dataloader)
# Print/save matrices
np.save(os.path.join(args.output_dir, 'attn_entropy.npy'), attn_entropy.detach().cpu().numpy())
np.save(os.path.join(args.output_dir, 'head_importance.npy'), head_importance.detach().cpu().numpy())
logger.info("Attention entropies")
print_2d_tensor(attn_entropy)
logger.info("Head importance scores")
print_2d_tensor(head_importance)
logger.info("Head ranked by importance scores")
head_ranks = torch.zeros(head_importance.numel(), dtype=torch.long, device=args.device)
head_ranks[head_importance.view(-1).sort(descending=True)[1]] = torch.arange(head_importance.numel(), device=args.device)
head_ranks = head_ranks.view_as(head_importance)
print_2d_tensor(head_ranks)
# Do masking if we want to # Try head masking (set heads to zero until the score goes under a threshole)
# and head pruning (remove masked heads and see the effect on the network)
if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0:
_, head_importance, preds, labels = compute_heads_importance(args, model, eval_dataloader, compute_entropy=False) head_mask = mask_heads(args, model, eval_dataloader)
preds = np.argmax(preds, axis=1) if args.output_mode == "classification" else np.squeeze(preds) prune_heads(args, model, eval_dataloader, head_mask)
original_score = compute_metrics(task_name, preds, labels)[args.metric_name]
logger.info("Pruning: original score: %f, threshold: %f", original_score, original_score * args.masking_threshold)
new_head_mask = torch.ones_like(head_importance)
num_to_mask = max(1, int(new_head_mask.numel() * args.masking_amount))
current_score = original_score
while current_score >= original_score * args.masking_threshold:
head_mask = new_head_mask.clone() # save current head mask
# heads from least important to most - keep only not-masked heads
head_importance[head_mask == 0.0] = float('Inf')
current_heads_to_mask = head_importance.view(-1).sort()[1]
if len(current_heads_to_mask) <= num_to_mask:
break
# mask heads
current_heads_to_mask = current_heads_to_mask[:num_to_mask]
logger.info("Heads to mask: %s", str(current_heads_to_mask.tolist()))
new_head_mask = new_head_mask.view(-1)
new_head_mask[current_heads_to_mask] = 0.0
new_head_mask = new_head_mask.view_as(head_mask)
print_2d_tensor(new_head_mask)
# Compute metric and head importance again
_, head_importance, preds, labels = compute_heads_importance(args, model, eval_dataloader, compute_entropy=False, head_mask=new_head_mask)
preds = np.argmax(preds, axis=1) if args.output_mode == "classification" else np.squeeze(preds)
current_score = compute_metrics(task_name, preds, labels)[args.metric_name]
logger.info("Masking: current score: %f, remaning heads %d (%.1f percents)", current_score, new_head_mask.sum(), new_head_mask.sum()/new_head_mask.numel() * 100)
logger.info("Final head mask")
print_2d_tensor(head_mask)
np.save(os.path.join(args.output_dir, 'head_mask.npy'), head_mask.detach().cpu().numpy())
# Try pruning and test time speedup
# Pruning is like masking but we actually remove the masked weights
before_time = datetime.now()
_, _, preds, labels = compute_heads_importance(args, model, eval_dataloader,
compute_entropy=False, compute_importance=False, head_mask=head_mask)
preds = np.argmax(preds, axis=1) if args.output_mode == "classification" else np.squeeze(preds)
score_masking = compute_metrics(task_name, preds, labels)[args.metric_name]
original_time = datetime.now() - before_time
original_num_params = sum(p.numel() for p in model.parameters())
heads_to_prune = dict((layer, (1 - head_mask[layer].long()).nonzero().tolist()) for layer in range(len(head_mask)))
assert sum(len(h) for h in heads_to_prune.values()) == (1 - head_mask.long()).sum().item()
model.bert.prune_heads(heads_to_prune)
pruned_num_params = sum(p.numel() for p in model.parameters())
before_time = datetime.now()
_, _, preds, labels = compute_heads_importance(args, model, eval_dataloader,
compute_entropy=False, compute_importance=False, head_mask=None)
preds = np.argmax(preds, axis=1) if args.output_mode == "classification" else np.squeeze(preds)
score_pruning = compute_metrics(task_name, preds, labels)[args.metric_name]
new_time = datetime.now() - before_time
logger.info("Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)", original_num_params, pruned_num_params, pruned_num_params/original_num_params * 100)
logger.info("Pruning: score with masking: %f score with pruning: %f", score_masking, score_pruning)
logger.info("Pruning: speed ratio (new timing / original timing): %f percents", original_time/new_time * 100)
if __name__ == '__main__': if __name__ == '__main__':
run_model() main()
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BERT finetuning runner."""
from __future__ import absolute_import, division, print_function
import argparse
import logging
import os
import sys
import random
from tqdm import tqdm, trange
import numpy as np
import torch
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
TensorDataset)
from torch.utils.data.distributed import DistributedSampler
from torch.nn import CrossEntropyLoss, MSELoss
from tensorboardX import SummaryWriter
from pytorch_pretrained_bert.file_utils import WEIGHTS_NAME, CONFIG_NAME
from pytorch_pretrained_bert.modeling import BertForSequenceClassification
from pytorch_pretrained_bert.tokenization import BertTokenizer
from pytorch_pretrained_bert.optimization import BertAdam, WarmupLinearSchedule
from run_classifier_dataset_utils import processors, output_modes, convert_examples_to_features, compute_metrics
if sys.version_info[0] == 2:
import cPickle as pickle
else:
import pickle
logger = logging.getLogger(__name__)
def main():
parser = argparse.ArgumentParser()
## Required parameters
parser.add_argument("--data_dir",
default=None,
type=str,
required=True,
help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
parser.add_argument("--bert_model", default=None, type=str, required=True,
help="Bert pre-trained model selected in the list: bert-base-uncased, "
"bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, "
"bert-base-multilingual-cased, bert-base-chinese.")
parser.add_argument("--task_name",
default=None,
type=str,
required=True,
help="The name of the task to train.")
parser.add_argument("--output_dir",
default=None,
type=str,
required=True,
help="The output directory where the model predictions and checkpoints will be written.")
## Other parameters
parser.add_argument("--cache_dir",
default="",
type=str,
help="Where do you want to store the pre-trained models downloaded from s3")
parser.add_argument("--max_seq_length",
default=128,
type=int,
help="The maximum total input sequence length after WordPiece tokenization. \n"
"Sequences longer than this will be truncated, and sequences shorter \n"
"than this will be padded.")
parser.add_argument("--do_train",
action='store_true',
help="Whether to run training.")
parser.add_argument("--do_eval",
action='store_true',
help="Whether to run eval on the dev set.")
parser.add_argument("--do_lower_case",
action='store_true',
help="Set this flag if you are using an uncased model.")
parser.add_argument("--train_batch_size",
default=32,
type=int,
help="Total batch size for training.")
parser.add_argument("--eval_batch_size",
default=8,
type=int,
help="Total batch size for eval.")
parser.add_argument("--learning_rate",
default=5e-5,
type=float,
help="The initial learning rate for Adam.")
parser.add_argument("--num_train_epochs",
default=3.0,
type=float,
help="Total number of training epochs to perform.")
parser.add_argument("--warmup_proportion",
default=0.1,
type=float,
help="Proportion of training to perform linear learning rate warmup for. "
"E.g., 0.1 = 10%% of training.")
parser.add_argument("--no_cuda",
action='store_true',
help="Whether not to use CUDA when available")
parser.add_argument('--overwrite_output_dir',
action='store_true',
help="Overwrite the content of the output directory")
parser.add_argument("--local_rank",
type=int,
default=-1,
help="local_rank for distributed training on gpus")
parser.add_argument('--seed',
type=int,
default=42,
help="random seed for initialization")
parser.add_argument('--gradient_accumulation_steps',
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument('--fp16',
action='store_true',
help="Whether to use 16-bit float precision instead of 32-bit")
parser.add_argument('--loss_scale',
type=float, default=0,
help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
"0 (default value): dynamic loss scaling.\n"
"Positive power of 2: static loss scaling value.\n")
parser.add_argument('--server_ip', type=str, default='', help="Can be used for distant debugging.")
parser.add_argument('--server_port', type=str, default='', help="Can be used for distant debugging.")
args = parser.parse_args()
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print("Waiting for debugger attach")
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
ptvsd.wait_for_attach()
if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
n_gpu = torch.cuda.device_count()
else:
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
n_gpu = 1
# Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.distributed.init_process_group(backend='nccl')
args.device = device
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt = '%m/%d/%Y %H:%M:%S',
level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format(
device, n_gpu, bool(args.local_rank != -1), args.fp16))
if args.gradient_accumulation_steps < 1:
raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
args.gradient_accumulation_steps))
args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
if not args.do_train and not args.do_eval:
raise ValueError("At least one of `do_train` or `do_eval` must be True.")
if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir:
raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
os.makedirs(args.output_dir)
task_name = args.task_name.lower()
if task_name not in processors:
raise ValueError("Task not found: %s" % (task_name))
processor = processors[task_name]()
output_mode = output_modes[task_name]
label_list = processor.get_labels()
num_labels = len(label_list)
if args.local_rank not in [-1, 0]:
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case)
model = BertForSequenceClassification.from_pretrained(args.bert_model, num_labels=num_labels)
if args.local_rank == 0:
torch.distributed.barrier()
if args.fp16:
model.half()
model.to(device)
if args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(model,
device_ids=[args.local_rank],
output_device=args.local_rank,
find_unused_parameters=True)
elif n_gpu > 1:
model = torch.nn.DataParallel(model)
global_step = 0
nb_tr_steps = 0
tr_loss = 0
if args.do_train:
if args.local_rank in [-1, 0]:
tb_writer = SummaryWriter()
# Prepare data loader
train_examples = processor.get_train_examples(args.data_dir)
cached_train_features_file = os.path.join(args.data_dir, 'train_{0}_{1}_{2}'.format(
list(filter(None, args.bert_model.split('/'))).pop(),
str(args.max_seq_length),
str(task_name)))
try:
with open(cached_train_features_file, "rb") as reader:
train_features = pickle.load(reader)
except:
train_features = convert_examples_to_features(
train_examples, label_list, args.max_seq_length, tokenizer, output_mode)
if args.local_rank == -1 or torch.distributed.get_rank() == 0:
logger.info(" Saving train features into cached file %s", cached_train_features_file)
with open(cached_train_features_file, "wb") as writer:
pickle.dump(train_features, writer)
all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long)
all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long)
all_segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long)
if output_mode == "classification":
all_label_ids = torch.tensor([f.label_id for f in train_features], dtype=torch.long)
elif output_mode == "regression":
all_label_ids = torch.tensor([f.label_id for f in train_features], dtype=torch.float)
train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
if args.local_rank == -1:
train_sampler = RandomSampler(train_data)
else:
train_sampler = DistributedSampler(train_data)
train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)
num_train_optimization_steps = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
# Prepare optimizer
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
if args.fp16:
try:
from apex.optimizers import FP16_Optimizer
from apex.optimizers import FusedAdam
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")
optimizer = FusedAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
bias_correction=False,
max_grad_norm=1.0)
if args.loss_scale == 0:
optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
else:
optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)
warmup_linear = WarmupLinearSchedule(warmup=args.warmup_proportion,
t_total=num_train_optimization_steps)
else:
optimizer = BertAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
warmup=args.warmup_proportion,
t_total=num_train_optimization_steps)
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_examples))
logger.info(" Batch size = %d", args.train_batch_size)
logger.info(" Num steps = %d", num_train_optimization_steps)
model.train()
for _ in trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]):
tr_loss = 0
nb_tr_examples, nb_tr_steps = 0, 0
for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])):
batch = tuple(t.to(device) for t in batch)
input_ids, input_mask, segment_ids, label_ids = batch
# define a new function to compute loss values for both output_modes
logits = model(input_ids, token_type_ids=segment_ids, attention_mask=input_mask)
if output_mode == "classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, num_labels), label_ids.view(-1))
elif output_mode == "regression":
loss_fct = MSELoss()
loss = loss_fct(logits.view(-1), label_ids.view(-1))
if n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu.
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
if args.fp16:
optimizer.backward(loss)
else:
loss.backward()
tr_loss += loss.item()
nb_tr_examples += input_ids.size(0)
nb_tr_steps += 1
if (step + 1) % args.gradient_accumulation_steps == 0:
if args.fp16:
# modify learning rate with special warm up BERT uses
# if args.fp16 is False, BertAdam is used that handles this automatically
lr_this_step = args.learning_rate * warmup_linear.get_lr(global_step, args.warmup_proportion)
for param_group in optimizer.param_groups:
param_group['lr'] = lr_this_step
optimizer.step()
optimizer.zero_grad()
global_step += 1
if args.local_rank in [-1, 0]:
tb_writer.add_scalar('lr', optimizer.get_lr()[0], global_step)
tb_writer.add_scalar('loss', loss.item(), global_step)
### Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
### Example:
if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
# Save a trained model, configuration and tokenizer
model_to_save = model.module if hasattr(model, 'module') else model # Only save the model it-self
# If we save using the predefined names, we can load using `from_pretrained`
output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
output_config_file = os.path.join(args.output_dir, CONFIG_NAME)
torch.save(model_to_save.state_dict(), output_model_file)
model_to_save.config.to_json_file(output_config_file)
tokenizer.save_vocabulary(args.output_dir)
# Load a trained model and vocabulary that you have fine-tuned
model = BertForSequenceClassification.from_pretrained(args.output_dir, num_labels=num_labels)
tokenizer = BertTokenizer.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
# Good practice: save your training arguments together with the trained model
output_args_file = os.path.join(args.output_dir, 'training_args.bin')
torch.save(args, output_args_file)
else:
model = BertForSequenceClassification.from_pretrained(args.bert_model, num_labels=num_labels)
model.to(device)
### Evaluation
if args.do_eval and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
eval_examples = processor.get_dev_examples(args.data_dir)
cached_eval_features_file = os.path.join(args.data_dir, 'dev_{0}_{1}_{2}'.format(
list(filter(None, args.bert_model.split('/'))).pop(),
str(args.max_seq_length),
str(task_name)))
try:
with open(cached_eval_features_file, "rb") as reader:
eval_features = pickle.load(reader)
except:
eval_features = convert_examples_to_features(
eval_examples, label_list, args.max_seq_length, tokenizer, output_mode)
if args.local_rank == -1 or torch.distributed.get_rank() == 0:
logger.info(" Saving eval features into cached file %s", cached_eval_features_file)
with open(cached_eval_features_file, "wb") as writer:
pickle.dump(eval_features, writer)
logger.info("***** Running evaluation *****")
logger.info(" Num examples = %d", len(eval_examples))
logger.info(" Batch size = %d", args.eval_batch_size)
all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
if output_mode == "classification":
all_label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.long)
elif output_mode == "regression":
all_label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.float)
eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
# Run prediction for full data
if args.local_rank == -1:
eval_sampler = SequentialSampler(eval_data)
else:
eval_sampler = DistributedSampler(eval_data) # Note that this sampler samples randomly
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)
model.eval()
eval_loss = 0
nb_eval_steps = 0
preds = []
out_label_ids = None
for input_ids, input_mask, segment_ids, label_ids in tqdm(eval_dataloader, desc="Evaluating"):
input_ids = input_ids.to(device)
input_mask = input_mask.to(device)
segment_ids = segment_ids.to(device)
label_ids = label_ids.to(device)
with torch.no_grad():
logits = model(input_ids, token_type_ids=segment_ids, attention_mask=input_mask)
# create eval loss and other metric required by the task
if output_mode == "classification":
loss_fct = CrossEntropyLoss()
tmp_eval_loss = loss_fct(logits.view(-1, num_labels), label_ids.view(-1))
elif output_mode == "regression":
loss_fct = MSELoss()
tmp_eval_loss = loss_fct(logits.view(-1), label_ids.view(-1))
eval_loss += tmp_eval_loss.mean().item()
nb_eval_steps += 1
if len(preds) == 0:
preds.append(logits.detach().cpu().numpy())
out_label_ids = label_ids.detach().cpu().numpy()
else:
preds[0] = np.append(
preds[0], logits.detach().cpu().numpy(), axis=0)
out_label_ids = np.append(
out_label_ids, label_ids.detach().cpu().numpy(), axis=0)
eval_loss = eval_loss / nb_eval_steps
preds = preds[0]
if output_mode == "classification":
preds = np.argmax(preds, axis=1)
elif output_mode == "regression":
preds = np.squeeze(preds)
result = compute_metrics(task_name, preds, out_label_ids)
loss = tr_loss/global_step if args.do_train else None
result['eval_loss'] = eval_loss
result['global_step'] = global_step
result['loss'] = loss
output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
with open(output_eval_file, "w") as writer:
logger.info("***** Eval results *****")
for key in sorted(result.keys()):
logger.info(" %s = %s", key, str(result[key]))
writer.write("%s = %s\n" % (key, str(result[key])))
# hack for MNLI-MM
if task_name == "mnli":
task_name = "mnli-mm"
processor = processors[task_name]()
if os.path.exists(args.output_dir + '-MM') and os.listdir(args.output_dir + '-MM') and args.do_train:
raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
if not os.path.exists(args.output_dir + '-MM'):
os.makedirs(args.output_dir + '-MM')
eval_examples = processor.get_dev_examples(args.data_dir)
eval_features = convert_examples_to_features(
eval_examples, label_list, args.max_seq_length, tokenizer, output_mode)
logger.info("***** Running evaluation *****")
logger.info(" Num examples = %d", len(eval_examples))
logger.info(" Batch size = %d", args.eval_batch_size)
all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
all_label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.long)
eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
# Run prediction for full data
eval_sampler = SequentialSampler(eval_data)
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)
model.eval()
eval_loss = 0
nb_eval_steps = 0
preds = []
out_label_ids = None
for input_ids, input_mask, segment_ids, label_ids in tqdm(eval_dataloader, desc="Evaluating"):
input_ids = input_ids.to(device)
input_mask = input_mask.to(device)
segment_ids = segment_ids.to(device)
label_ids = label_ids.to(device)
with torch.no_grad():
logits = model(input_ids, token_type_ids=segment_ids, attention_mask=input_mask, labels=None)
loss_fct = CrossEntropyLoss()
tmp_eval_loss = loss_fct(logits.view(-1, num_labels), label_ids.view(-1))
eval_loss += tmp_eval_loss.mean().item()
nb_eval_steps += 1
if len(preds) == 0:
preds.append(logits.detach().cpu().numpy())
out_label_ids = label_ids.detach().cpu().numpy()
else:
preds[0] = np.append(
preds[0], logits.detach().cpu().numpy(), axis=0)
out_label_ids = np.append(
out_label_ids, label_ids.detach().cpu().numpy(), axis=0)
eval_loss = eval_loss / nb_eval_steps
preds = preds[0]
preds = np.argmax(preds, axis=1)
result = compute_metrics(task_name, preds, out_label_ids)
loss = tr_loss/global_step if args.do_train else None
result['eval_loss'] = eval_loss
result['global_step'] = global_step
result['loss'] = loss
output_eval_file = os.path.join(args.output_dir + '-MM', "eval_results.txt")
with open(output_eval_file, "w") as writer:
logger.info("***** Eval results *****")
for key in sorted(result.keys()):
logger.info(" %s = %s", key, str(result[key]))
writer.write("%s = %s\n" % (key, str(result[key])))
if __name__ == "__main__":
main()
#!/usr/bin/env python3
# coding=utf-8
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Conditional text generation with the auto-regressive models of the library (GPT/GPT-2/Transformer-XL/XLNet)
"""
from __future__ import absolute_import, division, print_function, unicode_literals
import argparse
import logging
from tqdm import trange
import torch
import torch.nn.functional as F
import numpy as np
from pytorch_transformers import GPT2Config, OpenAIGPTConfig, XLNetConfig, TransfoXLConfig
from pytorch_transformers import GPT2LMHeadModel, GPT2Tokenizer
from pytorch_transformers import OpenAIGPTLMHeadModel, OpenAIGPTTokenizer
from pytorch_transformers import XLNetLMHeadModel, XLNetTokenizer
from pytorch_transformers import TransfoXLLMHeadModel, TransfoXLTokenizer
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt = '%m/%d/%Y %H:%M:%S',
level = logging.INFO)
logger = logging.getLogger(__name__)
MAX_LENGTH = int(10000) # Hardcoded max length to avoid infinite loop
ALL_MODELS = sum((tuple(conf.pretrained_config_archive_map.keys()) for conf in (GPT2Config, OpenAIGPTConfig, XLNetConfig, TransfoXLConfig)), ())
MODEL_CLASSES = {
'gpt2': (GPT2LMHeadModel, GPT2Tokenizer),
'openai-gpt': (OpenAIGPTLMHeadModel, OpenAIGPTTokenizer),
'xlnet': (XLNetLMHeadModel, XLNetTokenizer),
'transfo-xl': (TransfoXLLMHeadModel, TransfoXLTokenizer),
}
# Padding text to help Transformer-XL and XLNet with short prompts as proposed by Aman Rusia
# in https://github.com/rusiaaman/XLNet-gen#methodology
# and https://medium.com/@amanrusia/xlnet-speaks-comparison-to-gpt-2-ea1a4e9ba39e
PADDING_TEXT = """ In 1991, the remains of Russian Tsar Nicholas II and his family
(except for Alexei and Maria) are discovered.
The voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the
remainder of the story. 1883 Western Siberia,
a young Grigori Rasputin is asked by his father and a group of men to perform magic.
Rasputin has a vision and denounces one of the men as a horse thief. Although his
father initially slaps him for making such an accusation, Rasputin watches as the
man is chased outside and beaten. Twenty years later, Rasputin sees a vision of
the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous,
with people, even a bishop, begging for his blessing. <eod> </s> <eos>"""
def set_seed(args):
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
def top_k_top_p_filtering(logits, top_k=0, top_p=0.0, filter_value=-float('Inf')):
""" Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
Args:
logits: logits distribution shape (vocabulary size)
top_k > 0: keep only top k tokens with highest probability (top-k filtering).
top_p > 0.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
"""
assert logits.dim() == 1 # batch size 1 for now - could be updated for more but the code would be less clear
top_k = min(top_k, logits.size(-1)) # Safety check
if top_k > 0:
# Remove all tokens with a probability less than the last token of the top-k
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
logits[indices_to_remove] = filter_value
if top_p > 0.0:
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
# Remove tokens with cumulative probability above the threshold
sorted_indices_to_remove = cumulative_probs > top_p
# Shift the indices to the right to keep also the first token above the threshold
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
sorted_indices_to_remove[..., 0] = 0
indices_to_remove = sorted_indices[sorted_indices_to_remove]
logits[indices_to_remove] = filter_value
return logits
def sample_sequence(model, length, context, num_samples=1, temperature=1, top_k=0, top_p=0.0, is_xlnet=False, device='cpu'):
context = torch.tensor(context, dtype=torch.long, device=device)
context = context.unsqueeze(0).repeat(num_samples, 1)
generated = context
with torch.no_grad():
for _ in trange(length):
inputs = {'input_ids': generated}
if is_xlnet:
# XLNet is a direct (predict same token, not next token) and bi-directional model by default
# => need one additional dummy token in the input (will be masked), attention mask and target mapping (see model docstring)
input_ids = torch.cat((generated, torch.zeros((1, 1), dtype=torch.long, device=device)), dim=1)
perm_mask = torch.zeros((1, input_ids.shape[1], input_ids.shape[1]), dtype=torch.float, device=device)
perm_mask[:, :, -1] = 1.0 # Previous tokens don't see last token
target_mapping = torch.zeros((1, 1, input_ids.shape[1]), dtype=torch.float, device=device)
target_mapping[0, 0, -1] = 1.0 # predict last token
inputs = {'input_ids': input_ids, 'perm_mask': perm_mask, 'target_mapping': target_mapping}
outputs = model(**inputs) # Note: we could also use 'past' with GPT-2/Transfo-XL/XLNet (cached hidden-states)
next_token_logits = outputs[0][0, -1, :] / temperature
filtered_logits = top_k_top_p_filtering(next_token_logits, top_k=top_k, top_p=top_p)
next_token = torch.multinomial(F.softmax(filtered_logits, dim=-1), num_samples=1)
generated = torch.cat((generated, next_token.unsqueeze(0)), dim=1)
return generated
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--model_type", default=None, type=str, required=True,
help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()))
parser.add_argument("--model_name_or_path", default=None, type=str, required=True,
help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS))
parser.add_argument("--prompt", type=str, default="")
parser.add_argument("--padding_text", type=str, default="")
parser.add_argument("--length", type=int, default=20)
parser.add_argument("--temperature", type=float, default=1.0)
parser.add_argument("--top_k", type=int, default=0)
parser.add_argument("--top_p", type=float, default=0.9)
parser.add_argument("--no_cuda", action='store_true',
help="Avoid using CUDA when available")
parser.add_argument('--seed', type=int, default=42,
help="random seed for initialization")
args = parser.parse_args()
args.device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
args.n_gpu = torch.cuda.device_count()
set_seed(args)
args.model_type = args.model_type.lower()
model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
tokenizer = tokenizer_class.from_pretrained(args.model_name_or_path)
model = model_class.from_pretrained(args.model_name_or_path)
model.to(args.device)
model.eval()
if args.length < 0 and model.config.max_position_embeddings > 0:
args.length = model.config.max_position_embeddings
elif 0 < model.config.max_position_embeddings < args.length:
args.length = model.config.max_position_embeddings # No generation bigger than model size
elif args.length < 0:
args.length = MAX_LENGTH # avoid infinite loop
print(args)
while True:
raw_text = args.prompt if args.prompt else input("Model prompt >>> ")
if args.model_type in ["transfo-xl", "xlnet"]:
# Models with memory likes to have a long prompt for short inputs.
raw_text = (args.padding_text if args.padding_text else PADDING_TEXT) + raw_text
context_tokens = tokenizer.encode(raw_text)
out = sample_sequence(
model=model,
context=context_tokens,
length=args.length,
temperature=args.temperature,
top_k=args.top_k,
top_p=args.top_p,
device=args.device,
is_xlnet=bool(args.model_type == "xlnet"),
)
out = out[0, len(context_tokens):].tolist()
text = tokenizer.decode(out, clean_up_tokenization_spaces=True)
print(text)
if args.prompt:
break
return text
if __name__ == '__main__':
main()
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Finetuning the library models for sequence classification on GLUE (Bert, XLM, XLNet)."""
from __future__ import absolute_import, division, print_function
import argparse
import glob
import logging
import os
import random
import numpy as np
import torch
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
TensorDataset)
from torch.utils.data.distributed import DistributedSampler
from tensorboardX import SummaryWriter
from tqdm import tqdm, trange
from pytorch_transformers import (WEIGHTS_NAME, BertConfig,
BertForSequenceClassification, BertTokenizer,
XLMConfig, XLMForSequenceClassification,
XLMTokenizer, XLNetConfig,
XLNetForSequenceClassification,
XLNetTokenizer)
from pytorch_transformers import AdamW, WarmupLinearSchedule
from utils_glue import (compute_metrics, convert_examples_to_features,
output_modes, processors)
logger = logging.getLogger(__name__)
ALL_MODELS = sum((tuple(conf.pretrained_config_archive_map.keys()) for conf in (BertConfig, XLNetConfig, XLMConfig)), ())
MODEL_CLASSES = {
'bert': (BertConfig, BertForSequenceClassification, BertTokenizer),
'xlnet': (XLNetConfig, XLNetForSequenceClassification, XLNetTokenizer),
'xlm': (XLMConfig, XLMForSequenceClassification, XLMTokenizer),
}
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
def train(args, train_dataset, model, tokenizer):
""" Train the model """
if args.local_rank in [-1, 0]:
tb_writer = SummaryWriter()
args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
if args.max_steps > 0:
t_total = args.max_steps
args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
else:
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
# Prepare optimizer and schedule (linear warmup and decay)
no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay},
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
scheduler = WarmupLinearSchedule(optimizer, warmup_steps=args.warmup_steps, t_total=t_total)
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
# Train!
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_dataset))
logger.info(" Num Epochs = %d", args.num_train_epochs)
logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
logger.info(" Total train batch size (w. parallel, distributed & accumulation) = %d",
args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1))
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
logger.info(" Total optimization steps = %d", t_total)
global_step = 0
tr_loss, logging_loss = 0.0, 0.0
model.zero_grad()
train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0])
set_seed(args) # Added here for reproductibility (even between python 2 and 3)
for _ in train_iterator:
epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
for step, batch in enumerate(epoch_iterator):
model.train()
batch = tuple(t.to(args.device) for t in batch)
inputs = {'input_ids': batch[0],
'attention_mask': batch[1],
'token_type_ids': batch[2] if args.model_type in ['bert', 'xlnet'] else None, # XLM don't use segment_ids
'labels': batch[3]}
ouputs = model(**inputs)
loss = ouputs[0] # model outputs are always tuple in pytorch-transformers (see doc)
if args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel training
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
if args.fp16:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
else:
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
tr_loss += loss.item()
if (step + 1) % args.gradient_accumulation_steps == 0:
scheduler.step() # Update learning rate schedule
optimizer.step()
model.zero_grad()
global_step += 1
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
# Log metrics
if args.local_rank == -1 and args.evaluate_during_training: # Only evaluate when single GPU otherwise metrics may not average well
results = evaluate(args, model, tokenizer)
for key, value in results.items():
tb_writer.add_scalar('eval_{}'.format(key), value, global_step)
tb_writer.add_scalar('lr', scheduler.get_lr()[0], global_step)
tb_writer.add_scalar('loss', (tr_loss - logging_loss)/args.logging_steps, global_step)
logging_loss = tr_loss
if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
# Save model checkpoint
output_dir = os.path.join(args.output_dir, 'checkpoint-{}'.format(global_step))
if not os.path.exists(output_dir):
os.makedirs(output_dir)
model_to_save = model.module if hasattr(model, 'module') else model # Take care of distributed/parallel training
model_to_save.save_pretrained(output_dir)
torch.save(args, os.path.join(output_dir, 'training_args.bin'))
logger.info("Saving model checkpoint to %s", output_dir)
if args.max_steps > 0 and global_step > args.max_steps:
epoch_iterator.close()
break
if args.max_steps > 0 and global_step > args.max_steps:
train_iterator.close()
break
if args.local_rank in [-1, 0]:
tb_writer.close()
return global_step, tr_loss / global_step
def evaluate(args, model, tokenizer, prefix=""):
# Loop to handle MNLI double evaluation (matched, mis-matched)
eval_task_names = ("mnli", "mnli-mm") if args.task_name == "mnli" else (args.task_name,)
eval_outputs_dirs = (args.output_dir, args.output_dir + '-MM') if args.task_name == "mnli" else (args.output_dir,)
results = {}
for eval_task, eval_output_dir in zip(eval_task_names, eval_outputs_dirs):
eval_dataset = load_and_cache_examples(args, eval_task, tokenizer, evaluate=True)
if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]:
os.makedirs(eval_output_dir)
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
# Note that DistributedSampler samples randomly
eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset)
eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)
# Eval!
logger.info("***** Running evaluation {} *****".format(prefix))
logger.info(" Num examples = %d", len(eval_dataset))
logger.info(" Batch size = %d", args.eval_batch_size)
eval_loss = 0.0
nb_eval_steps = 0
preds = None
out_label_ids = None
for batch in tqdm(eval_dataloader, desc="Evaluating"):
model.eval()
batch = tuple(t.to(args.device) for t in batch)
with torch.no_grad():
inputs = {'input_ids': batch[0],
'attention_mask': batch[1],
'token_type_ids': batch[2] if args.model_type in ['bert', 'xlnet'] else None, # XLM don't use segment_ids
'labels': batch[3]}
outputs = model(**inputs)
tmp_eval_loss, logits = outputs[:2]
eval_loss += tmp_eval_loss.mean().item()
nb_eval_steps += 1
if preds is None:
preds = logits.detach().cpu().numpy()
out_label_ids = inputs['labels'].detach().cpu().numpy()
else:
preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
out_label_ids = np.append(out_label_ids, inputs['labels'].detach().cpu().numpy(), axis=0)
eval_loss = eval_loss / nb_eval_steps
if args.output_mode == "classification":
preds = np.argmax(preds, axis=1)
elif args.output_mode == "regression":
preds = np.squeeze(preds)
result = compute_metrics(eval_task, preds, out_label_ids)
results.update(result)
output_eval_file = os.path.join(eval_output_dir, "eval_results.txt")
with open(output_eval_file, "w") as writer:
logger.info("***** Eval results {} *****".format(prefix))
for key in sorted(result.keys()):
logger.info(" %s = %s", key, str(result[key]))
writer.write("%s = %s\n" % (key, str(result[key])))
return results
def load_and_cache_examples(args, task, tokenizer, evaluate=False):
processor = processors[task]()
output_mode = output_modes[task]
# Load data features from cache or dataset file
cached_features_file = os.path.join(args.data_dir, 'cached_{}_{}_{}_{}'.format(
'dev' if evaluate else 'train',
list(filter(None, args.model_name_or_path.split('/'))).pop(),
str(args.max_seq_length),
str(task)))
if os.path.exists(cached_features_file):
logger.info("Loading features from cached file %s", cached_features_file)
features = torch.load(cached_features_file)
else:
logger.info("Creating features from dataset file at %s", args.data_dir)
label_list = processor.get_labels()
examples = processor.get_dev_examples(args.data_dir) if evaluate else processor.get_train_examples(args.data_dir)
features = convert_examples_to_features(examples, label_list, args.max_seq_length, tokenizer, output_mode,
cls_token_at_end=bool(args.model_type in ['xlnet']), # xlnet has a cls token at the end
cls_token=tokenizer.cls_token,
sep_token=tokenizer.sep_token,
cls_token_segment_id=2 if args.model_type in ['xlnet'] else 1,
pad_on_left=bool(args.model_type in ['xlnet']), # pad on the left for xlnet
pad_token_segment_id=4 if args.model_type in ['xlnet'] else 0)
if args.local_rank in [-1, 0]:
logger.info("Saving features into cached file %s", cached_features_file)
torch.save(features, cached_features_file)
# Convert to Tensors and build dataset
all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
all_input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long)
all_segment_ids = torch.tensor([f.segment_ids for f in features], dtype=torch.long)
if output_mode == "classification":
all_label_ids = torch.tensor([f.label_id for f in features], dtype=torch.long)
elif output_mode == "regression":
all_label_ids = torch.tensor([f.label_id for f in features], dtype=torch.float)
dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
return dataset
def main():
parser = argparse.ArgumentParser()
## Required parameters
parser.add_argument("--data_dir", default=None, type=str, required=True,
help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
parser.add_argument("--model_type", default=None, type=str, required=True,
help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()))
parser.add_argument("--model_name_or_path", default=None, type=str, required=True,
help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS))
parser.add_argument("--task_name", default=None, type=str, required=True,
help="The name of the task to train selected in the list: " + ", ".join(processors.keys()))
parser.add_argument("--output_dir", default=None, type=str, required=True,
help="The output directory where the model predictions and checkpoints will be written.")
## Other parameters
parser.add_argument("--config_name", default="", type=str,
help="Pretrained config name or path if not the same as model_name")
parser.add_argument("--tokenizer_name", default="", type=str,
help="Pretrained tokenizer name or path if not the same as model_name")
parser.add_argument("--cache_dir", default="", type=str,
help="Where do you want to store the pre-trained models downloaded from s3")
parser.add_argument("--max_seq_length", default=128, type=int,
help="The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded.")
parser.add_argument("--do_train", action='store_true',
help="Whether to run training.")
parser.add_argument("--do_eval", action='store_true',
help="Whether to run eval on the dev set.")
parser.add_argument("--evaluate_during_training", action='store_true',
help="Rul evaluation during training at each logging step.")
parser.add_argument("--do_lower_case", action='store_true',
help="Set this flag if you are using an uncased model.")
parser.add_argument("--per_gpu_train_batch_size", default=8, type=int,
help="Batch size per GPU/CPU for training.")
parser.add_argument("--per_gpu_eval_batch_size", default=8, type=int,
help="Batch size per GPU/CPU for evaluation.")
parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument("--learning_rate", default=5e-5, type=float,
help="The initial learning rate for Adam.")
parser.add_argument("--weight_decay", default=0.0, type=float,
help="Weight deay if we apply some.")
parser.add_argument("--adam_epsilon", default=1e-8, type=float,
help="Epsilon for Adam optimizer.")
parser.add_argument("--max_grad_norm", default=1.0, type=float,
help="Max gradient norm.")
parser.add_argument("--num_train_epochs", default=3.0, type=float,
help="Total number of training epochs to perform.")
parser.add_argument("--max_steps", default=-1, type=int,
help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
parser.add_argument("--warmup_steps", default=0, type=int,
help="Linear warmup over warmup_steps.")
parser.add_argument('--logging_steps', type=int, default=50,
help="Log every X updates steps.")
parser.add_argument('--save_steps', type=int, default=50,
help="Save checkpoint every X updates steps.")
parser.add_argument("--eval_all_checkpoints", action='store_true',
help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number")
parser.add_argument("--no_cuda", action='store_true',
help="Avoid using CUDA when available")
parser.add_argument('--overwrite_output_dir', action='store_true',
help="Overwrite the content of the output directory")
parser.add_argument('--overwrite_cache', action='store_true',
help="Overwrite the cached training and evaluation sets")
parser.add_argument('--seed', type=int, default=42,
help="random seed for initialization")
parser.add_argument('--fp16', action='store_true',
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
parser.add_argument('--fp16_opt_level', type=str, default='O1',
help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
"See details at https://nvidia.github.io/apex/amp.html")
parser.add_argument("--local_rank", type=int, default=-1,
help="For distributed training: local_rank")
parser.add_argument('--server_ip', type=str, default='', help="For distant debugging.")
parser.add_argument('--server_port', type=str, default='', help="For distant debugging.")
args = parser.parse_args()
if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir:
raise ValueError("Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(args.output_dir))
# Setup distant debugging if needed
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print("Waiting for debugger attach")
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
ptvsd.wait_for_attach()
# Setup CUDA, GPU & distributed training
if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
args.n_gpu = torch.cuda.device_count()
else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
torch.distributed.init_process_group(backend='nccl')
args.n_gpu = 1
args.device = device
# Setup logging
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt = '%m/%d/%Y %H:%M:%S',
level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)
# Set seed
set_seed(args)
# Prepare GLUE task
args.task_name = args.task_name.lower()
if args.task_name not in processors:
raise ValueError("Task not found: %s" % (args.task_name))
processor = processors[args.task_name]()
args.output_mode = output_modes[args.task_name]
label_list = processor.get_labels()
num_labels = len(label_list)
# Load pretrained model and tokenizer
if args.local_rank not in [-1, 0]:
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
args.model_type = args.model_type.lower()
config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path, num_labels=num_labels, finetuning_task=args.task_name)
tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, do_lower_case=args.do_lower_case)
model = model_class.from_pretrained(args.model_name_or_path, from_tf=bool('.ckpt' in args.model_name_or_path), config=config)
if args.local_rank == 0:
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
# Distributed and parallel training
model.to(args.device)
if args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
output_device=args.local_rank,
find_unused_parameters=True)
elif args.n_gpu > 1:
model = torch.nn.DataParallel(model)
logger.info("Training/evaluation parameters %s", args)
# Training
if args.do_train:
train_dataset = load_and_cache_examples(args, args.task_name, tokenizer, evaluate=False)
global_step, tr_loss = train(args, train_dataset, model, tokenizer)
logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
# Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
# Create output directory if needed
if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
os.makedirs(args.output_dir)
logger.info("Saving model checkpoint to %s", args.output_dir)
# Save a trained model, configuration and tokenizer using `save_pretrained()`.
# They can then be reloaded using `from_pretrained()`
model_to_save = model.module if hasattr(model, 'module') else model # Take care of distributed/parallel training
model_to_save.save_pretrained(args.output_dir)
tokenizer.save_pretrained(args.output_dir)
# Good practice: save your training arguments together with the trained model
torch.save(args, os.path.join(args.output_dir, 'training_args.bin'))
# Load a trained model and vocabulary that you have fine-tuned
model = model_class.from_pretrained(args.output_dir)
tokenizer = tokenizer_class.from_pretrained(args.output_dir)
model.to(args.device)
# Evaluation
results = {}
if args.do_eval and args.local_rank in [-1, 0]:
checkpoints = [args.output_dir]
if args.eval_all_checkpoints:
checkpoints = list(os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True)))
logging.getLogger("pytorch_transformers.modeling_utils").setLevel(logging.WARN) # Reduce logging
logger.info("Evaluate the following checkpoints: %s", checkpoints)
for checkpoint in checkpoints:
global_step = checkpoint.split('-')[-1] if len(checkpoints) > 1 else ""
model = model_class.from_pretrained(checkpoint)
model.to(args.device)
result = evaluate(args, model, tokenizer, prefix=global_step)
result = dict((k + '_{}'.format(global_step), v) for k, v in result.items())
results.update(result)
return results
if __name__ == "__main__":
main()
#!/usr/bin/env python3
import argparse
import logging
from tqdm import trange
import torch
import torch.nn.functional as F
import numpy as np
from pytorch_pretrained_bert import GPT2LMHeadModel, GPT2Tokenizer
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt = '%m/%d/%Y %H:%M:%S',
level = logging.INFO)
logger = logging.getLogger(__name__)
def top_k_logits(logits, k):
"""
Masks everything but the k top entries as -infinity (1e10).
Used to mask logits such that e^-infinity -> 0 won't contribute to the
sum of the denominator.
"""
if k == 0:
return logits
else:
values = torch.topk(logits, k)[0]
batch_mins = values[:, -1].view(-1, 1).expand_as(logits)
return torch.where(logits < batch_mins, torch.ones_like(logits) * -1e10, logits)
def sample_sequence(model, length, start_token=None, batch_size=None, context=None, temperature=1, top_k=0, device='cuda', sample=True):
if start_token is None:
assert context is not None, 'Specify exactly one of start_token and context!'
context = torch.tensor(context, device=device, dtype=torch.long).unsqueeze(0).repeat(batch_size, 1)
else:
assert context is None, 'Specify exactly one of start_token and context!'
context = torch.full((batch_size, 1), start_token, device=device, dtype=torch.long)
prev = context
output = context
past = None
with torch.no_grad():
for i in trange(length):
logits, past = model(prev, past=past)
logits = logits[:, -1, :] / temperature
logits = top_k_logits(logits, k=top_k)
log_probs = F.softmax(logits, dim=-1)
if sample:
prev = torch.multinomial(log_probs, num_samples=1)
else:
_, prev = torch.topk(log_probs, k=1, dim=-1)
output = torch.cat((output, prev), dim=1)
return output
def run_model():
parser = argparse.ArgumentParser()
parser.add_argument('--model_name_or_path', type=str, default='gpt2', help='pretrained model name or path to local checkpoint')
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--nsamples", type=int, default=1)
parser.add_argument("--batch_size", type=int, default=-1)
parser.add_argument("--length", type=int, default=-1)
parser.add_argument("--temperature", type=float, default=1.0)
parser.add_argument("--top_k", type=int, default=0)
parser.add_argument('--unconditional', action='store_true', help='If true, unconditional generation.')
args = parser.parse_args()
print(args)
if args.batch_size == -1:
args.batch_size = 1
assert args.nsamples % args.batch_size == 0
np.random.seed(args.seed)
torch.random.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
enc = GPT2Tokenizer.from_pretrained(args.model_name_or_path)
model = GPT2LMHeadModel.from_pretrained(args.model_name_or_path)
model.to(device)
model.eval()
if args.length == -1:
args.length = model.config.n_ctx // 2
elif args.length > model.config.n_ctx:
raise ValueError("Can't get samples longer than window size: %s" % model.config.n_ctx)
while True:
context_tokens = []
if not args.unconditional:
raw_text = input("Model prompt >>> ")
while not raw_text:
print('Prompt should not be empty!')
raw_text = input("Model prompt >>> ")
context_tokens = enc.encode(raw_text)
generated = 0
for _ in range(args.nsamples // args.batch_size):
out = sample_sequence(
model=model, length=args.length,
context=context_tokens,
start_token=None,
batch_size=args.batch_size,
temperature=args.temperature, top_k=args.top_k, device=device
)
out = out[:, len(context_tokens):].tolist()
for i in range(args.batch_size):
generated += 1
text = enc.decode(out[i])
print("=" * 40 + " SAMPLE " + str(generated) + " " + "=" * 40)
print(text)
print("=" * 80)
else:
generated = 0
for _ in range(args.nsamples // args.batch_size):
out = sample_sequence(
model=model, length=args.length,
context=None,
start_token=enc.encoder['<|endoftext|>'],
batch_size=args.batch_size,
temperature=args.temperature, top_k=args.top_k, device=device
)
out = out[:,1:].tolist()
for i in range(args.batch_size):
generated += 1
text = enc.decode(out[i])
print("=" * 40 + " SAMPLE " + str(generated) + " " + "=" * 40)
print(text)
print("=" * 80)
if __name__ == '__main__':
run_model()
...@@ -13,7 +13,7 @@ ...@@ -13,7 +13,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
"""Run BERT on SQuAD.""" """ Finetuning the library models for question-answering on SQuAD (Bert, XLM, XLNet)."""
from __future__ import absolute_import, division, print_function from __future__ import absolute_import, division, print_function
...@@ -21,8 +21,7 @@ import argparse ...@@ -21,8 +21,7 @@ import argparse
import logging import logging
import os import os
import random import random
import sys import glob
from io import open
import numpy as np import numpy as np
import torch import torch
...@@ -33,36 +32,306 @@ from tqdm import tqdm, trange ...@@ -33,36 +32,306 @@ from tqdm import tqdm, trange
from tensorboardX import SummaryWriter from tensorboardX import SummaryWriter
from pytorch_pretrained_bert.file_utils import WEIGHTS_NAME, CONFIG_NAME from pytorch_transformers import (WEIGHTS_NAME, BertConfig,
from pytorch_pretrained_bert.modeling import BertForQuestionAnswering BertForQuestionAnswering, BertTokenizer,
from pytorch_pretrained_bert.optimization import BertAdam, WarmupLinearSchedule XLMConfig, XLMForQuestionAnswering,
from pytorch_pretrained_bert.tokenization import BertTokenizer XLMTokenizer, XLNetConfig,
XLNetForQuestionAnswering,
XLNetTokenizer)
from run_squad_dataset_utils import read_squad_examples, convert_examples_to_features, RawResult, write_predictions from pytorch_transformers import AdamW, WarmupLinearSchedule
if sys.version_info[0] == 2: from utils_squad import (read_squad_examples, convert_examples_to_features,
import cPickle as pickle RawResult, write_predictions,
else: RawResultExtended, write_predictions_extended)
import pickle
# The follwing import is the official SQuAD evaluation script (2.0).
# You can remove it from the dependencies if you are using this script outside of the library
# We've added it here for automated tests (see examples/test_examples.py file)
from utils_squad_evaluate import EVAL_OPTS, main as evaluate_on_squad
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
ALL_MODELS = sum((tuple(conf.pretrained_config_archive_map.keys()) \
for conf in (BertConfig, XLNetConfig, XLMConfig)), ())
MODEL_CLASSES = {
'bert': (BertConfig, BertForQuestionAnswering, BertTokenizer),
'xlnet': (XLNetConfig, XLNetForQuestionAnswering, XLNetTokenizer),
'xlm': (XLMConfig, XLMForQuestionAnswering, XLMTokenizer),
}
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
def to_list(tensor):
return tensor.detach().cpu().tolist()
def train(args, train_dataset, model, tokenizer):
""" Train the model """
if args.local_rank in [-1, 0]:
tb_writer = SummaryWriter()
args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
if args.max_steps > 0:
t_total = args.max_steps
args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
else:
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
# Prepare optimizer and schedule (linear warmup and decay)
no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay},
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
scheduler = WarmupLinearSchedule(optimizer, warmup_steps=args.warmup_steps, t_total=t_total)
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
# Train!
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_dataset))
logger.info(" Num Epochs = %d", args.num_train_epochs)
logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
logger.info(" Total train batch size (w. parallel, distributed & accumulation) = %d",
args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1))
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
logger.info(" Total optimization steps = %d", t_total)
global_step = 0
tr_loss, logging_loss = 0.0, 0.0
model.zero_grad()
train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0])
set_seed(args) # Added here for reproductibility (even between python 2 and 3)
for _ in train_iterator:
epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
for step, batch in enumerate(epoch_iterator):
model.train()
batch = tuple(t.to(args.device) for t in batch)
inputs = {'input_ids': batch[0],
'token_type_ids': None if args.model_type == 'xlm' else batch[1], # XLM don't use segment_ids
'attention_mask': batch[2],
'start_positions': batch[3],
'end_positions': batch[4]}
if args.model_type in ['xlnet', 'xlm']:
inputs.update({'cls_index': batch[5],
'p_mask': batch[6]})
ouputs = model(**inputs)
loss = ouputs[0] # model outputs are always tuple in pytorch-transformers (see doc)
if args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel (not distributed) training
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
if args.fp16:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
else:
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
tr_loss += loss.item()
if (step + 1) % args.gradient_accumulation_steps == 0:
scheduler.step() # Update learning rate schedule
optimizer.step()
model.zero_grad()
global_step += 1
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
# Log metrics
if args.local_rank == -1 and args.evaluate_during_training: # Only evaluate when single GPU otherwise metrics may not average well
results = evaluate(args, model, tokenizer)
for key, value in results.items():
tb_writer.add_scalar('eval_{}'.format(key), value, global_step)
tb_writer.add_scalar('lr', scheduler.get_lr()[0], global_step)
tb_writer.add_scalar('loss', (tr_loss - logging_loss)/args.logging_steps, global_step)
logging_loss = tr_loss
if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
# Save model checkpoint
output_dir = os.path.join(args.output_dir, 'checkpoint-{}'.format(global_step))
if not os.path.exists(output_dir):
os.makedirs(output_dir)
model_to_save = model.module if hasattr(model, 'module') else model # Take care of distributed/parallel training
model_to_save.save_pretrained(output_dir)
torch.save(args, os.path.join(output_dir, 'training_args.bin'))
logger.info("Saving model checkpoint to %s", output_dir)
if args.max_steps > 0 and global_step > args.max_steps:
epoch_iterator.close()
break
if args.max_steps > 0 and global_step > args.max_steps:
train_iterator.close()
break
if args.local_rank in [-1, 0]:
tb_writer.close()
return global_step, tr_loss / global_step
def evaluate(args, model, tokenizer, prefix=""):
dataset, examples, features = load_and_cache_examples(args, tokenizer, evaluate=True, output_examples=True)
if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
os.makedirs(args.output_dir)
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
# Note that DistributedSampler samples randomly
eval_sampler = SequentialSampler(dataset) if args.local_rank == -1 else DistributedSampler(dataset)
eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)
# Eval!
logger.info("***** Running evaluation {} *****".format(prefix))
logger.info(" Num examples = %d", len(dataset))
logger.info(" Batch size = %d", args.eval_batch_size)
all_results = []
for batch in tqdm(eval_dataloader, desc="Evaluating"):
model.eval()
batch = tuple(t.to(args.device) for t in batch)
with torch.no_grad():
inputs = {'input_ids': batch[0],
'token_type_ids': None if args.model_type == 'xlm' else batch[1], # XLM don't use segment_ids
'attention_mask': batch[2]}
example_indices = batch[3]
if args.model_type in ['xlnet', 'xlm']:
inputs.update({'cls_index': batch[4],
'p_mask': batch[5]})
outputs = model(**inputs)
for i, example_index in enumerate(example_indices):
eval_feature = features[example_index.item()]
unique_id = int(eval_feature.unique_id)
if args.model_type in ['xlnet', 'xlm']:
# XLNet uses a more complex post-processing procedure
result = RawResultExtended(unique_id = unique_id,
start_top_log_probs = to_list(outputs[0][i]),
start_top_index = to_list(outputs[1][i]),
end_top_log_probs = to_list(outputs[2][i]),
end_top_index = to_list(outputs[3][i]),
cls_logits = to_list(outputs[4][i]))
else:
result = RawResult(unique_id = unique_id,
start_logits = to_list(outputs[0][i]),
end_logits = to_list(outputs[1][i]))
all_results.append(result)
# Compute predictions
output_prediction_file = os.path.join(args.output_dir, "predictions_{}.json".format(prefix))
output_nbest_file = os.path.join(args.output_dir, "nbest_predictions_{}.json".format(prefix))
output_null_log_odds_file = os.path.join(args.output_dir, "null_odds_{}.json".format(prefix))
if args.model_type in ['xlnet', 'xlm']:
# XLNet uses a more complex post-processing procedure
write_predictions_extended(examples, features, all_results, args.n_best_size,
args.max_answer_length, output_prediction_file,
output_nbest_file, output_null_log_odds_file, args.predict_file,
model.config.start_n_top, model.config.end_n_top,
args.version_2_with_negative, tokenizer, args.verbose_logging)
else:
write_predictions(examples, features, all_results, args.n_best_size,
args.max_answer_length, args.do_lower_case, output_prediction_file,
output_nbest_file, output_null_log_odds_file, args.verbose_logging,
args.version_2_with_negative, args.null_score_diff_threshold)
# Evaluate with the official SQuAD script
evaluate_options = EVAL_OPTS(data_file=args.predict_file,
pred_file=output_prediction_file,
na_prob_file=output_null_log_odds_file)
results = evaluate_on_squad(evaluate_options)
return results
def load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False):
# Load data features from cache or dataset file
input_file = args.predict_file if evaluate else args.train_file
cached_features_file = os.path.join(os.path.dirname(input_file), 'cached_{}_{}_{}'.format(
'dev' if evaluate else 'train',
list(filter(None, args.model_name_or_path.split('/'))).pop(),
str(args.max_seq_length)))
if os.path.exists(cached_features_file) and not args.overwrite_cache and not output_examples:
logger.info("Loading features from cached file %s", cached_features_file)
features = torch.load(cached_features_file)
else:
logger.info("Creating features from dataset file at %s", input_file)
examples = read_squad_examples(input_file=input_file,
is_training=not evaluate,
version_2_with_negative=args.version_2_with_negative)
features = convert_examples_to_features(examples=examples,
tokenizer=tokenizer,
max_seq_length=args.max_seq_length,
doc_stride=args.doc_stride,
max_query_length=args.max_query_length,
is_training=not evaluate)
if args.local_rank in [-1, 0]:
logger.info("Saving features into cached file %s", cached_features_file)
torch.save(features, cached_features_file)
# Convert to Tensors and build dataset
all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
all_input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long)
all_segment_ids = torch.tensor([f.segment_ids for f in features], dtype=torch.long)
all_cls_index = torch.tensor([f.cls_index for f in features], dtype=torch.long)
all_p_mask = torch.tensor([f.p_mask for f in features], dtype=torch.float)
if evaluate:
all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long)
dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids,
all_example_index, all_cls_index, all_p_mask)
else:
all_start_positions = torch.tensor([f.start_position for f in features], dtype=torch.long)
all_end_positions = torch.tensor([f.end_position for f in features], dtype=torch.long)
dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids,
all_start_positions, all_end_positions,
all_cls_index, all_p_mask)
if output_examples:
return dataset, examples, features
return dataset
def main(): def main():
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
## Required parameters ## Required parameters
parser.add_argument("--bert_model", default=None, type=str, required=True, parser.add_argument("--train_file", default=None, type=str, required=True,
help="Bert pre-trained model selected in the list: bert-base-uncased, " help="SQuAD json for training. E.g., train-v1.1.json")
"bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, " parser.add_argument("--predict_file", default=None, type=str, required=True,
"bert-base-multilingual-cased, bert-base-chinese.") help="SQuAD json for predictions. E.g., dev-v1.1.json or test-v1.1.json")
parser.add_argument("--model_type", default=None, type=str, required=True,
help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()))
parser.add_argument("--model_name_or_path", default=None, type=str, required=True,
help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS))
parser.add_argument("--output_dir", default=None, type=str, required=True, parser.add_argument("--output_dir", default=None, type=str, required=True,
help="The output directory where the model checkpoints and predictions will be written.") help="The output directory where the model checkpoints and predictions will be written.")
## Other parameters ## Other parameters
parser.add_argument("--train_file", default=None, type=str, help="SQuAD json for training. E.g., train-v1.1.json") parser.add_argument("--config_name", default="", type=str,
parser.add_argument("--predict_file", default=None, type=str, help="Pretrained config name or path if not the same as model_name")
help="SQuAD json for predictions. E.g., dev-v1.1.json or test-v1.1.json") parser.add_argument("--tokenizer_name", default="", type=str,
help="Pretrained tokenizer name or path if not the same as model_name")
parser.add_argument("--cache_dir", default="", type=str,
help="Where do you want to store the pre-trained models downloaded from s3")
parser.add_argument('--version_2_with_negative', action='store_true',
help='If true, the SQuAD examples contain some that do not have an answer.')
parser.add_argument('--null_score_diff_threshold', type=float, default=0.0,
help="If null_score - best_non_null is greater than the threshold predict null.")
parser.add_argument("--max_seq_length", default=384, type=int, parser.add_argument("--max_seq_length", default=384, type=int,
help="The maximum total input sequence length after WordPiece tokenization. Sequences " help="The maximum total input sequence length after WordPiece tokenization. Sequences "
"longer than this will be truncated, and sequences shorter than this will be padded.") "longer than this will be truncated, and sequences shorter than this will be padded.")
...@@ -71,65 +340,74 @@ def main(): ...@@ -71,65 +340,74 @@ def main():
parser.add_argument("--max_query_length", default=64, type=int, parser.add_argument("--max_query_length", default=64, type=int,
help="The maximum number of tokens for the question. Questions longer than this will " help="The maximum number of tokens for the question. Questions longer than this will "
"be truncated to this length.") "be truncated to this length.")
parser.add_argument("--do_train", action='store_true', help="Whether to run training.") parser.add_argument("--do_train", action='store_true',
parser.add_argument("--do_predict", action='store_true', help="Whether to run eval on the dev set.") help="Whether to run training.")
parser.add_argument("--train_batch_size", default=32, type=int, help="Total batch size for training.") parser.add_argument("--do_eval", action='store_true',
parser.add_argument("--predict_batch_size", default=8, type=int, help="Total batch size for predictions.") help="Whether to run eval on the dev set.")
parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") parser.add_argument("--evaluate_during_training", action='store_true',
help="Rul evaluation during training at each logging step.")
parser.add_argument("--do_lower_case", action='store_true',
help="Set this flag if you are using an uncased model.")
parser.add_argument("--per_gpu_train_batch_size", default=8, type=int,
help="Batch size per GPU/CPU for training.")
parser.add_argument("--per_gpu_eval_batch_size", default=8, type=int,
help="Batch size per GPU/CPU for evaluation.")
parser.add_argument("--learning_rate", default=5e-5, type=float,
help="The initial learning rate for Adam.")
parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument("--weight_decay", default=0.0, type=float,
help="Weight deay if we apply some.")
parser.add_argument("--adam_epsilon", default=1e-8, type=float,
help="Epsilon for Adam optimizer.")
parser.add_argument("--max_grad_norm", default=1.0, type=float,
help="Max gradient norm.")
parser.add_argument("--num_train_epochs", default=3.0, type=float, parser.add_argument("--num_train_epochs", default=3.0, type=float,
help="Total number of training epochs to perform.") help="Total number of training epochs to perform.")
parser.add_argument("--warmup_proportion", default=0.1, type=float, parser.add_argument("--max_steps", default=-1, type=int,
help="Proportion of training to perform linear learning rate warmup for. E.g., 0.1 = 10%% " help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
"of training.") parser.add_argument("--warmup_steps", default=0, type=int,
help="Linear warmup over warmup_steps.")
parser.add_argument("--n_best_size", default=20, type=int, parser.add_argument("--n_best_size", default=20, type=int,
help="The total number of n-best predictions to generate in the nbest_predictions.json " help="The total number of n-best predictions to generate in the nbest_predictions.json output file.")
"output file.")
parser.add_argument("--max_answer_length", default=30, type=int, parser.add_argument("--max_answer_length", default=30, type=int,
help="The maximum length of an answer that can be generated. This is needed because the start " help="The maximum length of an answer that can be generated. This is needed because the start "
"and end predictions are not conditioned on one another.") "and end predictions are not conditioned on one another.")
parser.add_argument("--verbose_logging", action='store_true', parser.add_argument("--verbose_logging", action='store_true',
help="If true, all of the warnings related to data processing will be printed. " help="If true, all of the warnings related to data processing will be printed. "
"A number of warnings are expected for a normal SQuAD evaluation.") "A number of warnings are expected for a normal SQuAD evaluation.")
parser.add_argument("--no_cuda",
action='store_true', parser.add_argument('--logging_steps', type=int, default=50,
help="Log every X updates steps.")
parser.add_argument('--save_steps', type=int, default=50,
help="Save checkpoint every X updates steps.")
parser.add_argument("--eval_all_checkpoints", action='store_true',
help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number")
parser.add_argument("--no_cuda", action='store_true',
help="Whether not to use CUDA when available") help="Whether not to use CUDA when available")
parser.add_argument('--seed', parser.add_argument('--overwrite_output_dir', action='store_true',
type=int, help="Overwrite the content of the output directory")
default=42, parser.add_argument('--overwrite_cache', action='store_true',
help="Overwrite the cached training and evaluation sets")
parser.add_argument('--seed', type=int, default=42,
help="random seed for initialization") help="random seed for initialization")
parser.add_argument('--gradient_accumulation_steps',
type=int, parser.add_argument("--local_rank", type=int, default=-1,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument("--do_lower_case",
action='store_true',
help="Whether to lower case the input text. True for uncased models, False for cased models.")
parser.add_argument("--local_rank",
type=int,
default=-1,
help="local_rank for distributed training on gpus") help="local_rank for distributed training on gpus")
parser.add_argument('--fp16', parser.add_argument('--fp16', action='store_true',
action='store_true', help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
help="Whether to use 16-bit float precision instead of 32-bit") parser.add_argument('--fp16_opt_level', type=str, default='O1',
parser.add_argument('--overwrite_output_dir', help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
action='store_true', "See details at https://nvidia.github.io/apex/amp.html")
help="Overwrite the content of the output directory")
parser.add_argument('--loss_scale',
type=float, default=0,
help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
"0 (default value): dynamic loss scaling.\n"
"Positive power of 2: static loss scaling value.\n")
parser.add_argument('--version_2_with_negative',
action='store_true',
help='If true, the SQuAD examples contain some that do not have an answer.')
parser.add_argument('--null_score_diff_threshold',
type=float, default=0.0,
help="If null_score - best_non_null is greater than the threshold predict null.")
parser.add_argument('--server_ip', type=str, default='', help="Can be used for distant debugging.") parser.add_argument('--server_ip', type=str, default='', help="Can be used for distant debugging.")
parser.add_argument('--server_port', type=str, default='', help="Can be used for distant debugging.") parser.add_argument('--server_port', type=str, default='', help="Can be used for distant debugging.")
args = parser.parse_args() args = parser.parse_args()
print(args)
if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir:
raise ValueError("Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(args.output_dir))
# Setup distant debugging if needed
if args.server_ip and args.server_port: if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd import ptvsd
...@@ -137,263 +415,105 @@ def main(): ...@@ -137,263 +415,105 @@ def main():
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
ptvsd.wait_for_attach() ptvsd.wait_for_attach()
# Setup CUDA, GPU & distributed training
if args.local_rank == -1 or args.no_cuda: if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
n_gpu = torch.cuda.device_count() args.n_gpu = torch.cuda.device_count()
else: else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.cuda.set_device(args.local_rank) torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank) device = torch.device("cuda", args.local_rank)
n_gpu = 1
# Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.distributed.init_process_group(backend='nccl') torch.distributed.init_process_group(backend='nccl')
args.n_gpu = 1
args.device = device
# Setup logging
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s', logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt = '%m/%d/%Y %H:%M:%S', datefmt = '%m/%d/%Y %H:%M:%S',
level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN) level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)
logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format( # Set seed
device, n_gpu, bool(args.local_rank != -1), args.fp16)) set_seed(args)
if args.gradient_accumulation_steps < 1:
raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
args.gradient_accumulation_steps))
args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
if not args.do_train and not args.do_predict:
raise ValueError("At least one of `do_train` or `do_predict` must be True.")
if args.do_train:
if not args.train_file:
raise ValueError(
"If `do_train` is True, then `train_file` must be specified.")
if args.do_predict:
if not args.predict_file:
raise ValueError(
"If `do_predict` is True, then `predict_file` must be specified.")
if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir:
raise ValueError("Output directory () already exists and is not empty.")
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
# Load pretrained model and tokenizer
if args.local_rank not in [-1, 0]: if args.local_rank not in [-1, 0]:
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case)
model = BertForQuestionAnswering.from_pretrained(args.bert_model) args.model_type = args.model_type.lower()
config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path)
tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, do_lower_case=args.do_lower_case)
model = model_class.from_pretrained(args.model_name_or_path, from_tf=bool('.ckpt' in args.model_name_or_path), config=config)
if args.local_rank == 0: if args.local_rank == 0:
torch.distributed.barrier() torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
if args.fp16: # Distributed and parrallel training
model.half() model.to(args.device)
model.to(device)
if args.local_rank != -1: if args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(model, model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
device_ids=[args.local_rank],
output_device=args.local_rank, output_device=args.local_rank,
find_unused_parameters=True) find_unused_parameters=True)
elif n_gpu > 1: elif args.n_gpu > 1:
model = torch.nn.DataParallel(model) model = torch.nn.DataParallel(model)
logger.info("Training/evaluation parameters %s", args)
# Training
if args.do_train: if args.do_train:
if args.local_rank in [-1, 0]: train_dataset = load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False)
tb_writer = SummaryWriter() global_step, tr_loss = train(args, train_dataset, model, tokenizer)
# Prepare data loader logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
train_examples = read_squad_examples(
input_file=args.train_file, is_training=True, version_2_with_negative=args.version_2_with_negative)
cached_train_features_file = args.train_file+'_{0}_{1}_{2}_{3}'.format(
list(filter(None, args.bert_model.split('/'))).pop(), str(args.max_seq_length), str(args.doc_stride), str(args.max_query_length))
try:
with open(cached_train_features_file, "rb") as reader:
train_features = pickle.load(reader)
except:
train_features = convert_examples_to_features(
examples=train_examples,
tokenizer=tokenizer,
max_seq_length=args.max_seq_length,
doc_stride=args.doc_stride,
max_query_length=args.max_query_length,
is_training=True)
if args.local_rank == -1 or torch.distributed.get_rank() == 0:
logger.info(" Saving train features into cached file %s", cached_train_features_file)
with open(cached_train_features_file, "wb") as writer:
pickle.dump(train_features, writer)
all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long)
all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long)
all_segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long)
all_start_positions = torch.tensor([f.start_position for f in train_features], dtype=torch.long)
all_end_positions = torch.tensor([f.end_position for f in train_features], dtype=torch.long)
train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids,
all_start_positions, all_end_positions)
if args.local_rank == -1:
train_sampler = RandomSampler(train_data)
else:
train_sampler = DistributedSampler(train_data)
train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)
num_train_optimization_steps = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
# if args.local_rank != -1:
# num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size()
# Prepare optimizer
param_optimizer = list(model.named_parameters())
# hack to remove pooler, which is not used
# thus it produce None grad that break apex
param_optimizer = [n for n in param_optimizer if 'pooler' not in n[0]]
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
if args.fp16:
try:
from apex.optimizers import FP16_Optimizer
from apex.optimizers import FusedAdam
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")
optimizer = FusedAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
bias_correction=False,
max_grad_norm=1.0)
if args.loss_scale == 0:
optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
else:
optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)
warmup_linear = WarmupLinearSchedule(warmup=args.warmup_proportion,
t_total=num_train_optimization_steps)
else:
optimizer = BertAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
warmup=args.warmup_proportion,
t_total=num_train_optimization_steps)
global_step = 0
logger.info("***** Running training *****")
logger.info(" Num orig examples = %d", len(train_examples))
logger.info(" Num split examples = %d", len(train_features))
logger.info(" Batch size = %d", args.train_batch_size)
logger.info(" Num steps = %d", num_train_optimization_steps)
model.train()
for epoch in trange(int(args.num_train_epochs), desc="Epoch"):
for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])):
if n_gpu == 1:
batch = tuple(t.to(device) for t in batch) # multi-gpu does scattering it-self
input_ids, input_mask, segment_ids, start_positions, end_positions = batch
loss = model(input_ids, segment_ids, input_mask, start_positions, end_positions)
if n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu.
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
if args.fp16:
optimizer.backward(loss)
else:
loss.backward()
if (step + 1) % args.gradient_accumulation_steps == 0:
if args.fp16:
# modify learning rate with special warm up BERT uses
# if args.fp16 is False, BertAdam is used and handles this automatically
lr_this_step = args.learning_rate * warmup_linear.get_lr(global_step, args.warmup_proportion)
for param_group in optimizer.param_groups:
param_group['lr'] = lr_this_step
optimizer.step()
optimizer.zero_grad()
global_step += 1
if args.local_rank in [-1, 0]:
tb_writer.add_scalar('lr', optimizer.get_lr()[0], global_step)
tb_writer.add_scalar('loss', loss.item(), global_step)
if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
# Save a trained model, configuration and tokenizer
model_to_save = model.module if hasattr(model, 'module') else model # Only save the model it-self
# If we save using the predefined names, we can load using `from_pretrained`
output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
output_config_file = os.path.join(args.output_dir, CONFIG_NAME)
torch.save(model_to_save.state_dict(), output_model_file)
model_to_save.config.to_json_file(output_config_file)
tokenizer.save_vocabulary(args.output_dir)
# Load a trained model and vocabulary that you have fine-tuned
model = BertForQuestionAnswering.from_pretrained(args.output_dir) # Save the trained model and the tokenizer
tokenizer = BertTokenizer.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case) if args.local_rank == -1 or torch.distributed.get_rank() == 0:
# Create output directory if needed
if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
os.makedirs(args.output_dir)
logger.info("Saving model checkpoint to %s", args.output_dir)
# Save a trained model, configuration and tokenizer using `save_pretrained()`.
# They can then be reloaded using `from_pretrained()`
model_to_save = model.module if hasattr(model, 'module') else model # Take care of distributed/parallel training
model_to_save.save_pretrained(args.output_dir)
tokenizer.save_pretrained(args.output_dir)
# Good practice: save your training arguments together with the trained model # Good practice: save your training arguments together with the trained model
output_args_file = os.path.join(args.output_dir, 'training_args.bin') torch.save(args, os.path.join(args.output_dir, 'training_args.bin'))
torch.save(args, output_args_file)
else:
# Load a trained model and vocabulary that you have fine-tuned # Load a trained model and vocabulary that you have fine-tuned
model = BertForQuestionAnswering.from_pretrained(args.output_dir) model = model_class.from_pretrained(args.output_dir)
tokenizer = BertTokenizer.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case) tokenizer = tokenizer_class.from_pretrained(args.output_dir)
model.to(args.device)
model.to(device)
if args.do_predict and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
eval_examples = read_squad_examples(
input_file=args.predict_file, is_training=False, version_2_with_negative=args.version_2_with_negative)
eval_features = convert_examples_to_features(
examples=eval_examples,
tokenizer=tokenizer,
max_seq_length=args.max_seq_length,
doc_stride=args.doc_stride,
max_query_length=args.max_query_length,
is_training=False)
logger.info("***** Running predictions *****")
logger.info(" Num orig examples = %d", len(eval_examples))
logger.info(" Num split examples = %d", len(eval_features))
logger.info(" Batch size = %d", args.predict_batch_size)
all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long)
eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_example_index)
# Run prediction for full data
eval_sampler = SequentialSampler(eval_data)
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.predict_batch_size)
model.eval()
all_results = [] # Evaluation - we can ask to evaluate all the checkpoints (sub-directories) in a directory
logger.info("Start evaluating") results = {}
for input_ids, input_mask, segment_ids, example_indices in tqdm(eval_dataloader, desc="Evaluating", disable=args.local_rank not in [-1, 0]): if args.do_eval and args.local_rank in [-1, 0]:
if len(all_results) % 1000 == 0: checkpoints = [args.output_dir]
logger.info("Processing example: %d" % (len(all_results))) if args.eval_all_checkpoints:
input_ids = input_ids.to(device) checkpoints = list(os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True)))
input_mask = input_mask.to(device) logging.getLogger("pytorch_transformers.modeling_utils").setLevel(logging.WARN) # Reduce model loading logs
segment_ids = segment_ids.to(device)
with torch.no_grad(): logger.info("Evaluate the following checkpoints: %s", checkpoints)
batch_start_logits, batch_end_logits = model(input_ids, segment_ids, input_mask)
for i, example_index in enumerate(example_indices): for checkpoint in checkpoints:
start_logits = batch_start_logits[i].detach().cpu().tolist() # Reload the model
end_logits = batch_end_logits[i].detach().cpu().tolist() global_step = checkpoint.split('-')[-1] if len(checkpoints) > 1 else ""
eval_feature = eval_features[example_index.item()] model = model_class.from_pretrained(checkpoint)
unique_id = int(eval_feature.unique_id) model.to(args.device)
all_results.append(RawResult(unique_id=unique_id,
start_logits=start_logits, # Evaluate
end_logits=end_logits)) result = evaluate(args, model, tokenizer, prefix=global_step)
output_prediction_file = os.path.join(args.output_dir, "predictions.json")
output_nbest_file = os.path.join(args.output_dir, "nbest_predictions.json") result = dict((k + ('_{}'.format(global_step) if global_step else ''), v) for k, v in result.items())
output_null_log_odds_file = os.path.join(args.output_dir, "null_odds.json") results.update(result)
write_predictions(eval_examples, eval_features, all_results,
args.n_best_size, args.max_answer_length, logger.info("Results: {}".format(results))
args.do_lower_case, output_prediction_file,
output_nbest_file, output_null_log_odds_file, args.verbose_logging, return results
args.version_2_with_negative, args.null_score_diff_threshold)
if __name__ == "__main__": if __name__ == "__main__":
......
...@@ -39,8 +39,8 @@ import torch ...@@ -39,8 +39,8 @@ import torch
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler, from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
TensorDataset) TensorDataset)
from pytorch_pretrained_bert import (OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, from pytorch_transformers import (OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer,
OpenAIAdam, cached_path, WEIGHTS_NAME, CONFIG_NAME) AdamW, cached_path, WEIGHTS_NAME, CONFIG_NAME)
ROCSTORIES_URL = "https://s3.amazonaws.com/datasets.huggingface.co/ROCStories.tar.gz" ROCSTORIES_URL = "https://s3.amazonaws.com/datasets.huggingface.co/ROCStories.tar.gz"
...@@ -191,7 +191,7 @@ def main(): ...@@ -191,7 +191,7 @@ def main():
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0} {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
] ]
num_train_optimization_steps = len(train_dataloader) * args.num_train_epochs num_train_optimization_steps = len(train_dataloader) * args.num_train_epochs
optimizer = OpenAIAdam(optimizer_grouped_parameters, optimizer = AdamW(optimizer_grouped_parameters,
lr=args.learning_rate, lr=args.learning_rate,
warmup=args.warmup_proportion, warmup=args.warmup_proportion,
max_grad_norm=args.max_grad_norm, max_grad_norm=args.max_grad_norm,
......
...@@ -32,10 +32,10 @@ from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler, ...@@ -32,10 +32,10 @@ from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
from torch.utils.data.distributed import DistributedSampler from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm, trange from tqdm import tqdm, trange
from pytorch_pretrained_bert.file_utils import PYTORCH_PRETRAINED_BERT_CACHE, WEIGHTS_NAME, CONFIG_NAME from pytorch_transformers.file_utils import PYTORCH_PRETRAINED_BERT_CACHE, WEIGHTS_NAME, CONFIG_NAME
from pytorch_pretrained_bert.modeling import BertForMultipleChoice, BertConfig from pytorch_transformers.modeling_bert import BertForMultipleChoice, BertConfig
from pytorch_pretrained_bert.optimization import BertAdam, WarmupLinearSchedule from pytorch_transformers.optimization import AdamW, WarmupLinearSchedule
from pytorch_pretrained_bert.tokenization import BertTokenizer from pytorch_transformers.tokenization_bert import BertTokenizer
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s', logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt = '%m/%d/%Y %H:%M:%S', datefmt = '%m/%d/%Y %H:%M:%S',
......
...@@ -28,7 +28,7 @@ import math ...@@ -28,7 +28,7 @@ import math
import torch import torch
from pytorch_pretrained_bert import TransfoXLLMHeadModel, TransfoXLCorpus, TransfoXLTokenizer from pytorch_transformers import TransfoXLLMHeadModel, TransfoXLCorpus, TransfoXLTokenizer
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s', logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt = '%m/%d/%Y %H:%M:%S', datefmt = '%m/%d/%Y %H:%M:%S',
......
# coding=utf-8
# Copyright 2018 HuggingFace Inc..
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import sys
import unittest
import argparse
import logging
try:
# python 3.4+ can use builtin unittest.mock instead of mock package
from unittest.mock import patch
except ImportError:
from mock import patch
import run_glue
import run_squad
import run_generation
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger()
def get_setup_file():
parser = argparse.ArgumentParser()
parser.add_argument('-f')
args = parser.parse_args()
return args.f
class ExamplesTests(unittest.TestCase):
def test_run_glue(self):
stream_handler = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
testargs = ["run_glue.py",
"--data_dir=./examples/tests_samples/MRPC/",
"--task_name=mrpc",
"--do_train",
"--do_eval",
"--output_dir=./examples/tests_samples/temp_dir",
"--per_gpu_train_batch_size=2",
"--per_gpu_eval_batch_size=1",
"--learning_rate=1e-4",
"--max_steps=10",
"--warmup_steps=2",
"--overwrite_output_dir",
"--seed=42"]
model_type, model_name = ("--model_type=bert",
"--model_name_or_path=bert-base-uncased")
with patch.object(sys, 'argv', testargs + [model_type, model_name]):
result = run_glue.main()
for value in result.values():
self.assertGreaterEqual(value, 0.75)
def test_run_squad(self):
stream_handler = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
testargs = ["run_squad.py",
"--train_file=./examples/tests_samples/SQUAD/dev-v2.0-small.json",
"--predict_file=./examples/tests_samples/SQUAD/dev-v2.0-small.json",
"--model_name=bert-base-uncased",
"--output_dir=./examples/tests_samples/temp_dir",
"--max_steps=10",
"--warmup_steps=2",
"--do_train",
"--do_eval",
"--version_2_with_negative",
"--learning_rate=1e-4",
"--per_gpu_train_batch_size=2",
"--per_gpu_eval_batch_size=1",
"--overwrite_output_dir",
"--seed=42"]
model_type, model_name = ("--model_type=bert",
"--model_name_or_path=bert-base-uncased")
with patch.object(sys, 'argv', testargs + [model_type, model_name]):
result = run_squad.main()
self.assertGreaterEqual(result['f1'], 30)
self.assertGreaterEqual(result['exact'], 30)
def test_generation(self):
stream_handler = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
testargs = ["run_generation.py",
"--prompt=Hello",
"--length=10",
"--seed=42"]
model_type, model_name = ("--model_type=openai-gpt",
"--model_name_or_path=openai-gpt")
with patch.object(sys, 'argv', testargs + [model_type, model_name]):
result = run_generation.main()
self.assertGreaterEqual(len(result), 10)
if __name__ == "__main__":
unittest.main()
*.*
cache*
temp*
!*.tsv
!*.json
!.gitignore
\ No newline at end of file
Quality #1 ID #2 ID #1 String #2 String
1 1355540 1355592 He said the foodservice pie business doesn 't fit the company 's long-term growth strategy . " The foodservice pie business does not fit our long-term growth strategy .
0 2029631 2029565 Magnarelli said Racicot hated the Iraqi regime and looked forward to using his long years of training in the war . His wife said he was " 100 percent behind George Bush " and looked forward to using his years of training in the war .
0 487993 487952 The dollar was at 116.92 yen against the yen , flat on the session , and at 1.2891 against the Swiss franc , also flat . The dollar was at 116.78 yen JPY = , virtually flat on the session , and at 1.2871 against the Swiss franc CHF = , down 0.1 percent .
1 1989515 1989458 The AFL-CIO is waiting until October to decide if it will endorse a candidate . The AFL-CIO announced Wednesday that it will decide in October whether to endorse a candidate before the primaries .
0 1783137 1782659 No dates have been set for the civil or the criminal trial . No dates have been set for the criminal or civil cases , but Shanley has pleaded not guilty .
1 3039165 3039036 Wal-Mart said it would check all of its million-plus domestic workers to ensure they were legally employed . It has also said it would review all of its domestic employees more than 1 million to ensure they have legal status .
Quality #1 ID #2 ID #1 String #2 String
1 1355540 1355592 He said the foodservice pie business doesn 't fit the company 's long-term growth strategy . " The foodservice pie business does not fit our long-term growth strategy .
0 2029631 2029565 Magnarelli said Racicot hated the Iraqi regime and looked forward to using his long years of training in the war . His wife said he was " 100 percent behind George Bush " and looked forward to using his years of training in the war .
0 487993 487952 The dollar was at 116.92 yen against the yen , flat on the session , and at 1.2891 against the Swiss franc , also flat . The dollar was at 116.78 yen JPY = , virtually flat on the session , and at 1.2871 against the Swiss franc CHF = , down 0.1 percent .
1 1989515 1989458 The AFL-CIO is waiting until October to decide if it will endorse a candidate . The AFL-CIO announced Wednesday that it will decide in October whether to endorse a candidate before the primaries .
0 1783137 1782659 No dates have been set for the civil or the criminal trial . No dates have been set for the criminal or civil cases , but Shanley has pleaded not guilty .
1 3039165 3039036 Wal-Mart said it would check all of its million-plus domestic workers to ensure they were legally employed . It has also said it would review all of its domestic employees more than 1 million to ensure they have legal status .
{
"version": "v2.0",
"data": [{
"title": "Normans",
"paragraphs": [{
"qas": [{
"question": "In what country is Normandy located?",
"id": "56ddde6b9a695914005b9628",
"answers": [{
"text": "France",
"answer_start": 159
}],
"is_impossible": false
}, {
"question": "When were the Normans in Normandy?",
"id": "56ddde6b9a695914005b9629",
"answers": [{
"text": "10th and 11th centuries",
"answer_start": 94
}],
"is_impossible": false
}, {
"question": "From which countries did the Norse originate?",
"id": "56ddde6b9a695914005b962a",
"answers": [{
"text": "Denmark, Iceland and Norway",
"answer_start": 256
}],
"is_impossible": false
}, {
"plausible_answers": [{
"text": "Rollo",
"answer_start": 308
}],
"question": "Who did King Charles III swear fealty to?",
"id": "5ad39d53604f3c001a3fe8d3",
"answers": [],
"is_impossible": true
}, {
"plausible_answers": [{
"text": "10th century",
"answer_start": 671
}],
"question": "When did the Frankish identity emerge?",
"id": "5ad39d53604f3c001a3fe8d4",
"answers": [],
"is_impossible": true
}],
"context": "The Normans (Norman: Nourmands; French: Normands; Latin: Normanni) were the people who in the 10th and 11th centuries gave their name to Normandy, a region in France. They were descended from Norse (\"Norman\" comes from \"Norseman\") raiders and pirates from Denmark, Iceland and Norway who, under their leader Rollo, agreed to swear fealty to King Charles III of West Francia. Through generations of assimilation and mixing with the native Frankish and Roman-Gaulish populations, their descendants would gradually merge with the Carolingian-based cultures of West Francia. The distinct cultural and ethnic identity of the Normans emerged initially in the first half of the 10th century, and it continued to evolve over the succeeding centuries."
}, {
"qas": [{
"question": "Who was the duke in the battle of Hastings?",
"id": "56dddf4066d3e219004dad5f",
"answers": [{
"text": "William the Conqueror",
"answer_start": 1022
}],
"is_impossible": false
}, {
"plausible_answers": [{
"text": "Antioch",
"answer_start": 1295
}],
"question": "What principality did William the conquerer found?",
"id": "5ad3a266604f3c001a3fea2b",
"answers": [],
"is_impossible": true
}],
"context": "The Norman dynasty had a major political, cultural and military impact on medieval Europe and even the Near East. The Normans were famed for their martial spirit and eventually for their Christian piety, becoming exponents of the Catholic orthodoxy into which they assimilated. They adopted the Gallo-Romance language of the Frankish land they settled, their dialect becoming known as Norman, Normaund or Norman French, an important literary language. The Duchy of Normandy, which they formed by treaty with the French crown, was a great fief of medieval France, and under Richard I of Normandy was forged into a cohesive and formidable principality in feudal tenure. The Normans are noted both for their culture, such as their unique Romanesque architecture and musical traditions, and for their significant military accomplishments and innovations. Norman adventurers founded the Kingdom of Sicily under Roger II after conquering southern Italy on the Saracens and Byzantines, and an expedition on behalf of their duke, William the Conqueror, led to the Norman conquest of England at the Battle of Hastings in 1066. Norman cultural and military influence spread from these new European centres to the Crusader states of the Near East, where their prince Bohemond I founded the Principality of Antioch in the Levant, to Scotland and Wales in Great Britain, to Ireland, and to the coasts of north Africa and the Canary Islands."
}]
}, {
"title": "Computational_complexity_theory",
"paragraphs": [{
"qas": [{
"question": "What branch of theoretical computer science deals with broadly classifying computational problems by difficulty and class of relationship?",
"id": "56e16182e3433e1400422e28",
"answers": [{
"text": "Computational complexity theory",
"answer_start": 0
}],
"is_impossible": false
}, {
"plausible_answers": [{
"text": "algorithm",
"answer_start": 472
}],
"question": "What is a manual application of mathematical steps?",
"id": "5ad5316b5b96ef001a10ab76",
"answers": [],
"is_impossible": true
}],
"context": "Computational complexity theory is a branch of the theory of computation in theoretical computer science that focuses on classifying computational problems according to their inherent difficulty, and relating those classes to each other. A computational problem is understood to be a task that is in principle amenable to being solved by a computer, which is equivalent to stating that the problem may be solved by mechanical application of mathematical steps, such as an algorithm."
}, {
"qas": [{
"question": "What measure of a computational problem broadly defines the inherent difficulty of the solution?",
"id": "56e16839cd28a01900c67887",
"answers": [{
"text": "if its solution requires significant resources",
"answer_start": 46
}],
"is_impossible": false
}, {
"question": "What method is used to intuitively assess or quantify the amount of resources required to solve a computational problem?",
"id": "56e16839cd28a01900c67888",
"answers": [{
"text": "mathematical models of computation",
"answer_start": 176
}],
"is_impossible": false
}, {
"question": "What are two basic primary resources used to guage complexity?",
"id": "56e16839cd28a01900c67889",
"answers": [{
"text": "time and storage",
"answer_start": 305
}],
"is_impossible": false
}, {
"plausible_answers": [{
"text": "the number of gates in a circuit",
"answer_start": 436
}],
"question": "What unit is measured to determine circuit simplicity?",
"id": "5ad532575b96ef001a10ab7f",
"answers": [],
"is_impossible": true
}, {
"plausible_answers": [{
"text": "the number of processors",
"answer_start": 502
}],
"question": "What number is used in perpendicular computing?",
"id": "5ad532575b96ef001a10ab80",
"answers": [],
"is_impossible": true
}],
"context": "A problem is regarded as inherently difficult if its solution requires significant resources, whatever the algorithm used. The theory formalizes this intuition, by introducing mathematical models of computation to study these problems and quantifying the amount of resources needed to solve them, such as time and storage. Other complexity measures are also used, such as the amount of communication (used in communication complexity), the number of gates in a circuit (used in circuit complexity) and the number of processors (used in parallel computing). One of the roles of computational complexity theory is to determine the practical limits on what computers can and cannot do."
}]
}]
}
\ No newline at end of file
...@@ -21,6 +21,7 @@ import csv ...@@ -21,6 +21,7 @@ import csv
import logging import logging
import os import os
import sys import sys
from io import open
from scipy.stats import pearsonr, spearmanr from scipy.stats import pearsonr, spearmanr
from sklearn.metrics import matthews_corrcoef, f1_score from sklearn.metrics import matthews_corrcoef, f1_score
...@@ -77,7 +78,7 @@ class DataProcessor(object): ...@@ -77,7 +78,7 @@ class DataProcessor(object):
@classmethod @classmethod
def _read_tsv(cls, input_file, quotechar=None): def _read_tsv(cls, input_file, quotechar=None):
"""Reads a tab separated value file.""" """Reads a tab separated value file."""
with open(input_file, "r", encoding="utf-8") as f: with open(input_file, "r", encoding="utf-8-sig") as f:
reader = csv.reader(f, delimiter="\t", quotechar=quotechar) reader = csv.reader(f, delimiter="\t", quotechar=quotechar)
lines = [] lines = []
for line in reader: for line in reader:
...@@ -388,8 +389,18 @@ class WnliProcessor(DataProcessor): ...@@ -388,8 +389,18 @@ class WnliProcessor(DataProcessor):
def convert_examples_to_features(examples, label_list, max_seq_length, def convert_examples_to_features(examples, label_list, max_seq_length,
tokenizer, output_mode): tokenizer, output_mode,
"""Loads a data file into a list of `InputBatch`s.""" cls_token_at_end=False, pad_on_left=False,
cls_token='[CLS]', sep_token='[SEP]', pad_token=0,
sequence_a_segment_id=0, sequence_b_segment_id=1,
cls_token_segment_id=1, pad_token_segment_id=0,
mask_padding_with_zero=True):
""" Loads a data file into a list of `InputBatch`s
`cls_token_at_end` define the location of the CLS token:
- False (Default, BERT/XLM pattern): [CLS] + A + [SEP] + B + [SEP]
- True (XLNet/GPT pattern): A + [SEP] + B + [SEP] + [CLS]
`cls_token_segment_id` define the segment id associated to the CLS token (0 for BERT, 2 for XLNet)
"""
label_map = {label : i for i, label in enumerate(label_list)} label_map = {label : i for i, label in enumerate(label_list)}
...@@ -415,10 +426,10 @@ def convert_examples_to_features(examples, label_list, max_seq_length, ...@@ -415,10 +426,10 @@ def convert_examples_to_features(examples, label_list, max_seq_length,
# The convention in BERT is: # The convention in BERT is:
# (a) For sequence pairs: # (a) For sequence pairs:
# tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
# type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1
# (b) For single sequences: # (b) For single sequences:
# tokens: [CLS] the dog is hairy . [SEP] # tokens: [CLS] the dog is hairy . [SEP]
# type_ids: 0 0 0 0 0 0 0 # type_ids: 0 0 0 0 0 0 0
# #
# Where "type_ids" are used to indicate whether this is the first # Where "type_ids" are used to indicate whether this is the first
# sequence or the second sequence. The embedding vectors for `type=0` and # sequence or the second sequence. The embedding vectors for `type=0` and
...@@ -430,24 +441,36 @@ def convert_examples_to_features(examples, label_list, max_seq_length, ...@@ -430,24 +441,36 @@ def convert_examples_to_features(examples, label_list, max_seq_length,
# For classification tasks, the first vector (corresponding to [CLS]) is # For classification tasks, the first vector (corresponding to [CLS]) is
# used as as the "sentence vector". Note that this only makes sense because # used as as the "sentence vector". Note that this only makes sense because
# the entire model is fine-tuned. # the entire model is fine-tuned.
tokens = ["[CLS]"] + tokens_a + ["[SEP]"] tokens = tokens_a + [sep_token]
segment_ids = [0] * len(tokens) segment_ids = [sequence_a_segment_id] * len(tokens)
if tokens_b: if tokens_b:
tokens += tokens_b + ["[SEP]"] tokens += tokens_b + [sep_token]
segment_ids += [1] * (len(tokens_b) + 1) segment_ids += [sequence_b_segment_id] * (len(tokens_b) + 1)
if cls_token_at_end:
tokens = tokens + [cls_token]
segment_ids = segment_ids + [cls_token_segment_id]
else:
tokens = [cls_token] + tokens
segment_ids = [cls_token_segment_id] + segment_ids
input_ids = tokenizer.convert_tokens_to_ids(tokens) input_ids = tokenizer.convert_tokens_to_ids(tokens)
# The mask has 1 for real tokens and 0 for padding tokens. Only real # The mask has 1 for real tokens and 0 for padding tokens. Only real
# tokens are attended to. # tokens are attended to.
input_mask = [1] * len(input_ids) input_mask = [1 if mask_padding_with_zero else 0] * len(input_ids)
# Zero-pad up to the sequence length. # Zero-pad up to the sequence length.
padding = [0] * (max_seq_length - len(input_ids)) padding_length = max_seq_length - len(input_ids)
input_ids += padding if pad_on_left:
input_mask += padding input_ids = ([pad_token] * padding_length) + input_ids
segment_ids += padding input_mask = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask
segment_ids = ([pad_token_segment_id] * padding_length) + segment_ids
else:
input_ids = input_ids + ([pad_token] * padding_length)
input_mask = input_mask + ([0 if mask_padding_with_zero else 1] * padding_length)
segment_ids = segment_ids + ([pad_token_segment_id] * padding_length)
assert len(input_ids) == max_seq_length assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length assert len(input_mask) == max_seq_length
...@@ -467,8 +490,7 @@ def convert_examples_to_features(examples, label_list, max_seq_length, ...@@ -467,8 +490,7 @@ def convert_examples_to_features(examples, label_list, max_seq_length,
[str(x) for x in tokens])) [str(x) for x in tokens]))
logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids])) logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
logger.info("input_mask: %s" % " ".join([str(x) for x in input_mask])) logger.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
logger.info( logger.info("segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
"segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
logger.info("label: %s (id = %d)" % (example.label, label_id)) logger.info("label: %s (id = %d)" % (example.label, label_id))
features.append( features.append(
...@@ -561,6 +583,7 @@ processors = { ...@@ -561,6 +583,7 @@ processors = {
output_modes = { output_modes = {
"cola": "classification", "cola": "classification",
"mnli": "classification", "mnli": "classification",
"mnli-mm": "classification",
"mrpc": "classification", "mrpc": "classification",
"sst-2": "classification", "sst-2": "classification",
"sts-b": "regression", "sts-b": "regression",
...@@ -569,3 +592,15 @@ output_modes = { ...@@ -569,3 +592,15 @@ output_modes = {
"rte": "classification", "rte": "classification",
"wnli": "classification", "wnli": "classification",
} }
GLUE_TASKS_NUM_LABELS = {
"cola": 2,
"mnli": 3,
"mrpc": 2,
"sst-2": 2,
"sts-b": 1,
"qqp": 2,
"qnli": 2,
"rte": 2,
"wnli": 2,
}
# coding=utf-8 # coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
...@@ -23,7 +24,10 @@ import math ...@@ -23,7 +24,10 @@ import math
import collections import collections
from io import open from io import open
from pytorch_pretrained_bert.tokenization import BasicTokenizer, whitespace_tokenize from pytorch_transformers.tokenization_bert import BasicTokenizer, whitespace_tokenize
# Required by XLNet evaluation method to compute optimal threshold (see write_predictions_extended() method)
from utils_squad_evaluate import find_all_best_thresh_v2, make_qid_to_has_ans, get_raw_scores
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
...@@ -81,6 +85,9 @@ class InputFeatures(object): ...@@ -81,6 +85,9 @@ class InputFeatures(object):
input_ids, input_ids,
input_mask, input_mask,
segment_ids, segment_ids,
cls_index,
p_mask,
paragraph_len,
start_position=None, start_position=None,
end_position=None, end_position=None,
is_impossible=None): is_impossible=None):
...@@ -93,6 +100,9 @@ class InputFeatures(object): ...@@ -93,6 +100,9 @@ class InputFeatures(object):
self.input_ids = input_ids self.input_ids = input_ids
self.input_mask = input_mask self.input_mask = input_mask
self.segment_ids = segment_ids self.segment_ids = segment_ids
self.cls_index = cls_index
self.p_mask = p_mask
self.paragraph_len = paragraph_len
self.start_position = start_position self.start_position = start_position
self.end_position = end_position self.end_position = end_position
self.is_impossible = is_impossible self.is_impossible = is_impossible
...@@ -177,13 +187,25 @@ def read_squad_examples(input_file, is_training, version_2_with_negative): ...@@ -177,13 +187,25 @@ def read_squad_examples(input_file, is_training, version_2_with_negative):
def convert_examples_to_features(examples, tokenizer, max_seq_length, def convert_examples_to_features(examples, tokenizer, max_seq_length,
doc_stride, max_query_length, is_training): doc_stride, max_query_length, is_training,
cls_token_at_end=False,
cls_token='[CLS]', sep_token='[SEP]', pad_token=0,
sequence_a_segment_id=0, sequence_b_segment_id=1,
cls_token_segment_id=0, pad_token_segment_id=0,
mask_padding_with_zero=True):
"""Loads a data file into a list of `InputBatch`s.""" """Loads a data file into a list of `InputBatch`s."""
unique_id = 1000000000 unique_id = 1000000000
# cnt_pos, cnt_neg = 0, 0
# max_N, max_M = 1024, 1024
# f = np.zeros((max_N, max_M), dtype=np.float32)
features = [] features = []
for (example_index, example) in enumerate(examples): for (example_index, example) in enumerate(examples):
# if example_index % 100 == 0:
# logger.info('Converting %s/%s pos %s neg %s', example_index, len(examples), cnt_pos, cnt_neg)
query_tokens = tokenizer.tokenize(example.question_text) query_tokens = tokenizer.tokenize(example.question_text)
if len(query_tokens) > max_query_length: if len(query_tokens) > max_query_length:
...@@ -238,14 +260,30 @@ def convert_examples_to_features(examples, tokenizer, max_seq_length, ...@@ -238,14 +260,30 @@ def convert_examples_to_features(examples, tokenizer, max_seq_length,
token_to_orig_map = {} token_to_orig_map = {}
token_is_max_context = {} token_is_max_context = {}
segment_ids = [] segment_ids = []
tokens.append("[CLS]")
segment_ids.append(0) # p_mask: mask with 1 for token than cannot be in the answer (0 for token which can be in an answer)
# Original TF implem also keep the classification token (set to 0) (not sure why...)
p_mask = []
# CLS token at the beginning
if not cls_token_at_end:
tokens.append(cls_token)
segment_ids.append(cls_token_segment_id)
p_mask.append(0)
cls_index = 0
# Query
for token in query_tokens: for token in query_tokens:
tokens.append(token) tokens.append(token)
segment_ids.append(0) segment_ids.append(sequence_a_segment_id)
tokens.append("[SEP]") p_mask.append(1)
segment_ids.append(0)
# SEP token
tokens.append(sep_token)
segment_ids.append(sequence_a_segment_id)
p_mask.append(1)
# Paragraph
for i in range(doc_span.length): for i in range(doc_span.length):
split_token_index = doc_span.start + i split_token_index = doc_span.start + i
token_to_orig_map[len(tokens)] = tok_to_orig_index[split_token_index] token_to_orig_map[len(tokens)] = tok_to_orig_index[split_token_index]
...@@ -254,29 +292,43 @@ def convert_examples_to_features(examples, tokenizer, max_seq_length, ...@@ -254,29 +292,43 @@ def convert_examples_to_features(examples, tokenizer, max_seq_length,
split_token_index) split_token_index)
token_is_max_context[len(tokens)] = is_max_context token_is_max_context[len(tokens)] = is_max_context
tokens.append(all_doc_tokens[split_token_index]) tokens.append(all_doc_tokens[split_token_index])
segment_ids.append(1) segment_ids.append(sequence_b_segment_id)
tokens.append("[SEP]") p_mask.append(0)
segment_ids.append(1) paragraph_len = doc_span.length
# SEP token
tokens.append(sep_token)
segment_ids.append(sequence_b_segment_id)
p_mask.append(1)
# CLS token at the end
if cls_token_at_end:
tokens.append(cls_token)
segment_ids.append(cls_token_segment_id)
p_mask.append(0)
cls_index = len(tokens) - 1 # Index of classification token
input_ids = tokenizer.convert_tokens_to_ids(tokens) input_ids = tokenizer.convert_tokens_to_ids(tokens)
# The mask has 1 for real tokens and 0 for padding tokens. Only real # The mask has 1 for real tokens and 0 for padding tokens. Only real
# tokens are attended to. # tokens are attended to.
input_mask = [1] * len(input_ids) input_mask = [1 if mask_padding_with_zero else 0] * len(input_ids)
# Zero-pad up to the sequence length. # Zero-pad up to the sequence length.
while len(input_ids) < max_seq_length: while len(input_ids) < max_seq_length:
input_ids.append(0) input_ids.append(pad_token)
input_mask.append(0) input_mask.append(0 if mask_padding_with_zero else 1)
segment_ids.append(0) segment_ids.append(pad_token_segment_id)
p_mask.append(1)
assert len(input_ids) == max_seq_length assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length assert len(input_mask) == max_seq_length
assert len(segment_ids) == max_seq_length assert len(segment_ids) == max_seq_length
span_is_impossible = example.is_impossible
start_position = None start_position = None
end_position = None end_position = None
if is_training and not example.is_impossible: if is_training and not span_is_impossible:
# For training, if our document chunk does not contain an annotation # For training, if our document chunk does not contain an annotation
# we throw it out, since there is nothing to predict. # we throw it out, since there is nothing to predict.
doc_start = doc_span.start doc_start = doc_span.start
...@@ -288,13 +340,16 @@ def convert_examples_to_features(examples, tokenizer, max_seq_length, ...@@ -288,13 +340,16 @@ def convert_examples_to_features(examples, tokenizer, max_seq_length,
if out_of_span: if out_of_span:
start_position = 0 start_position = 0
end_position = 0 end_position = 0
span_is_impossible = True
else: else:
doc_offset = len(query_tokens) + 2 doc_offset = len(query_tokens) + 2
start_position = tok_start_position - doc_start + doc_offset start_position = tok_start_position - doc_start + doc_offset
end_position = tok_end_position - doc_start + doc_offset end_position = tok_end_position - doc_start + doc_offset
if is_training and example.is_impossible:
start_position = 0 if is_training and span_is_impossible:
end_position = 0 start_position = cls_index
end_position = cls_index
if example_index < 20: if example_index < 20:
logger.info("*** Example ***") logger.info("*** Example ***")
logger.info("unique_id: %s" % (unique_id)) logger.info("unique_id: %s" % (unique_id))
...@@ -311,9 +366,9 @@ def convert_examples_to_features(examples, tokenizer, max_seq_length, ...@@ -311,9 +366,9 @@ def convert_examples_to_features(examples, tokenizer, max_seq_length,
"input_mask: %s" % " ".join([str(x) for x in input_mask])) "input_mask: %s" % " ".join([str(x) for x in input_mask]))
logger.info( logger.info(
"segment_ids: %s" % " ".join([str(x) for x in segment_ids])) "segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
if is_training and example.is_impossible: if is_training and span_is_impossible:
logger.info("impossible example") logger.info("impossible example")
if is_training and not example.is_impossible: if is_training and not span_is_impossible:
answer_text = " ".join(tokens[start_position:(end_position + 1)]) answer_text = " ".join(tokens[start_position:(end_position + 1)])
logger.info("start_position: %d" % (start_position)) logger.info("start_position: %d" % (start_position))
logger.info("end_position: %d" % (end_position)) logger.info("end_position: %d" % (end_position))
...@@ -331,9 +386,12 @@ def convert_examples_to_features(examples, tokenizer, max_seq_length, ...@@ -331,9 +386,12 @@ def convert_examples_to_features(examples, tokenizer, max_seq_length,
input_ids=input_ids, input_ids=input_ids,
input_mask=input_mask, input_mask=input_mask,
segment_ids=segment_ids, segment_ids=segment_ids,
cls_index=cls_index,
p_mask=p_mask,
paragraph_len=paragraph_len,
start_position=start_position, start_position=start_position,
end_position=end_position, end_position=end_position,
is_impossible=example.is_impossible)) is_impossible=span_is_impossible))
unique_id += 1 unique_id += 1
return features return features
...@@ -416,7 +474,6 @@ def _check_is_max_context(doc_spans, cur_span_index, position): ...@@ -416,7 +474,6 @@ def _check_is_max_context(doc_spans, cur_span_index, position):
RawResult = collections.namedtuple("RawResult", RawResult = collections.namedtuple("RawResult",
["unique_id", "start_logits", "end_logits"]) ["unique_id", "start_logits", "end_logits"])
def write_predictions(all_examples, all_features, all_results, n_best_size, def write_predictions(all_examples, all_features, all_results, n_best_size,
max_answer_length, do_lower_case, output_prediction_file, max_answer_length, do_lower_case, output_prediction_file,
output_nbest_file, output_null_log_odds_file, verbose_logging, output_nbest_file, output_null_log_odds_file, verbose_logging,
...@@ -555,7 +612,7 @@ def write_predictions(all_examples, all_features, all_results, n_best_size, ...@@ -555,7 +612,7 @@ def write_predictions(all_examples, all_features, all_results, n_best_size,
if len(nbest)==1: if len(nbest)==1:
nbest.insert(0, nbest.insert(0,
_NbestPrediction(text="empty", start_logit=0.0, end_logit=0.0)) _NbestPrediction(text="empty", start_logit=0.0, end_logit=0.0))
# In very rare edge cases we could have no valid predictions. So we # In very rare edge cases we could have no valid predictions. So we
# just create a nonce prediction in this case to avoid failure. # just create a nonce prediction in this case to avoid failure.
if not nbest: if not nbest:
...@@ -608,6 +665,205 @@ def write_predictions(all_examples, all_features, all_results, n_best_size, ...@@ -608,6 +665,205 @@ def write_predictions(all_examples, all_features, all_results, n_best_size,
with open(output_null_log_odds_file, "w") as writer: with open(output_null_log_odds_file, "w") as writer:
writer.write(json.dumps(scores_diff_json, indent=4) + "\n") writer.write(json.dumps(scores_diff_json, indent=4) + "\n")
return all_predictions
# For XLNet (and XLM which uses the same head)
RawResultExtended = collections.namedtuple("RawResultExtended",
["unique_id", "start_top_log_probs", "start_top_index",
"end_top_log_probs", "end_top_index", "cls_logits"])
def write_predictions_extended(all_examples, all_features, all_results, n_best_size,
max_answer_length, output_prediction_file,
output_nbest_file,
output_null_log_odds_file, orig_data_file,
start_n_top, end_n_top, version_2_with_negative,
tokenizer, verbose_logging):
""" XLNet write prediction logic (more complex than Bert's).
Write final predictions to the json file and log-odds of null if needed.
Requires utils_squad_evaluate.py
"""
_PrelimPrediction = collections.namedtuple( # pylint: disable=invalid-name
"PrelimPrediction",
["feature_index", "start_index", "end_index",
"start_log_prob", "end_log_prob"])
_NbestPrediction = collections.namedtuple( # pylint: disable=invalid-name
"NbestPrediction", ["text", "start_log_prob", "end_log_prob"])
logger.info("Writing predictions to: %s", output_prediction_file)
# logger.info("Writing nbest to: %s" % (output_nbest_file))
example_index_to_features = collections.defaultdict(list)
for feature in all_features:
example_index_to_features[feature.example_index].append(feature)
unique_id_to_result = {}
for result in all_results:
unique_id_to_result[result.unique_id] = result
all_predictions = collections.OrderedDict()
all_nbest_json = collections.OrderedDict()
scores_diff_json = collections.OrderedDict()
for (example_index, example) in enumerate(all_examples):
features = example_index_to_features[example_index]
prelim_predictions = []
# keep track of the minimum score of null start+end of position 0
score_null = 1000000 # large and positive
for (feature_index, feature) in enumerate(features):
result = unique_id_to_result[feature.unique_id]
cur_null_score = result.cls_logits
# if we could have irrelevant answers, get the min score of irrelevant
score_null = min(score_null, cur_null_score)
for i in range(start_n_top):
for j in range(end_n_top):
start_log_prob = result.start_top_log_probs[i]
start_index = result.start_top_index[i]
j_index = i * end_n_top + j
end_log_prob = result.end_top_log_probs[j_index]
end_index = result.end_top_index[j_index]
# We could hypothetically create invalid predictions, e.g., predict
# that the start of the span is in the question. We throw out all
# invalid predictions.
if start_index >= feature.paragraph_len - 1:
continue
if end_index >= feature.paragraph_len - 1:
continue
if not feature.token_is_max_context.get(start_index, False):
continue
if end_index < start_index:
continue
length = end_index - start_index + 1
if length > max_answer_length:
continue
prelim_predictions.append(
_PrelimPrediction(
feature_index=feature_index,
start_index=start_index,
end_index=end_index,
start_log_prob=start_log_prob,
end_log_prob=end_log_prob))
prelim_predictions = sorted(
prelim_predictions,
key=lambda x: (x.start_log_prob + x.end_log_prob),
reverse=True)
seen_predictions = {}
nbest = []
for pred in prelim_predictions:
if len(nbest) >= n_best_size:
break
feature = features[pred.feature_index]
# XLNet un-tokenizer
# Let's keep it simple for now and see if we need all this later.
#
# tok_start_to_orig_index = feature.tok_start_to_orig_index
# tok_end_to_orig_index = feature.tok_end_to_orig_index
# start_orig_pos = tok_start_to_orig_index[pred.start_index]
# end_orig_pos = tok_end_to_orig_index[pred.end_index]
# paragraph_text = example.paragraph_text
# final_text = paragraph_text[start_orig_pos: end_orig_pos + 1].strip()
# Previously used Bert untokenizer
tok_tokens = feature.tokens[pred.start_index:(pred.end_index + 1)]
orig_doc_start = feature.token_to_orig_map[pred.start_index]
orig_doc_end = feature.token_to_orig_map[pred.end_index]
orig_tokens = example.doc_tokens[orig_doc_start:(orig_doc_end + 1)]
tok_text = tokenizer.convert_tokens_to_string(tok_tokens)
# Clean whitespace
tok_text = tok_text.strip()
tok_text = " ".join(tok_text.split())
orig_text = " ".join(orig_tokens)
final_text = get_final_text(tok_text, orig_text, tokenizer.do_lower_case,
verbose_logging)
if final_text in seen_predictions:
continue
seen_predictions[final_text] = True
nbest.append(
_NbestPrediction(
text=final_text,
start_log_prob=pred.start_log_prob,
end_log_prob=pred.end_log_prob))
# In very rare edge cases we could have no valid predictions. So we
# just create a nonce prediction in this case to avoid failure.
if not nbest:
nbest.append(
_NbestPrediction(text="", start_log_prob=-1e6,
end_log_prob=-1e6))
total_scores = []
best_non_null_entry = None
for entry in nbest:
total_scores.append(entry.start_log_prob + entry.end_log_prob)
if not best_non_null_entry:
best_non_null_entry = entry
probs = _compute_softmax(total_scores)
nbest_json = []
for (i, entry) in enumerate(nbest):
output = collections.OrderedDict()
output["text"] = entry.text
output["probability"] = probs[i]
output["start_log_prob"] = entry.start_log_prob
output["end_log_prob"] = entry.end_log_prob
nbest_json.append(output)
assert len(nbest_json) >= 1
assert best_non_null_entry is not None
score_diff = score_null
scores_diff_json[example.qas_id] = score_diff
# note(zhiliny): always predict best_non_null_entry
# and the evaluation script will search for the best threshold
all_predictions[example.qas_id] = best_non_null_entry.text
all_nbest_json[example.qas_id] = nbest_json
with open(output_prediction_file, "w") as writer:
writer.write(json.dumps(all_predictions, indent=4) + "\n")
with open(output_nbest_file, "w") as writer:
writer.write(json.dumps(all_nbest_json, indent=4) + "\n")
if version_2_with_negative:
with open(output_null_log_odds_file, "w") as writer:
writer.write(json.dumps(scores_diff_json, indent=4) + "\n")
with open(orig_data_file, "r", encoding='utf-8') as reader:
orig_data = json.load(reader)["data"]
qid_to_has_ans = make_qid_to_has_ans(orig_data)
has_ans_qids = [k for k, v in qid_to_has_ans.items() if v]
no_ans_qids = [k for k, v in qid_to_has_ans.items() if not v]
exact_raw, f1_raw = get_raw_scores(orig_data, all_predictions)
out_eval = {}
find_all_best_thresh_v2(out_eval, all_predictions, exact_raw, f1_raw, scores_diff_json, qid_to_has_ans)
return out_eval
def get_final_text(pred_text, orig_text, do_lower_case, verbose_logging=False): def get_final_text(pred_text, orig_text, do_lower_case, verbose_logging=False):
"""Project the tokenized prediction back to the original text.""" """Project the tokenized prediction back to the original text."""
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment